Generic Multiple Transitivity in the Finite Morley Rank Setting

Ayşe Berkman

Mimar Sinan Güzel Sanatlar Üniversitesi http://math.msgsu.edu.tr/~ayse

January 18, 2014

Groups and Topological Groups, Istanbul

1/30

A B > A B > A B >

- Some Model Theory (Morley rank and genericity)
- Some Group Theory (Multiple transitivity)
- A Merging (Generic multiple transitivity)

Groups

A group is a structure of the form $\langle G, \cdot, -1, e \rangle$.

Groups

A group is a structure of the form $\langle G, \cdot, ^{-1}, e \rangle$.

Fields

A field is a structure of the form $\langle {\cal F},+,-,\cdot,0,1\rangle.$

Groups

A group is a structure of the form $\langle G, \cdot, {}^{-1}, e \rangle$.

Fields

A field is a structure of the form $\langle {\cal F},+,-,\cdot,0,1\rangle.$

Examples

 $\langle \mathbb{Z},+,-,0
angle$, $\langle \mathbb{C}^*,\cdot,^{-1},1
angle$ $\langle \mathbb{R},+,-,\cdot,0,1
angle$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Definability in a Group

A *definable subset* of a group

$$\langle G, \cdot, {}^{-1}, e
angle$$

is a subset of G^n

Definability in a Group

A *definable subset* of a group

$$\langle G,\cdot,{}^{-1},e\rangle$$

is a subset of G^n which can be expressed by formulas of first order logic,

A definable subset of a group

$$\langle G,\cdot,{}^{-1},e\rangle$$

is a subset of G^n which can be expressed by formulas of first order logic, i.e. formulas of finite length that contain only

• logical symbols
$$=, \land, \lor, \neg, \exists, \forall, (,)$$

• variables,

A definable subset of a group

$$\langle G,\cdot,{}^{-1},e\rangle$$

is a subset of G^n which can be expressed by formulas of first order logic, i.e. formulas of finite length that contain only

4/30

- logical symbols =, \land , \lor , \neg , \exists , \forall , (,)
- variables,
- elements of G,

•
$$\cdot, ^{-1}, e$$
.

A definable subset of a group

$$\langle G,\cdot,{}^{-1},e\rangle$$

is a subset of G^n which can be expressed by formulas of first order logic, i.e. formulas of finite length that contain only

- logical symbols =, \land , \lor , \neg , \exists , \forall , (,)
- variables,
- elements of G,

•
$$\cdot, ^{-1}, e$$
.

The quotient of a definable set with a definable relation is also definable.

A definable subset of a field

$$\langle F, +, -, \cdot, 0, 1 \rangle$$

is a subset of F^n which can be expressed by formulas of first order logic, i.e. formulas of finite length that contain only

- logical symbols $=, \land, \lor, \neg, \exists, \forall, (,)$
- variables,
- elements of F,
- $\bullet \ +,-,\cdot,0,1.$

Finite and co-finite subsets are always definable via the formula x = a₁ ∨ x = a₂ ∨ ... ∨ x = an and its negation.

- Finite and co-finite subsets are always definable via the formula x = a₁ ∨ x = a₂ ∨ ... ∨ x = a_n and its negation.
- If we view ℝ or ℂ as an additive group, then there is no other definable subset.

- Finite and co-finite subsets are always definable via the formula x = a₁ ∨ x = a₂ ∨ ... ∨ x = a_n and its negation.
- If we view ℝ or ℂ as an additive group, then there is no other definable subset.
- If we view \mathbb{R} as a field, then

$$\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} \mid (\exists y)(x = y \cdot y)\}$$

is definable. Therefore, all intervals are definable.

- Finite and co-finite subsets are always definable via the formula x = a₁ ∨ x = a₂ ∨ ... ∨ x = a_n and its negation.
- If we view ℝ or ℂ as an additive group, then there is no other definable subset.
- If we view $\mathbb R$ as a field, then

$$\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} \mid (\exists y)(x = y \cdot y)\}$$

is definable. Therefore, all intervals are definable.

• (Tarski) If *F* is an algebraically closed field, then finite and co-finite subsets are the only definable subsets.

In a group $\langle G, \cdot, ^{-1}, e \rangle$, the center of the group $\{g \in G \mid (\forall x)(x \cdot g = g \cdot x)\},$

In a group $\langle G,\cdot,^{-1},e
angle$, the center of the group

$$\{g \in G \mid (\forall x)(x \cdot g = g \cdot x)\},\$$

and conjugacy classes

$$\{g \in G \mid (\exists x)(g = x^{-1} \cdot a \cdot x)\}$$

are definable.

Infinite conjunctions and disjunctions are not first order formulas.

Infinite conjunctions and disjunctions are not first order formulas. For example, in general, the set of torsion elements

$$\{g \in G \mid (\exists m \in \mathbb{Z}^+)(g^m = e)\}$$

is not definable.

Infinite conjunctions and disjunctions are not first order formulas. For example, in general, the set of torsion elements

$$\{g \in G \mid (\exists m \in \mathbb{Z}^+)(g^m = e)\}$$

is not definable.

Variables must be over elements, not over sets.

Infinite conjunctions and disjunctions are not first order formulas. For example, in general, the set of torsion elements

$$\{g \in G \mid (\exists m \in \mathbb{Z}^+)(g^m = e)\}$$

is not definable.

Variables must be over elements, not over sets. \mathbb{R} is not definable in $\langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$.

- $rk(A) \ge 0$ iff A is nonempty.
- ② $\operatorname{rk}(A) \ge n+1$ iff there exists a sequence of non-empty definable sets $\{A_i\}_{i=1}^{\infty}$ such that $A_i \subseteq A$, $A_i \cap A_j = \emptyset$ if $i \neq j$ and $\operatorname{rk}(A_i) \ge n$.

- $rk(A) \ge 0$ iff A is nonempty.
- ② $\operatorname{rk}(A) \ge n + 1$ iff there exists a sequence of non-empty definable sets $\{A_i\}_{i=1}^{\infty}$ such that $A_i \subseteq A$, $A_i \cap A_j = \emptyset$ if $i \neq j$ and $\operatorname{rk}(A_i) \ge n$.

Examples

• $\mathsf{rk}(\mathbb{C},+) = \mathsf{rk}(\mathbb{R},+) = 1.$

- $rk(A) \ge 0$ iff A is nonempty.
- ② $\operatorname{rk}(A) \ge n + 1$ iff there exists a sequence of non-empty definable sets $\{A_i\}_{i=1}^{\infty}$ such that $A_i \subseteq A$, $A_i \cap A_j = \emptyset$ if $i \neq j$ and $\operatorname{rk}(A_i) \ge n$.

Examples

•
$$\mathsf{rk}(\mathbb{C},+) = \mathsf{rk}(\mathbb{R},+) = 1.$$

•
$$\mathsf{rk}(\mathbb{C},+,\cdot)=1$$
,

- $rk(A) \ge 0$ iff A is nonempty.
- ② $\operatorname{rk}(A) \ge n + 1$ iff there exists a sequence of non-empty definable sets $\{A_i\}_{i=1}^{\infty}$ such that $A_i \subseteq A$, $A_i \cap A_j = \emptyset$ if $i \neq j$ and $\operatorname{rk}(A_i) \ge n$.

Examples

•
$$\mathsf{rk}(\mathbb{C},+) = \mathsf{rk}(\mathbb{R},+) = 1.$$

•
$$\mathsf{rk}(\mathbb{C},+,\cdot) = 1$$
, $\mathsf{rk}(\mathbb{R},+,\cdot) = \infty$.

Let A and B be definable subsets in a structure of finite Morley rank.

• If $A \subseteq B$, then $\operatorname{rk}(A) \leq \operatorname{rk}(B)$.

Let A and B be definable subsets in a structure of finite Morley rank.

• If $A \subseteq B$, then $\operatorname{rk}(A) \leq \operatorname{rk}(B)$.

•
$$\mathsf{rk}(A \cup B) = \max\{\mathsf{rk}(A), \mathsf{rk}(B)\}.$$

Let A and B be definable subsets in a structure of finite Morley rank.

- If $A \subseteq B$, then $\operatorname{rk}(A) \leq \operatorname{rk}(B)$.
- $\mathsf{rk}(A \cup B) = \max\{\mathsf{rk}(A), \mathsf{rk}(B)\}.$
- $\operatorname{rk}(A \times B) = \operatorname{rk}(A) + \operatorname{rk}(B)$.

Let A and B be definable subsets in a structure of finite Morley rank.

- If $A \subseteq B$, then $\operatorname{rk}(A) \leq \operatorname{rk}(B)$.
- $\mathsf{rk}(A \cup B) = \max\{\mathsf{rk}(A), \mathsf{rk}(B)\}.$
- $\operatorname{rk}(A \times B) = \operatorname{rk}(A) + \operatorname{rk}(B)$.
- If A is a group and B a normal subgroup, then rk(A/B) = rk(A) rk(B).

Finite groups, algebraic groups over algebraically closed fields, $(\mathbb{Q}, +)$, $(\mathbb{C}_{p^{\infty}}, \cdot)$ are of finite Morley rank.

Finite groups, algebraic groups over algebraically closed fields, $(\mathbb{Q}, +)$, $(\mathbb{C}_{p^{\infty}}, \cdot)$ are of finite Morley rank.

Non-Examples

Free groups (e.g. \mathbb{Z}), SL₂(\mathbb{R}) etc. are not of finite Morley rank.

Finite groups, algebraic groups over algebraically closed fields, $(\mathbb{Q}, +)$, $(\mathbb{C}_{p^{\infty}}, \cdot)$ are of finite Morley rank.

Non-Examples

Free groups (e.g. \mathbb{Z}), SL₂(\mathbb{R}) etc. are not of finite Morley rank.

Theorem (Macintyre)

An infinite field is of finite Morley rank iff it is algebraically closed.

Finite groups, algebraic groups over algebraically closed fields, $(\mathbb{Q}, +)$, $(\mathbb{C}_{p^{\infty}}, \cdot)$ are of finite Morley rank.

Non-Examples

Free groups (e.g. \mathbb{Z}), SL₂(\mathbb{R}) etc. are not of finite Morley rank.

Theorem (Macintyre)

An infinite field is of finite Morley rank iff it is algebraically closed.

Conjecture. (Cherlin-Zilber)

Infinite simple groups of finite Morley rank are algebraic groups over algebraically closed fields.

Definition

Let A be a non-empty set such that for every definable non-empty subset $B \subseteq A$, either rk(B) < rk(A) or $rk(A \setminus B) < rk(A)$. Then we say A has (Morley) degree 1.

Definition

Let A be a non-empty set such that for every definable non-empty subset $B \subseteq A$, either rk(B) < rk(A) or $rk(A \setminus B) < rk(A)$. Then we say A has (Morley) degree 1. If A is a disjoint union of d definable sets of degree 1, then we say A is of (Morley) degree d.

イロン 不同 とくほう イロン

Let G be a group of finite Morley rank, and H a definable subgroup in G. The index of H in G is finite iff rk(G) = rk(H).

ヘロン 人間 とくほと 人ほとう

13/30
Observation

Let G be a group of finite Morley rank, and H a definable subgroup in G. The index of H in G is finite iff rk(G) = rk(H). Moreover, in this case, deg(G) = [G : H]deg(H).

Observation

Let G be a group of finite Morley rank, and H a definable subgroup in G. The index of H in G is finite iff rk(G) = rk(H). Moreover, in this case, deg(G) = [G : H]deg(H).

Corollary

A group of finite Morley rank satisfies the DCC on its definable subgroups.

Observation

Let G be a group of finite Morley rank, and H a definable subgroup in G. The index of H in G is finite iff rk(G) = rk(H). Moreover, in this case, deg(G) = [G : H]deg(H).

Corollary

A group of finite Morley rank satisfies the DCC on its definable subgroups.

Proof.

At each step, either the degree or the rank decreases.

When G is a group of finite Morley rank, the smallest definable subgroup of finite index in G is called the connected component of G, and it is denoted by G° .

When G is a group of finite Morley rank, the smallest definable subgroup of finite index in G is called the connected component of G, and it is denoted by G° .

Thanks to the DCC, connected components exist. Moreover, $rk(G) = rk(G^{\circ})$, and G° is of Morley degree 1.

When G is a group of finite Morley rank, the smallest definable subgroup of finite index in G is called the connected component of G, and it is denoted by G° .

Thanks to the DCC, connected components exist. Moreover, $rk(G) = rk(G^{\circ})$, and G° is of Morley degree 1.

Definition

If $G = G^{\circ}$, then we say G is connected.

When G is a group of finite Morley rank, the smallest definable subgroup of finite index in G is called the connected component of G, and it is denoted by G° .

Thanks to the DCC, connected components exist. Moreover, $rk(G) = rk(G^{\circ})$, and G° is of Morley degree 1.

Definition

If $G = G^{\circ}$, then we say G is connected.

Theorem

A group is connected iff it has Morley degree 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When G is a group of finite Morley rank, the smallest definable subgroup of finite index in G is called the connected component of G, and it is denoted by G° .

Thanks to the DCC, connected components exist. Moreover, $rk(G) = rk(G^{\circ})$, and G° is of Morley degree 1.

Definition

If $G = G^{\circ}$, then we say G is connected.

Theorem

A group is connected iff it has Morley degree 1.

Examples. $GL_n(K)$ and $SL_n(K)$ are connected. $[O_n(K) : SO_n(K)] = 2$, so $O_n(K)$ is not connected.

Let G be a group acting on a set X. If for every pair $x, y \in X$ there exists $g \in G$ such that gx = y, then we say the action is transitive.

Let G be a group acting on a set X. If for every pair $x, y \in X$ there exists $g \in G$ such that gx = y, then we say the action is transitive. Moreover, if $g \in G$ is uniquely determined for each pair, then we say the action is sharply transitive.

Let G be a group acting on a set X. If for every pair $x, y \in X$ there exists $g \in G$ such that gx = y, then we say the action is transitive. Moreover, if $g \in G$ is uniquely determined for each pair, then we say the action is sharply transitive.

Examples

Every group acts on itself sharply transitively by left multiplication.

Let G be a group acting on a set X. If for every pair $x, y \in X$ there exists $g \in G$ such that gx = y, then we say the action is transitive. Moreover, if $g \in G$ is uniquely determined for each pair, then we say the action is sharply transitive.

Examples

Every group acts on itself sharply transitively by left multiplication. S_n acts on $\{1, 2, ..., n\}$ transitively for all $n \ge 1$. This action is sharply transitive iff $n \le 2$.

Let G be a group acting on a set X. If for every pair $x, y \in X$ there exists $g \in G$ such that gx = y, then we say the action is transitive. Moreover, if $g \in G$ is uniquely determined for each pair, then we say the action is sharply transitive.

Examples

Every group acts on itself sharply transitively by left multiplication. S_n acts on $\{1, 2, ..., n\}$ transitively for all $n \ge 1$. This action is sharply transitive iff $n \le 2$. Rotations of a cube act transitively on the vertices of the cube, but not sharply transitively.

Let G be a group acting on a set X. If for every pair $x, y \in X$ there exists $g \in G$ such that gx = y, then we say the action is transitive. Moreover, if $g \in G$ is uniquely determined for each pair, then we say the action is sharply transitive.

Examples

Every group acts on itself sharply transitively by left multiplication. S_n acts on $\{1, 2, ..., n\}$ transitively for all $n \ge 1$. This action is sharply transitive iff $n \le 2$. Rotations of a cube act transitively on the vertices of the cube, but not sharply transitively. Rotations of a regular *n*-gon act sharply transitively on the vertices of the regular *n*-gon, for $n \ge 3$.

Let G act on X. If for every pairwise distinct $x_1, \ldots, x_n \in X$ and pairwise distinct $y_1, \ldots, y_n \in X$, there exists a (unique) $g \in G$ such that $gx_i = y_i$ for all $i = 1, \ldots, n$, then we say G acts (sharply) *n*-transitively on X.

Let G act on X. If for every pairwise distinct $x_1, \ldots, x_n \in X$ and pairwise distinct $y_1, \ldots, y_n \in X$, there exists a (unique) $g \in G$ such that $gx_i = y_i$ for all $i = 1, \ldots, n$, then we say G acts (sharply) *n*-transitively on X.

Examples

For all $n \ge 1$, S_n acts sharply *n*-transitively (also sharply (n-1)-transitively) on $\{1, \ldots, n\}$. For all $n \ge 3$, A_n acts sharply (n-2)-transitively on $\{1, \ldots, n\}$.

16/30

Let G act on X. If for every pairwise distinct $x_1, \ldots, x_n \in X$ and pairwise distinct $y_1, \ldots, y_n \in X$, there exists a (unique) $g \in G$ such that $gx_i = y_i$ for all $i = 1, \ldots, n$, then we say G acts (sharply) *n*-transitively on X.

Examples

For all $n \ge 1$, S_n acts sharply *n*-transitively (also sharply (n-1)-transitively) on $\{1, \ldots, n\}$. For all $n \ge 3$, A_n acts sharply (n-2)-transitively on $\{1, \ldots, n\}$.

Non-examples

 K^* on K^+ , $GL_2(K)$ on K^2 , where K is a field.

Example

For any field K, $K^* \ltimes K^+$ acts sharply 2-transitively on K, and $PGL_2(K)$ acts sharply 3-transitively on $\mathcal{P}_1(K)$.

Example

For any field K, $K^* \ltimes K^+$ acts sharply 2-transitively on K, and $PGL_2(K)$ acts sharply 3-transitively on $\mathcal{P}_1(K)$.

Sharply 2 or 3-transitive finite groups were classified by Zassenhaus in 1936.

The problem for infinite groups is still open.

Theorem (Jordan, 1872) For n = 4; S_4 , S_5 , A_6 , M_{11} .

Theorem (Jordan, 1872)

For n = 4; S_4 , S_5 , A_6 , M_{11} . For n = 5; S_5 , S_6 , A_7 , M_{12} .

Theorem (Jordan, 1872)

For n = 4; S_4 , S_5 , A_6 , M_{11} . For n = 5; S_5 , S_6 , A_7 , M_{12} . For $n \ge 6$; S_n , S_{n+1} , A_{n+2} .

Theorem (Jordan, 1872)

For n = 4; S_4 , S_5 , A_6 , M_{11} . For n = 5; S_5 , S_6 , A_7 , M_{12} . For $n \ge 6$; S_n , S_{n+1} , A_{n+2} .

Theorem (Tits, 1952, and Hall, 1954)

There is no infinite group with a sharp n-transitive action, for $n \ge 4$.

・ロト・4部・4部・4部・38・999

Theorem (Knop, 1983)

Let G be a reductive algebraic group acting algebraically on an irreducible variety V.

Theorem (Knop, 1983)

Let G be a reductive algebraic group acting algebraically on an irreducible variety V. For $n \ge 2$, if G acts n-transitively on V, then either n = 2, and the action is PGL_{m+1} on \mathcal{P}_m ; or n = 3 and the action is PGL_2 on \mathcal{P}_1 .

An Alternative Definition for *n*-transitivity

Observation

Let G be a group acting on a set X and $n \ge 2$. Then G acts n-transitively on X iff G acts transitively on $X^n \setminus E$, where $E = \{(x_1, \ldots, x_n) \mid x_i = x_j \text{ for some } i \ne j\}.$

An Alternative Definition for *n*-transitivity

Observation

Let G be a group acting on a set X and $n \ge 2$. Then G acts n-transitively on X iff G acts transitively on $X^n \setminus E$, where $E = \{(x_1, \ldots, x_n) \mid x_i = x_j \text{ for some } i \ne j\}.$

Note that *E* is 'small', hence $X^n \setminus E$ is 'large' or 'generic'.

An Alternative Definition for *n*-transitivity

Observation

Let G be a group acting on a set X and $n \ge 2$. Then G acts n-transitively on X iff G acts transitively on $X^n \setminus E$, where $E = \{(x_1, \ldots, x_n) \mid x_i = x_j \text{ for some } i \ne j\}.$

Note that *E* is 'small', hence $X^n \setminus E$ is 'large' or 'generic'. Therefore, we can relax the condition on $X^n \setminus E$ while keeping it large, and obtain new and natural examples. Let G be a reductive algebraic group acting algebraically on an irreducible variety V.

Let G be a reductive algebraic group acting algebraically on an irreducible variety V.

Recall (Knop, 1983)

For $n \ge 2$, if *G* acts *n*-transitively on *V*, then either n = 2, and the action is PGL_{m+1} on \mathcal{P}_m ; or n = 3 and the action is PGL_2 on \mathcal{P}_1 .

Let G be a reductive algebraic group acting algebraically on an irreducible variety V.

Recall (Knop, 1983)

For $n \ge 2$, if G acts *n*-transitively on V, then either n = 2, and the action is PGL_{m+1} on \mathcal{P}_m ; or n = 3 and the action is PGL_2 on \mathcal{P}_1 .

If the induced action of G on V^n is transitive on an open subset, then Popov calles it a generically *n*-transitive action.

Theorem (Popov, 2007)

If characteristic is 0, among simple algebraic groups, only those of type A_n have generically 5-transitive or higher actions.

PART III: Generic Multiple Transitivity

Definition

A definable subset Y of a set X is called generic, if $rk(X \setminus Y) < rk(X)$.

PART III: Generic Multiple Transitivity

Definition

A definable subset Y of a set X is called generic, if $rk(X \setminus Y) < rk(X)$.

If X is a connected group, then Y is generic in X iff rk(X) = rk(Y).

・ロト・西ト・山田・山田・山口・

PART III: Generic Multiple Transitivity

Definition

A definable subset Y of a set X is called generic, if $rk(X \setminus Y) < rk(X)$.

If X is a connected group, then Y is generic in X iff rk(X) = rk(Y).

Examples

All cofinite sets are generic in an infinite set. The set of linearly independent pairs of vectors is generic in $K^2 \times K^2$.

イロン 不同 とくほう イロン

Assume that G acts on X. If G is (sharply) transitive on a generic subset of X, then we say G acts generically (sharply) transitively on X.

Assume that G acts on X. If G is (sharply) transitive on a generic subset of X, then we say G acts generically (sharply) transitively on X.

Example

Let K be a field, then K^* acts generically sharply transitively on K^+ , but not sharply transitively.
Similarly, if the induced action of G on X^n is generically sharply transitive, then we say G acts generically sharply *n*-transitively on X.

Similarly, if the induced action of G on X^n is generically sharply transitive, then we say G acts generically sharply *n*-transitively on X.

Examples. For every $n \ge 1$, the natural action of:

• $GL_n(K)$ on K^n is generically sharply *n*-transitive.

Similarly, if the induced action of G on X^n is generically sharply transitive, then we say G acts generically sharply *n*-transitively on X.

Examples. For every $n \ge 1$, the natural action of:

- $GL_n(K)$ on K^n is generically sharply *n*-transitive.
- $AGL_n(K)$ on K^n is generically sharply (n + 1)-transitive.

Similarly, if the induced action of G on X^n is generically sharply transitive, then we say G acts generically sharply *n*-transitively on X.

Examples. For every $n \ge 1$, the natural action of:

- $GL_n(K)$ on K^n is generically sharply *n*-transitive.
- $AGL_n(K)$ on K^n is generically sharply (n + 1)-transitive.
- $PGL_{n+1}(K)$ on $\mathcal{P}_n(K)$ is generically sharply (n+2)-transitive.

Motivating Question (Borovik-Cherlin, 2008)

Let G be a connected group acting on a connected abelian group V definably, faithfully and generically sharply *n*-transitively. If n = rk(V), then is it true that V has a vector space structure of dimension *n* over an algebraically closed field K and $G \cong GL_n(K)$?

Setting

Let G be a connected group acting on a connected abelian group V definably, faithfully and generically sharply *n*-transitively such that n = rk(V) and V is not a 2-group.

Setting

Let G be a connected group acting on a connected abelian group V definably, faithfully and generically sharply *n*-transitively such that n = rk(V) and V is not a 2-group.

Setting

Let G be a connected group acting on a connected abelian group V definably, faithfully and generically sharply *n*-transitively such that n = rk(V) and V is not a 2-group.

Then

- $\mathsf{rk}(G) = n^2$,
- $S_n \ltimes (\mathbb{Z}_2)^n$ lies in G,

26 / 30

Setting

Let G be a connected group acting on a connected abelian group V definably, faithfully and generically sharply *n*-transitively such that n = rk(V) and V is not a 2-group.

Then

- $\mathsf{rk}(G) = n^2$,
- $S_n \ltimes (\mathbb{Z}_2)^n$ lies in G,
- V can be coordinatized, for example as $V = \oplus C_V^-(e_i)$, where $e_i = (1, \ldots, -1, \ldots, 1)$,

Setting

Let G be a connected group acting on a connected abelian group V definably, faithfully and generically sharply *n*-transitively such that n = rk(V) and V is not a 2-group.

Then

- $\mathsf{rk}(G) = n^2$,
- $S_n \ltimes (\mathbb{Z}_2)^n$ lies in G,
- V can be coordinatized, for example as $V = \oplus C_V^-(e_i)$, where $e_i = (1, \ldots, -1, \ldots, 1)$,
- and hence $V \cong F^n$ for some algebraically closed field F.

Let a group G act on a connected group V definably and faithfully. Assume V is an elementary abelian p-group (where $p \neq 2$) of Morley rank n, and $S_n \ltimes (\mathbb{Z}_2)^n \leq G$. If G is infinite, then there exists an algebraically closed field F such that $V \cong F^n$, and G is isomorphic to one of the following:

Let a group G act on a connected group V definably and faithfully. Assume V is an elementary abelian p-group (where $p \neq 2$) of Morley rank n, and $S_n \ltimes (\mathbb{Z}_2)^n \leq G$. If G is infinite, then there exists an algebraically closed field F such that $V \cong F^n$, and G is isomorphic to one of the following:

• an extension of $SL_n(F)$ lying in $GL_n(F)$, or

Let a group G act on a connected group V definably and faithfully. Assume V is an elementary abelian p-group (where $p \neq 2$) of Morley rank n, and $S_n \ltimes (\mathbb{Z}_2)^n \leq G$. If G is infinite, then there exists an algebraically closed field F such that $V \cong F^n$, and G is isomorphic to one of the following:

• an extension of $SL_n(F)$ lying in $GL_n(F)$, or

• a finite extension of $O_n(F)$, or

Let a group G act on a connected group V definably and faithfully. Assume V is an elementary abelian p-group (where $p \neq 2$) of Morley rank n, and $S_n \ltimes (\mathbb{Z}_2)^n \leq G$. If G is infinite, then there exists an algebraically closed field F such that $V \cong F^n$, and G is isomorphic to one of the following:

- an extension of $SL_n(F)$ lying in $GL_n(F)$, or
- a finite extension of $O_n(F)$, or
- a finite extension of T, for some definable $T \leqslant (F^*)^n$,

and the action is the natural action in every case.

Note that $rk(GL_n) = n^2$, $rk(SL_n) = n^2 - 1$, $rk(O_n) = n(n-1)/2$, and $rk(T) \leq n$.

Note that $rk(GL_n) = n^2$, $rk(SL_n) = n^2 - 1$, $rk(O_n) = n(n-1)/2$, and $rk(T) \leq n$.

Corollary

Let G be a group acting on a connected abelian group V of Morley rank n. If V is not a 2-group and the action is definable, faithful and generically sharply n-transitive, then $G \cong GL_n(F)$ and $V \cong F^n$ for some algebraically closed field F.

Thank you very much

Thank you very much and one more thing!

Other Meetings Involving Group Theory in Turkey

- Models and Groups Workshop II, Istanbul, 27-29 March 2014
- Antalya Algebra Days XVI, Antalya, 9-13 May 2014