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A subgroup H of a group G is said to be subnormal if H is a term
of a finite series of G , i.e. if there exist distinct subgroups
H0,H1, . . . ,Hn−1,Hn such that

H = H0 C H1 C . . .C Hn−1 C Hn = G .

If H is subnormal in G , then the defect of H in G is the shortest
length of such a series.

If G is a nilpotent group then every subgroup of G is subnormal.
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Question

How is a group with all subgroups subnormal?

Dedekind 1897, Baer 1933

All subgroups of a group G are normal if and only if G is abelian or
the direct product of the quaternion group of order 8, an
elementary abelian 2-group and an abelian group with all its
elements of odd order.

Question

Is a group with all subgroups subnormal nilpotent?
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Groups with all subgroups subnormal
Groups with all non-soluble subgroups subnormal

Main results

Heineken and Mohamed, 1968

There exist infinite metabelian p-groups that have trivial centre
but all proper subgroups subnormal and nilpotent.

Möhres, 1990

A group with all subgroups subnormal is soluble.

A group G is of Heineken-Mohamed type if G is not nilpotent
and all of its proper subgroups are subnormal and nilpotent.

Menegazzo (1995) gave examples of soluble Heineken-Mohamed
p-groups of arbitrary derived length.
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Groups with all subgroups subnormal
Groups with all non-soluble subgroups subnormal

Main results

If G is a finite group with all subgroups subnormal, then G is
nilpotent.

Casolo 2001, Smith 2001

If G is a torsion-free group with all subgroups subnormal, then G
is nilpotent.

Roseblade, 1965

If G be a group in which every subgroup is subnormal of defect at
most n ≥ 1, then G is nilpotent and the nilpotency class is
bounded by a function depending only on n.
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Let G be a locally (soluble-by-finite) group with all subgroups
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Moreover, if G is torsion-free, then G is nilpotent.
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Möhres, 1990

A group with all subgroups subnormal is soluble.

Asar, 2000

A locally finite group with all proper subgroups nilpotent is soluble.

Smith 2001

Let G be a locally (soluble-by-finite) group with all subgroups
subnormal or nilpotent. Then G is soluble.

Moreover, if G is torsion-free, then G is nilpotent.

Maria Tota Groups with all subgroups subnormal or soluble of length ≤ d



Groups with all subgroups subnormal
Groups with all non-soluble subgroups subnormal

Main results
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Main results

A group is locally graded if every non-trivial finitely generated
subgroup has a non-trivial finite quotient, e.g. locally
(soluble-by-finite) groups and residually finite groups.

Smith 2001

Let G be a locally graded group and suppose that, for some n ≥ 1,
every non-nilpotent subgroup of G is subnormal of defect at most
n in G . Then G is soluble.

Moreover, if G is torsion-free, then G is nilpotent.

This restriction is made in order to avoid Tarski groups, i.e.
infinite 2-generator simple groups with all proper non-trivial
subgroups of prime order.
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Main results

A new problem

Study locally graded groups with all subgroups subnormal or
soluble.

A minimal simple group is a non-abelian simple group with all
proper subgroups soluble.

Thompson, 1968

Every finite minimal simple group is isomorphic to one of the
following groups:

(i) PSL(2, 2p), where p is any prime;

(ii) PSL(2, 3p), where p is any odd prime;

(iii) PSL(2, p), where p > 3 is any prime s.t. p2 + 1 ≡ 0 (mod 5);

(iv) PSL(3, 3);

(v) Sz(2p), where p is any odd prime.
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Main results

Proposition

Let G be a finite non-abelian simple group with all proper
subgroups metabelian. Then G is isomorphic to one of the
following groups:

(i) PSL(2, 2p), where p is any prime;

(ii) PSL(2, 3p), where p is any odd prime;

(iii) PSL(2, p), where p > 3 is any prime such that p2 + 1 ≡ 0
(mod 5) and p2 − 1 6≡ 0 (mod 16).

PSL(2, p), p > 3, p2 + 1 ≡ 0 (mod 5), p2 − 1 ≡ 0 (mod 16) has a
sbgp. of der. length 3 and every proper sbgp. of d.l. ≤ 3.

PSL(3, 3) has a sbgp. of d.l. 5 and every proper sbgp. of d.l. ≤ 5.

Sz(2p) has all proper subgroups of derived length at most 3.

Hence: Every proper subgroup of a finite minimal simple group
has derived length at most 5.
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Open question

It is still unknown whether an infinite locally graded group with all
proper subgroups soluble is soluble.

Let G be an infinite locally graded group with all proper subgroups
soluble. Then:

G is hyperabelian (Franciosi, de Giovanni and Newell, 2000);

G is locally soluble (Dixon, Evans and Smith, 2007).
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Main results

An almost minimal simple group fits between a minimal simple
group and its automorphism group.

Proposition A

Let G be a locally (soluble-by-finite) group with all subgroups
subnormal or soluble. Then either

(i) G is locally soluble,

or

(ii) G (r) is finite for some integer r and G is an extension of a
soluble group by a finite almost minimal simple group.

In (ii) one cannot expect that G is an extension of a soluble group
by a finite minimal simple group : it suffices to consider the direct
product of any abelian group by the symmetric group of degree 5.
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Main results

Theorem A

Let G be a locally (soluble-by-finite) group and suppose that, for
some positive integer d , every subgroup of G is either subnormal
or soluble of derived length at most d . Then either

(i) G is soluble,

or

(ii) G (r) is finite for some integer r and G is an extension of a
soluble group of derived length at most d by a finite almost
minimal simple group.
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Main results

Proof of Theorem A:

By Proposition A, G is either locally soluble, or G (r) is finite for
some integer r and G is an extension of a soluble group S by a
finite almost minimal simple group.

If S is not soluble of derived length at most d then, G (r) ≤ S and
G is soluble.

Let G be locally soluble and suppose that it is not soluble.
According to Smith, we have G (s) = G (s+1) for some s ≥ 0.

Moreover, G (s) is not soluble and every proper subgroup of G (s)

is soluble of length at most d . Thus G (s) is finite by Zaicev’s
result, a contradiction.
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Proposition B

Let G be a locally graded group and suppose that, for some
positive integer n, every non-soluble subgroup of G is subnormal
of defect at most n. Then G is locally (soluble-by-finite).

Theorem B

Let G be a locally graded group and suppose that, for some
positive integers n and d , every subgroup of G is either subnormal
of defect at most n or soluble of derived length at most d . Then
either

(i) G is soluble of derived length not exceeding a function
depending on n and d , or

(ii) G (r) is finite for some integer r = r(n) and G is an extension
of a soluble group of derived length at most d by a finite
almost minimal simple group.
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