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PART I: Some Model Theory

Groups

A group is a structure of the form 〈G , ·,−1, e〉.

Fields

A field is a structure of the form 〈F ,+,−, ·, 0, 1〉.

Examples

〈Z,+,−, 0〉, 〈C∗, ·,−1, 1〉 〈R,+,−, ·, 0, 1〉
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Definability in a Group

A definable subset of a group

〈G , ·,−1, e〉

is a subset of Gn

which can be expressed by formulas of first order
logic, i.e. formulas of finite length that contain only

logical symbols =,∧,∨,¬,∃,∀, (, )

variables,

elements of G ,

·,−1, e.

The quotient of a definable set with a definable relation is also
definable.
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Definability in a Field

A definable subset of a field

〈F ,+,−, ·, 0, 1〉

is a subset of F n which can be expressed by formulas of first order
logic, i.e. formulas of finite length that contain only

logical symbols =,∧,∨,¬,∃,∀, (, )

variables,

elements of F ,

+,−, ·, 0, 1.
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Examples

Finite and co-finite subsets are always definable via the
formula x = a1 ∨ x = a2 ∨ . . . ∨ x = an and its negation.

If we view R or C as an additive group, then there is no other
definable subset.

If we view R as a field, then

R>0 = {x ∈ R | (∃y)(x = y · y)}

is definable. Therefore, all intervals are definable.

(Tarski) If F is an algebraically closed field, then finite and
co-finite subsets are the only definable subsets.
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More Examples

In a group 〈G , ·,−1 , e〉, the center of the group

{g ∈ G | (∀x)(x · g = g · x)},

and conjugacy classes

{g ∈ G | (∃x)(g = x−1 · a · x)}

are definable.
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Non-examples

Infinite conjunctions and disjunctions are not first order formulas.

For example, in general, the set of torsion elements

{g ∈ G | (∃m ∈ Z+)(gm = e)}

is not definable.
Variables must be over elements, not over sets.
R is not definable in 〈C,+,−, ·, 0, 1〉.
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Morley Rank

Let 〈M, . . .〉 be a group or a field, A ⊆ Mn a definable set. The
Morley rank of A is defined as:

1 rk(A) > 0 iff A is nonempty.

2 rk(A) > n + 1 iff there exists a sequence of non-empty
definable sets {Ai}∞i=1 such that Ai ⊆ A, Ai ∩ Aj = ∅ if i 6= j
and rk(Ai ) > n.

Examples

• rk(C,+) = rk(R,+) = 1.
• rk(C,+, ·) = 1, rk(R,+, ·) =∞.
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Some Properties of Morley Rank

Observations

Let A and B be definable subsets in a structure of finite Morley
rank.

If A ⊆ B, then rk(A) 6 rk(B).

rk(A ∪ B) = max{rk(A), rk(B)}.
rk(A× B) = rk(A) + rk(B).

If A is a group and B a normal subgroup, then
rk(A/B) = rk(A)− rk(B).
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Structures of FMR

Examples

Finite groups, algebraic groups over algebraically closed fields,
(Q,+), (Cp∞ , ·) are of finite Morley rank.

Non-Examples

Free groups (e.g. Z), SL2(R) etc. are not of finite Morley rank.

Theorem (Macintyre)

An infinite field is of finite Morley rank iff it is algebraically closed.

Conjecture. (Cherlin–Zilber)

Infinite simple groups of finite Morley rank are algebraic groups
over algebraically closed fields.
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Morley Degree

Definition

Let A be a non-empty set such that for every definable non-empty
subset B ⊆ A, either rk(B) < rk(A) or rk(A \ B) < rk(A). Then
we say A has (Morley) degree 1.

If A is a disjoint union of d definable sets of degree 1, then we say
A is of (Morley) degree d .
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Rank and Degree Computations

Observation

Let G be a group of finite Morley rank, and H a definable
subgroup in G . The index of H in G is finite iff rk(G ) = rk(H).

Moreover, in this case, deg(G ) = [G : H]deg(H).

Corollary

A group of finite Morley rank satisfies the DCC on its definable
subgroups.

Proof.

At each step, either the degree or the rank decreases.
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Connected Component of a Group

Definition

When G is a group of finite Morley rank, the smallest definable
subgroup of finite index in G is called the connected component of
G , and it is denoted by G ◦.

Thanks to the DCC, connected components exist. Moreover,
rk(G ) = rk(G ◦), and G ◦ is of Morley degree 1.

Definition

If G = G ◦, then we say G is connected.

Theorem

A group is connected iff it has Morley degree 1.

Examples. GLn(K ) and SLn(K ) are connected.
[On(K ) : SOn(K )] = 2, so On(K ) is not connected.
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PART II: Some Group Theory

Definition

Let G be a group acting on a set X . If for every pair x , y ∈ X there
exists g ∈ G such that gx = y , then we say the action is transitive.

Moreover, if g ∈ G is uniquely determined for each pair, then we
say the action is sharply transitive.

Examples

Every group acts on itself sharply transitively by left multiplication.
Sn acts on {1, 2, . . . , n} transitively for all n > 1. This action is
sharply transitive iff n 6 2. Rotations of a cube act transitively on
the vertices of the cube, but not sharply transitively. Rotations of a
regular n-gon act sharply transitively on the vertices of the regular
n-gon, for n > 3.
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Sharp Multiple Transitivity

Definition

Let G act on X . If for every pairwise distinct x1, . . . , xn ∈ X and
pairwise distinct y1, . . . , yn ∈ X , there exists a (unique) g ∈ G
such that gxi = yi for all i = 1, . . . , n, then we say G acts
(sharply) n-transitively on X .

Examples

For all n > 1, Sn acts sharply n-transitively (also sharply
(n − 1)-transitively) on {1, . . . , n}. For all n > 3, An acts sharply
(n − 2)-transitively on {1, . . . , n}.

Non-examples

K ∗ on K+, GL2(K ) on K 2, where K is a field.
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Sharp 2 or 3-transitivity

Example

For any field K , K ∗ n K+ acts sharply 2-transitively on K , and
PGL2(K ) acts sharply 3-transitively on P1(K ).

Sharply 2 or 3-transitive finite groups were classified by Zassenhaus
in 1936.
The problem for infinite groups is still open.
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Higher Transitivity

Finite groups with a sharp multiple-transitive action are rare.

Theorem (Jordan, 1872)

For n = 4; S4, S5, A6, M11.

For n = 5; S5, S6, A7, M12.
For n > 6; Sn, Sn+1, An+2.

Theorem (Tits, 1952, and Hall, 1954)

There is no infinite group with a sharp n-transitive action, for
n > 4.
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Algebraic Groups

Theorem (Knop, 1983)

Let G be a reductive algebraic group acting algebraically on an
irreducible variety V .

For n > 2, if G acts n-transitively on V ,
then either n = 2, and the action is PGLm+1 on Pm; or n = 3 and
the action is PGL2 on P1.
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An Alternative Definition for n-transitivity

Observation

Let G be a group acting on a set X and n > 2. Then G acts
n-transitively on X iff G acts transitively on X n \ E , where
E = {(x1, . . . , xn) | xi = xj for some i 6= j}.

Note that E is ‘small’, hence X n \ E is ‘large’ or ‘generic’.
Therefore, we can relax the condition on X n \ E while keeping it
large, and obtain new and natural examples.
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Algebraic Actions

Let G be a reductive algebraic group acting algebraically on an
irreducible variety V .

Recall (Knop, 1983)

For n > 2, if G acts n-transitively on V , then either n = 2, and the
action is PGLm+1 on Pm; or n = 3 and the action is PGL2 on P1.

If the induced action of G on V n is transitive on an open subset,
then Popov calles it a generically n-transitive action.

Theorem (Popov, 2007)

If characteristic is 0, among simple algebraic groups, only those of
type An have generically 5-transitive or higher actions.
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PART III: Generic Multiple Transitivity

Definition

A definable subset Y of a set X is called generic, if
rk(X \ Y ) < rk(X ).

If X is a connected group, then Y is generic in X iff
rk(X ) = rk(Y ).

Examples

All cofinite sets are generic in an infinite set. The set of linearly
independent pairs of vectors is generic in K 2 × K 2.
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Generic Transitivity

Definition

Assume that G acts on X . If G is (sharply) transitive on a generic
subset of X , then we say G acts generically (sharply) transitively
on X .

Example

Let K be a field, then K ∗ acts generically sharply transitively on
K+, but not sharply transitively.
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Generic n-transitivity

Definition

Similarly, if the induced action of G on X n is generically sharply
transitive, then we say G acts generically sharply n-transitively on
X .

Examples. For every n > 1, the natural action of:

GLn(K ) on Kn is generically sharply n-transitive.

AGLn(K ) on Kn is generically sharply (n + 1)-transitive.

PGLn+1(K ) on Pn(K ) is generically sharply (n + 2)-transitive.
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Question

Motivating Question (Borovik-Cherlin, 2008)

Let G be a connected group acting on a connected abelian group
V definably, faithfully and generically sharply n-transitively. If
n = rk(V ), then is it true that V has a vector space structure of
dimension n over an algebraically closed field K and G ∼= GLn(K )?
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A Possible Solution

Ongoing work with Alexandre Borovik.

Setting

Let G be a connected group acting on a connected abelian group
V definably, faithfully and generically sharply n-transitively such
that n = rk(V ) and V is not a 2-group.

Then

• rk(G ) = n2,
• Sn n (Z2)n lies in G ,
• V can be coordinatized, for example as V = ⊕C−V (ei ), where
ei = (1, . . . ,−1, . . . , 1),
• and hence V ∼= F n for some algebraically closed field F .
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Hyperoctahedral Action

Theorem (in progress)

Let a group G act on a connected group V definably and faithfully.
Assume V is an elementary abelian p-group (where p 6= 2) of
Morley rank n, and Sn n (Z2)n 6 G . If G is infinite, then there
exists an algebraically closed field F such that V ∼= F n, and G is
isomorphic to one of the following:

an extension of SLn(F ) lying in GLn(F ), or

a finite extension of On(F ), or

a finite extension of T , for some definable T 6 (F ∗)n,

and the action is the natural action in every case.
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Answer

Note that rk(GLn) = n2, rk(SLn) = n2 − 1, rk(On) = n(n − 1)/2,
and rk(T ) 6 n.

Corollary

Let G be a group acting on a connected abelian group V of
Morley rank n. If V is not a 2-group and the action is definable,
faithful and generically sharply n-transitive, then G ∼= GLn(F ) and
V ∼= F n for some algebraically closed field F .
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Teşekkürler

Thank you very much

and one more thing!
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Other Meetings

Other Meetings Involving Group Theory in Turkey

Models and Groups Workshop II, Istanbul, 27-29 March
2014

Antalya Algebra Days XVI, Antalya, 9-13 May 2014
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