On groups with all subgroups subnormal or soluble of bounded derived length

Maria Tota (joint work with K. Ersoy and A. Tortora)

Università degli Studi di Salerno Dipartimento di Matematica

"Groups and Topological Groups - Istanbul 2014"

A subgroup H of a group G is said to be **subnormal** if H is a term of a finite series of G, i.e. if there exist distinct subgroups $H_0, H_1, \ldots, H_{n-1}, H_n$ such that

$$H=H_0 \lhd H_1 \lhd \ldots \lhd H_{n-1} \lhd H_n=G.$$

伺 ト イ ヨ ト イ ヨ

A subgroup H of a group G is said to be **subnormal** if H is a term of a finite series of G, i.e. if there exist distinct subgroups $H_0, H_1, \ldots, H_{n-1}, H_n$ such that

$$H=H_0 \lhd H_1 \lhd \ldots \lhd H_{n-1} \lhd H_n=G.$$

If H is subnormal in G, then the **defect** of H in G is the shortest length of such a series.

伺 ト イ ヨ ト イ ヨ ト

A subgroup H of a group G is said to be **subnormal** if H is a term of a finite series of G, i.e. if there exist distinct subgroups $H_0, H_1, \ldots, H_{n-1}, H_n$ such that

$$H=H_0 \lhd H_1 \lhd \ldots \lhd H_{n-1} \lhd H_n=G.$$

If H is subnormal in G, then the **defect** of H in G is the shortest length of such a series.

If G is a nilpotent group then every subgroup of G is subnormal.

伺 ト イヨト イヨト

Groups with all subgroups subnormal Groups with all non-soluble subgroups subnormal Main results

Question

How is a group with all subgroups subnormal?

▲□ ▶ ▲ □ ▶ ▲ □

Question

How is a group with all subgroups subnormal?

Dedekind 1897, Baer 1933

All subgroups of a group G are normal if and only if G is abelian or the direct product of the quaternion group of order 8, an elementary abelian 2-group and an abelian group with all its elements of odd order.

Question

How is a group with all subgroups subnormal?

Dedekind 1897, Baer 1933

All subgroups of a group G are normal if and only if G is abelian or the direct product of the quaternion group of order 8, an elementary abelian 2-group and an abelian group with all its elements of odd order.

Question

Is a group with all subgroups subnormal nilpotent?

□ > < = > <

There exist infinite metabelian *p*-groups that have trivial centre but all proper subgroups subnormal and nilpotent.

→ < ∃→

There exist infinite metabelian *p*-groups that have trivial centre but all proper subgroups subnormal and nilpotent.

Möhres, 1990

A group with all subgroups subnormal is soluble.

/□ ▶ < 글 ▶ < 글

There exist infinite metabelian p-groups that have trivial centre but all proper subgroups subnormal and nilpotent.

Möhres, 1990

A group with all subgroups subnormal is soluble.

A group G is of **Heineken-Mohamed type** if G is not nilpotent and all of its proper subgroups are subnormal and nilpotent.

There exist infinite metabelian p-groups that have trivial centre but all proper subgroups subnormal and nilpotent.

Möhres, 1990

A group with all subgroups subnormal is soluble.

A group G is of **Heineken-Mohamed type** if G is not nilpotent and all of its proper subgroups are subnormal and nilpotent.

Menegazzo (1995) gave examples of soluble Heineken-Mohamed p-groups of arbitrary derived length.

伺 ト イヨト イヨ

30.00

Casolo 2001, Smith 2001

If G is a **torsion-free** group with all subgroups subnormal, then G is nilpotent.

Casolo 2001, Smith 2001

If G is a **torsion-free** group with all subgroups subnormal, then G is nilpotent.

Roseblade, 1965

If G be a group in which every subgroup is subnormal of **defect at** most $n \ge 1$, then G is nilpotent

- 同 ト - ヨ ト - - ヨ ト

Casolo 2001, Smith 2001

If G is a **torsion-free** group with all subgroups subnormal, then G is nilpotent.

Roseblade, 1965

If G be a group in which every subgroup is subnormal of **defect at most** $n \ge 1$, then G is nilpotent and the nilpotency class is bounded by a function depending only on n.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A group with all subgroups subnormal is soluble.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

A group with all subgroups subnormal is soluble.

Asar, 2000

A locally finite group with all proper subgroups nilpotent is soluble.

- 4 同 6 4 日 6 4 日 6

A group with all subgroups subnormal is soluble.

Asar, 2000

A locally finite group with all proper subgroups nilpotent is soluble.

Smith 2001

Let G be a locally (soluble-by-finite) group with all subgroups subnormal or nilpotent. Then G is soluble.

<ロト <部 > < 注 > < 注 >

A group with all subgroups subnormal is soluble.

Asar, 2000

A locally finite group with all proper subgroups nilpotent is soluble.

Smith 2001

Let G be a locally (soluble-by-finite) group with all subgroups subnormal or nilpotent. Then G is soluble. Moreover, if G is torsion-free, then G is nilpotent.

(日)

Smith 2001

Let G be a locally graded group and suppose that, for some $n \ge 1$, every non-nilpotent subgroup of G is subnormal of defect at most n in G. Then G is soluble.

A group is **locally graded** if every non-trivial finitely generated subgroup has a non-trivial finite quotient, e.g. locally (soluble-by-finite) groups and residually finite groups.

Smith 2001

Let G be a locally graded group and suppose that, for some $n \ge 1$, every non-nilpotent subgroup of G is subnormal of defect at most n in G. Then G is soluble. Moreover, if G is torsion-free, then G is nilpotent.

伺 ト イ ヨ ト イ ヨ ト

A group is **locally graded** if every non-trivial finitely generated subgroup has a non-trivial finite quotient, e.g. locally (soluble-by-finite) groups and residually finite groups.

Smith 2001

Let G be a locally graded group and suppose that, for some $n \ge 1$, every non-nilpotent subgroup of G is subnormal of defect at most n in G. Then G is soluble. Moreover, if G is torsion-free, then G is nilpotent.

This restriction is made in order to avoid **Tarski groups**, i.e. infinite 2-generator simple groups with all proper non-trivial subgroups of prime order.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Study locally graded groups with all subgroups subnormal or soluble.

同 ト イ ヨ ト イ ヨ ト

Study locally graded groups with all subgroups subnormal or soluble.

A **minimal simple group** is a non-abelian simple group with all proper subgroups soluble.

A B > A B >

Study locally graded groups with all subgroups subnormal or soluble.

A **minimal simple group** is a non-abelian simple group with all proper subgroups soluble.

Thompson, 1968

Every finite minimal simple group is isomorphic to one of the following groups:

```
(i) PSL(2, 2^p), where p is any prime;
```

(4回) (日) (日)

Study locally graded groups with all subgroups subnormal or soluble.

A **minimal simple group** is a non-abelian simple group with all proper subgroups soluble.

Thompson, 1968

Every finite minimal simple group is isomorphic to one of the following groups:

(i)
$$PSL(2, 2^p)$$
, where p is any prime;

(*ii*) $PSL(2, 3^p)$, where p is any odd prime;

(人間) シスヨン メヨン

Study locally graded groups with all subgroups subnormal or soluble.

A **minimal simple group** is a non-abelian simple group with all proper subgroups soluble.

Thompson, 1968

Every finite minimal simple group is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (*ii*) $PSL(2, 3^p)$, where p is any odd prime;
- (iii) PSL(2, p), where p > 3 is any prime s.t. $p^2 + 1 \equiv 0 \pmod{5}$;

(人間) シスヨン メヨン

Study locally graded groups with all subgroups subnormal or soluble.

A **minimal simple group** is a non-abelian simple group with all proper subgroups soluble.

Thompson, 1968

Every finite minimal simple group is isomorphic to one of the following groups:

(i)
$$PSL(2, 2^p)$$
, where p is any prime;

(*ii*) $PSL(2, 3^p)$, where p is any odd prime;

(*iii*) PSL(2, p), where p > 3 is any prime s.t. $p^2 + 1 \equiv 0 \pmod{5}$; (*iv*) PSL(3, 3);

(人間) シスヨン メヨン

Study locally graded groups with all subgroups subnormal or soluble.

A **minimal simple group** is a non-abelian simple group with all proper subgroups soluble.

Thompson, 1968

Every finite minimal simple group is isomorphic to one of the following groups:

(i)
$$PSL(2, 2^p)$$
, where p is any prime;

(*ii*) $PSL(2, 3^p)$, where p is any odd prime;

(iii) PSL(2, p), where p > 3 is any prime s.t. $p^2 + 1 \equiv 0 \pmod{5}$;

(*iv*) *PSL*(3,3);

(v) $Sz(2^p)$, where p is any odd prime.

(4回) (日) (日)

Groups with all subgroups subnormal Groups with all non-soluble subgroups subnormal Main results

Proposition

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

4 3 b

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

(i) $PSL(2, 2^p)$, where p is any prime;

< ∃ >

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (*ii*) $PSL(2, 3^p)$, where p is any odd prime;

同 ト イ ヨ ト イ ヨ ト

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (ii) $PSL(2, 3^p)$, where p is any odd prime;
- (iii) PSL(2, p), where p > 3 is any prime such that $p^2 + 1 \equiv 0 \pmod{5}$ and $p^2 1 \not\equiv 0 \pmod{16}$.

伺 と く ヨ と く ヨ と

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (ii) $PSL(2, 3^p)$, where p is any odd prime;
- (iii) PSL(2, p), where p > 3 is any prime such that $p^2 + 1 \equiv 0 \pmod{5}$ and $p^2 1 \not\equiv 0 \pmod{16}$.

 $PSL(2, p), p > 3, p^2 + 1 \equiv 0 \pmod{5}, p^2 - 1 \equiv 0 \pmod{16}$

(四) (日) (日) (日)

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (*ii*) $PSL(2, 3^p)$, where p is any odd prime;
- (iii) PSL(2, p), where p > 3 is any prime such that $p^2 + 1 \equiv 0 \pmod{5}$ and $p^2 1 \not\equiv 0 \pmod{16}$.

PSL(2, p), p > 3, $p^2 + 1 \equiv 0 \pmod{5}$, $p^2 - 1 \equiv 0 \pmod{16}$ has a sbgp. of der. length 3 and every proper sbgp. of d.l. ≤ 3 .

(四) (日) (日) (日)

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (*ii*) $PSL(2, 3^p)$, where p is any odd prime;
- (iii) PSL(2, p), where p > 3 is any prime such that $p^2 + 1 \equiv 0 \pmod{5}$ and $p^2 1 \not\equiv 0 \pmod{16}$.

PSL(2, p), p > 3, $p^2 + 1 \equiv 0 \pmod{5}$, $p^2 - 1 \equiv 0 \pmod{16}$ has a sbgp. of der. length 3 and every proper sbgp. of d.l. ≤ 3 . PSL(3,3)

(四) (日) (日) (日)

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (*ii*) $PSL(2, 3^p)$, where p is any odd prime;
- (iii) PSL(2, p), where p > 3 is any prime such that $p^2 + 1 \equiv 0 \pmod{5}$ and $p^2 1 \not\equiv 0 \pmod{16}$.

PSL(2, p), p > 3, $p^2 + 1 \equiv 0 \pmod{5}$, $p^2 - 1 \equiv 0 \pmod{16}$ has a sbgp. of der. length 3 and every proper sbgp. of d.l. ≤ 3 .

PSL(3,3) has a sbgp. of d.l. 5 and every proper sbgp. of d.l. \leq 5.

(4月) (4日) (4日) 日

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (ii) $PSL(2, 3^p)$, where p is any odd prime;
- (iii) PSL(2, p), where p > 3 is any prime such that $p^2 + 1 \equiv 0 \pmod{5}$ and $p^2 1 \not\equiv 0 \pmod{16}$.

 $PSL(2, p), p > 3, p^2 + 1 \equiv 0 \pmod{5}, p^2 - 1 \equiv 0 \pmod{16}$ has a sbgp. of der. length 3 and every proper sbgp. of d.l. ≤ 3 .

PSL(3,3) has a sbgp. of d.l. 5 and every proper sbgp. of d.l. \leq 5. $Sz(2^p)$

(4月) (4日) (4日) 日

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (*ii*) $PSL(2, 3^p)$, where p is any odd prime;
- (iii) PSL(2, p), where p > 3 is any prime such that $p^2 + 1 \equiv 0 \pmod{5}$ and $p^2 1 \not\equiv 0 \pmod{16}$.

PSL(2, p), p > 3, $p^2 + 1 \equiv 0 \pmod{5}$, $p^2 - 1 \equiv 0 \pmod{16}$ has a sbgp. of der. length 3 and every proper sbgp. of d.l. ≤ 3 .

PSL(3,3) has a sbgp. of d.l. 5 and every proper sbgp. of d.l. \leq 5.

 $Sz(2^p)$ has all proper subgroups of derived length at most 3.

イロト 不得 とうせい かほとう ほ

Let G be a finite non-abelian simple group with all proper subgroups metabelian. Then G is isomorphic to one of the following groups:

- (i) $PSL(2, 2^p)$, where p is any prime;
- (*ii*) $PSL(2, 3^p)$, where p is any odd prime;
- (iii) PSL(2, p), where p > 3 is any prime such that $p^2 + 1 \equiv 0 \pmod{5}$ and $p^2 1 \not\equiv 0 \pmod{16}$.

PSL(2, p), p > 3, $p^2 + 1 \equiv 0 \pmod{5}$, $p^2 - 1 \equiv 0 \pmod{16}$ has a sbgp. of der. length 3 and every proper sbgp. of d.l. ≤ 3 .

PSL(3,3) has a sbgp. of d.l. 5 and every proper sbgp. of d.l. \leq 5.

 $Sz(2^p)$ has all proper subgroups of derived length at most 3.

Hence: Every proper subgroup of a finite minimal simple group has derived length at most 5.

It is still unknown whether an infinite locally graded group with all proper subgroups soluble is soluble.

直 ト イヨ ト イヨ ト

It is still unknown whether an infinite locally graded group with all proper subgroups soluble is soluble.

Let G be an infinite locally graded group with all proper subgroups soluble. Then:

• G is hyperabelian (Franciosi, de Giovanni and Newell, 2000);

伺 ト イヨト イヨト

It is still unknown whether an infinite locally graded group with all proper subgroups soluble is soluble.

Let G be an infinite locally graded group with all proper subgroups soluble. Then:

- G is hyperabelian (Franciosi, de Giovanni and Newell, 2000);
- G is locally soluble (Dixon, Evans and Smith, 2007).

伺 と く ヨ と く ヨ と

It is still unknown whether an infinite locally graded group with all proper subgroups soluble is soluble.

Let G be an infinite locally graded group with all proper subgroups soluble. Then:

- G is hyperabelian (Franciosi, de Giovanni and Newell, 2000);
- *G* is locally soluble (Dixon, Evans and Smith, 2007).

Zaicev 1969, Dixon and Evans 1999

Let G be an infinite locally graded group with all subgroups soluble of derived length $\leq d$. Then G is soluble of derived length $\leq d$.

< 日 > < 同 > < 三 > < 三 >

It is still unknown whether an infinite locally graded group with all proper subgroups soluble is soluble.

Let G be an infinite locally graded group with all proper subgroups soluble. Then:

- G is hyperabelian (Franciosi, de Giovanni and Newell, 2000);
- *G* is locally soluble (Dixon, Evans and Smith, 2007).

Zaicev 1969, Dixon and Evans 1999

Let G be an infinite locally graded group with all subgroups soluble of derived length $\leq d$. Then G is soluble of derived length $\leq d$.

< 日 > < 同 > < 三 > < 三 >

Let G be a locally (soluble-by-finite) group with all subgroups subnormal or soluble. Then either

(i) G is locally soluble,

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a locally (soluble-by-finite) group with all subgroups subnormal or soluble. Then either

(i) G is locally soluble, or

(*ii*) $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group by a finite almost minimal simple group.

伺 ト く ヨ ト く ヨ ト

An **almost minimal simple group** fits between a minimal simple group and its automorphism group.

Proposition A

Let G be a locally (soluble-by-finite) group with all subgroups subnormal or soluble. Then either

(i) G is locally soluble, or

(*ii*) $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group by a finite almost minimal simple group.

伺 ト イヨト イヨト

An **almost minimal simple group** fits between a minimal simple group and its automorphism group.

Proposition A

Let G be a locally (soluble-by-finite) group with all subgroups subnormal or soluble. Then either

(i) G is locally soluble, or

(*ii*) $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group by a finite almost minimal simple group.

In (*ii*) one cannot expect that G is an extension of a soluble group by a finite minimal simple group

・ 同 ト ・ ヨ ト ・ ヨ ト

An **almost minimal simple group** fits between a minimal simple group and its automorphism group.

Proposition A

Let G be a locally (soluble-by-finite) group with all subgroups subnormal or soluble. Then either

- (i) G is locally soluble, or
- (*ii*) $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group by a finite almost minimal simple group.

In (*ii*) one cannot expect that G is an extension of a soluble group by a finite minimal simple group : it suffices to consider the direct product of any abelian group by the symmetric group of degree 5.

- 4 同 6 4 日 6 4 日 6

Theorem A

Let G be a locally (soluble-by-finite) group and suppose that, for some positive integer d, every subgroup of G is either subnormal or soluble of derived length at most d. Then either

(i) G is soluble,

.

Theorem A

Let G be a locally (soluble-by-finite) group and suppose that, for some positive integer d, every subgroup of G is either subnormal or soluble of derived length at most d. Then either

(i) G is soluble, or

(*ii*) $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group of derived length at most d by a finite almost minimal simple group.

By Proposition A, G is either locally soluble, or $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group S by a finite almost minimal simple group.

By Proposition A, G is either locally soluble, or $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group S by a finite almost minimal simple group.

If S is not soluble of derived length at most d then, $G^{(r)} \leq S$ and G is soluble.

伺 ト イ ヨ ト イ ヨ ト

By Proposition A, G is either locally soluble, or $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group S by a finite almost minimal simple group.

If S is not soluble of derived length at most d then, $G^{(r)} \leq S$ and G is soluble.

Let G be locally soluble and suppose that it is not soluble.

By Proposition A, G is either locally soluble, or $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group S by a finite almost minimal simple group.

If S is not soluble of derived length at most d then, $G^{(r)} \leq S$ and G is soluble.

Let G be locally soluble and suppose that it is not soluble. According to Smith, we have $G^{(s)} = G^{(s+1)}$ for some $s \ge 0$.

伺 ト イ ヨ ト イ ヨ ト

By Proposition A, G is either locally soluble, or $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group S by a finite almost minimal simple group.

If S is not soluble of derived length at most d then, $G^{(r)} \leq S$ and G is soluble.

Let G be locally soluble and suppose that it is not soluble. According to Smith, we have $G^{(s)} = G^{(s+1)}$ for some $s \ge 0$. Moreover, $G^{(s)}$ is not soluble and every proper subgroup of $G^{(s)}$ is soluble of length at most d.

・ 同 ト ・ ヨ ト ・ ヨ ト

By Proposition A, G is either locally soluble, or $G^{(r)}$ is finite for some integer r and G is an extension of a soluble group S by a finite almost minimal simple group.

If S is not soluble of derived length at most d then, $G^{(r)} \leq S$ and G is soluble.

Let G be locally soluble and suppose that it is not soluble. According to Smith, we have $G^{(s)} = G^{(s+1)}$ for some $s \ge 0$. Moreover, $G^{(s)}$ is not soluble and every proper subgroup of $G^{(s)}$ is soluble of length at most d. Thus $G^{(s)}$ is finite by Zaicev's result, a contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a locally graded group and suppose that, for some positive integer n, every non-soluble subgroup of G is subnormal of defect at most n. Then G is locally (soluble-by-finite).

同 ト イ ヨ ト イ ヨ ト

Let G be a locally graded group and suppose that, for some positive integer n, every non-soluble subgroup of G is subnormal of defect at most n. Then G is locally (soluble-by-finite).

Theorem B

Let G be a locally graded group and suppose that, for some positive integers n and d, every subgroup of G is either subnormal of defect at most n or soluble of derived length at most d. Then either

(i) G is soluble of derived length not exceeding a function depending on n and d,

Let G be a locally graded group and suppose that, for some positive integer n, every non-soluble subgroup of G is subnormal of defect at most n. Then G is locally (soluble-by-finite).

Theorem B

Let G be a locally graded group and suppose that, for some positive integers n and d, every subgroup of G is either subnormal of defect at most n or soluble of derived length at most d. Then either

- (i) G is soluble of derived length not exceeding a function depending on n and d, or
- (*ii*) $G^{(r)}$ is finite for some integer r = r(n) and G is an extension of a soluble group of derived length at most d by a finite almost minimal simple group.