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Background

Definition

Let G (·) be a group.
If S is a subset of G , then we denote

S2 = {xy | x , y ∈ S}.

Problem
Let S be a finite subset of G of size k. Determine the structure of S if

|S2| ≤ f (k),

for some function of k.

Problems of this kind are called inverse problems.
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Background

Suppose that S is a non-empty finite subset of G .

Since xS ⊆ S2, for any x ∈ S we have

|S2| ≥ |S |.

We shall consider problems of the following type:

Problem

What is the structure of S if |S2| satisfies

|S2| ≤ α|S |+ β

for some small α ≥ 1 and small |β|?

Such problems are called inverse problems of small doubling type.
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An example

If S is a finite subgroup of G , then S2 = S , hence |S2| = |S |.

This is a direct result.

The corresponding inverse problem is:

Problem

What is the structure of S if |S2| satisfies

|S2| = |S |?

Proposition

If S is a non-empty finite subset of a group G, then

|S2| = |S |

if and only if S = aH where H is a subgroup of G normalized by a.
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This follows from the following theorem of Gregory Freiman that is the
first inverse result of "small doubling" type.

Theorem (A)

Let S be a finite non-empty subset of a group G and suppose that

|S2| < 3
2
|S |.

Then S2 is a coset of a subgroup of G.
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Proposition

If S is a finite non-empty subset of a group G then

|S2| = |S |

if and only if S = aH where H is a subgroup of G normalized by a.

Proof. Suppose |S2| = |S |, then S2 = xS for every x ∈ S . By Theorem
A, xS = S2 = uH for some subgroup H of G and some u ∈ G . It follows
that S = x−1uH, as claimed. Write a = x−1u, then S = aH. In
particular |S2| = |S | = |H|. Furthermore we have:
|S2| = |aHaH| = |a2HaH| = |HaH|, hence |HaH| = |H|, then HaH = H,
since H ⊆ HaH. Therefore Ha ⊆ H and Ha = H, as required.
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The first version of Theorem A was published in 1951 in a Russian
journal. It was the beginning of what is now called the

Freiman′s structural theory of set addition.

The foundations for this theory were laid in the book:
G.A. Freiman,
Foundations of a structural theory of set addition
Translations of mathematical monographs, v. 37. American
Mathematical Society, Providence, Rhode Island, 1973.

M.B. Nathanson,
Additive number theory - Inverse problems and geometry of sumsets,
Springer, New York, 1996.
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By now, Freiman’s theory had been extended tremendously.

It was shown by Freiman and others that problems in various fields may
be looked at and treated as Structure Theory problems, including
Additive and Combinatorial Number Theory, Group Theory, Integer
Programming and Coding Theory.

H. Halberstam, B.J. Green, I.Z. Ruzsa, T. Sanders, Y.V.
Stanchescu, T.C. Tao, ...



Background

Consider the group of the integers Z(+).

If S is subset of the integers consider:

S + S = {x + y | x , y ∈ S}.

It is easy to prove that if S is finite with k elements, then :

|S + S | ≥ 2k − 1 , |S + S | ≤ k(k − 1)/2.
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Moreover
|S + S | = 2k − 1

if and only if S is an arithmetic progression of lenght k.

An arithmetic progression of length k and difference d is a set

{a, a + d , a + 2d , ..., a + (k − 1)d},

where a, d , k are integers, d , k ≥ 1.

Problem
Let S be a finite subset of the integers of order k. What is the structure
of S if |S + S | is not much greater than the minimal value 2k − 1?
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Background

G. Freiman proved the following:

Theorem (B)

Let S be a finite set of integers with k ≥ 3 elements and suppose that

|S + S | ≤ 2k − 1 + b,

where 0 ≤ b ≤ k − 3.
Then S is contained in an arithmetic progression of length k + b and
difference q,

P = {a, a + q, a + 2q, · · · , a + (k + b − 1)q},

where a, q are integers with q > 0.
In particular |P| ≤ 2k − 3.
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Corollary

Let S be a finite set of integers with k ≥ 3 elements and suppose that

|S + S | ≤ 3k − 4,

Then S is contained in an arithmetic progression.

Freiman studied also the case |S + S | ≤ 3|S | − 3 and |S + S | ≤ 3|S | − 2.

Theorem (C)

Let S be a finite set of integers with k > 6 elements and suppose that

|S + S | ≤ 3k − 3,

Then either S is a subset of an arithmetic progression of length at most
2k − 1 or S is a bi-arithmetic progression.

A set of the form I ∪ J is called a bi-arithmetic progression of length k
with difference d if both I and J are arithmetic progressions of difference
d , |I |+ |J| = k , and I + I , I + J, J + J are pairwise disjoint.
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Ordered groups

Our aim is to generalize Freiman’s results to finite subsets of ordered
groups.

Definition
Let G be a group and suppose that a total order relation ≤ is defined on
the set G .
We say that (G , <) is an ordered group if for all a, b, x , y ∈ G , the
inequality a ≤ b implies that xay ≤ xby .

Definition
A group G is orderable if there exists a total order relation ≤ on the set
G , such that (G , <) is an ordered group.
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Ordered groups

Obviously the group of the integers with the usual order is an ordered
group.

Theorem (F.W. Levi)

An abelian group G is orderable if and only if it is torsion-free.

Theorem (K. Iwasawa - A.I. Mal’cev - B.H. Neumann)

The class of ordered groups contains the class of torsion-free nilpotent
groups.
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More information concerning ordered groups may be found, for example,
in

R. Botto Mura and A. Rhemtulla, Orderable groups,
Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc.,
New York and Basel, 1977.
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A.M.W. Glass, Partially ordered groups,
World Scientific Publishing Co., Series in Algebra, v. 7, 1999.
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Ordered groups

Proposition

Let (G ,≤) be an ordered group and S a finite subset of G with k
elements. Then

|S2| ≥ 2k − 1.

Moreover, if |S2| = 2k − 1, then S is a geometric progression, i.e. there
exists g ∈ G, x ∈ S such that

S = {x , xg , xg2, · · · , xgk−1}.

Problem

Let (G ,≤) be an ordered group, S a finite subset of G of order k. What
is the structure of S if |S2| is not much greater than the minimal value
2k − 1?
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is the structure of S if

|S2| ≤ 3k − 3?
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Ordered groups

Now new problems arise.

Problem

Let (G ,≤) be an ordered group, S a finite subset of G of order k.
What is the structure of 〈S〉, the subgroup generated by S, if |S2|
satisfies

|S2| ≤ 2k − 1 + b,

where 0 ≤ b ≤ k?

In particular:

Problem

What is the maximal upper bound on |S2| which implies that the
subgroup 〈S〉 is abelian?
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Some results

Theorem (1)

Let (G ,≤) be an ordered group and let S = {x1, x2, · · · , xk} be a finite
subset of G of size k ≥ 3, with x1 < x2 · · · < xk .
Assume that t = |S2| ≤ 3k − 4 .
Then 〈S〉 is abelian.
Moreover, there exists g ∈ G, g > 1, such that gx1 = x1g and S is a
subset of

{x1, x1g , x1g2, · · · , x1g t−k}.
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Let (G ,≤) be an ordered group and let S = {x1, x2, · · · , xk} be a finite
subset of G of size k ≥ 2, with x1 < x2 · · · < xk .
Assume that

|S2| ≤ 3k − 3

.
Then < S > is abelian and at most 3-generated.

Theorem
There exists an ordered group G with a subset S of order k such that
< S > is not abelian and |S2| ≤ 3k − 2.
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An example

Example

Let G = A o 〈b〉 be a semidirect product of an abelian group A(·)
isomorphic to the additive rational group (Q,+) by an infinite cyclic
group 〈b〉, such that ab = a2 for each a ∈ A.
Then G is torsion-free and it is orderable.
Take a ∈ A \ 1 and let

S = {b, ba, ba2, · · · , bak−1}

. Since ab = ba2, it is easy to see that

S2 = {b2, b2a, b2a2, b2a3, · · · , b2a3k−3}.

Thus 〈S〉 is non-abelian and |S2| = 3k − 2.
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The structure of S if |S2| ≤ 3|S | − 3

Let G be an ordered group and let S be a subset of G of finite size k .
Suppose

|S2| ≤ 3|S | − 3.

If |S | = 3, then |S2| ≤ 6 = 3k − 3. So assume k > 3.

We know that 〈S〉 is abelian and at most 3-generated, then the structure
of S can be described using previous results of G. Freiman.
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The structure of S if |S2| ≤ 3|S | − 3
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Let G be an ordered group and let S be a subset of G of finite size
k > 3. If

|S2| ≤ 3k − 3,

then one of the following holds:

(1) |S | ≤ 6;

(2) S is a subset of a geometric progression;

(3) S is a bi-geometric progression,

S = {act | 0 ≤ t ≤ t1 − 1} ∪ {bct | 0 ≤ t ≤ t2 − 1}.
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The structure of 〈S〉 if |S2| ≤ 3|S | − 2

We proved the following theorem.

Theorem (4)

Let G be an ordered group and let S be a subset of G of finite size
k > 3. If

|S2| ≤ 3k − 2,

then one of the following holds:

(1) 〈S〉 is an at most 4-generated abelian group;

(2) 〈S〉 = 〈a, b |[a, b] = c , [c , a] = [c , b] = 1〉;
(3) 〈S〉 = 〈a, b |[a, b] = c , [c , a] = 1, cb = c2〉;
(4) 〈S〉 = 〈a, b |[a, b] = c , [c , a] = 1, (c2)b = c〉;
(5) 〈S〉 = 〈a, b | ab = a2〉;
(6) 〈S〉 = 〈a, b | ba2 = ab2, a2ba−2 = bab−1〉.
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k > 3. If |S2| ≤ 3k − 2, then 〈S〉 is metabelian.

Corollary

Let G be an ordered nilpotent group and let S be a subset of G of finite
size k > 3. If |S2| ≤ 3k − 2, then 〈S〉 has nilpotence class at most 2.
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Let G be an ordered group. Let S ⊆ G, S = {x1, x2, x3}, x1 < x2 < x3.
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(i) S ∩ Z (〈S〉) 6= ∅,
(ii) S = {a, ab, b}, where aab = aba,
(iii) 〈S〉 = 〈a, b〉, where ab2 = ba2.
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Let G be an ordered group and let S be a subset of G of finite size
k > 3. Suppose

|S2| ≤ 3|S | − 2.

If 〈S〉 is abelian, then the structure of S can be explicitly described using
previous results due to G. Freiman.

If 〈S〉 = 〈a, b | ab = a2〉, then 〈S〉 = B(1, 2).
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Torsion-free nilpotent groups of class 2

Theorem (5)

Let G be a torsion-free nilpotent group of class 2 and let S ⊆ G be
non-abelian and of order k ≥ 4. Then

|S2| = 3k − 2

if and only if

S = {a, ac , ac2, · · · , ac i , b, bc, bc2, · · · , bc j},

with 1 + i + 1 + j = k and ab = bac or ba = abc, c > 1.
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A general result on the structure of 〈S〉

Arguing as in Theorem [3], it is possible to prove that for any positive
integer s, if k is big enought and S is a subset of finite size k of an
ordered group G and |S2| ≤ 3k − 2 + s, then 〈S〉 is metabelian, and it is
nilpotent of class 2 if G is nilpotent. In fact we have:

Theorem (8)

Let G be an ordered group, s be any positive integer, and let k be an
integer such that k ≥ 2s+2. If S is a subset of G of finite size k and such
that

|S2| ≤ 3k − 2 + s,

then 〈S〉 is metabelian, and it is nilpotent of class 2 if G is nilpotent.
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Proof of Theorems 1 and 3

Definizione

Let A be a finite subset of an abelian group G (+) and B a finite subset
of an abelian group H(+). A map ϕ : A −→ B is a Freiman isomorphism
if it is bijective and from

a1 + a2 = b1 + b2

it follows
ϕ(a1) + ϕ(a2) = ϕ(b1) + ϕ(b2).

A is Freiman isomorphic to B if there exists a Freiman isomorphism
ϕ : A −→ B.
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Esempio

If H(+) and G (+) are finite groups, an isomorphism ϕ : G −→ H is a
Freiman isomorphism. Let r ≥ 5,

A = {0, 1, 2, r , r + 1, 2r} ⊆ Z,

B = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2)} ⊆ Z× Z

. The map ϕ definined by putting:

ϕ(0) = (0, 0), ϕ(1) = (1, 0), ϕ(2) = (2, 0),

ϕ(r) = (0, 1), ϕ(r + 1) = (1, 1), ϕ(2r) = (0, 2)

is a Freiman isomorphism.
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Proof of Theorem 3

Remark
If A and B are Freiman isomorphic, then

|A| = |B|

and
|A + A| = |B + B|.

Remark
If ϕ : A −→ B is a Freiman isomorphism and

A = {a, a + d , a + 2d , · · · , a + (k − 1)d}

is an arithmetic progression with difference d, then B is an arithmetic
progression with difference ϕ(a + d)− ϕ(a).
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Proof of Theorems 1 and 3

Let G be a torsion free abelian group. If S is a finite subset of G , we

write m(G ) the rank of the abelian group 〈S〉, i.e. the number m such
that 〈S〉 is isomorphic to Zm.

Definizione

The Freiman dimension of S, d(S), is the maximum positive integer d
such that there exists a Freiman isomorphism between S and a subset T
of Zd , not situated on an affine hyperplane ( where an affine hyperplane
of a d-dimensional linear space L is shift of a (d − 1)-dimensional
subspace by a vector of L.
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Proof of Theorems 1 and 3

It is possible to prove that:

m(S) ≤ d(S) + 1.

Moreover Freiman proved that:

Theorem

If S is a finite subset of an abelian group, d = d(S) the Freiman
dimension of S, then

|S2| ≥ (d + 1)|S | − d(d + 1)/2.
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Proof of Theorems 1 and 3

Assume |S | = k , 〈S〉 abelian, |S2| ≤ 3k − 4.
Let d = d(S) be the Freiman dimension of S .
Then we have:

3|S | − 4 ≥ |S2| ≥ (d + 1)|S | − d(d + 1)/2,

or equivalently
d(d + 1)/2− 4 ≥ (d − 2)|S |.
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Proof of Theorems 1 and 3

If d = 2, we obtain the contradiction

−1 ≥ 0.

If d ≥ 3, using |S | ≥ d + 1 we obtain

d2 + d − 8 ≥ (d − 2)(d + 1),

and
d2 − 3d + 4 ≤ 0,

a contradiction. Therefore d = 1, then by Freiman Theorem (B), S is

Freiman isomorphic to a set contained in an aritmetic progression, then S
is contained in a geometric progression.
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Proof of Theorems 1 and 3

If
|S2| ≤ 3k − 3,

arguing similarly, we get that the only possibilities are

d = 1

or
d = 2,

and Theorems (B) and (C) apply.



Proofs of Theorems concerning the structure of 〈S〉

Let (G ,≤) be an ordered group, S = {x1, x2, · · · , xk−1, xk} a subset of
G , |S | = k , |S2| ≤ 3k − v , v ∈ {1, 2, 3, 4}.
Suppose x1 < x2 < · · · < xk−1 < xk .
Write

T = {x1, · · · , xk−1}.

We show that either

|T 2| ≤ 3(k − 1)− v , or 〈T 〉 is abelian.
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Proof of Theorem 2

Theorem (2)

Let (G ,≤) be an ordered group and let S = {x1, x2, · · · , xk} be a finite
subset of G of size k ≥ 2, with x1 < x2 · · · < xk .
Assume that

|S2| ≤ 3k − 3.

Then < S > is abelian.



Proof of Theorem 2

Suppose that S = {x1, x2, · · · , xk} is a subset of an ordered group,
x1 < x2 < · · · < xk .

Assume |S2| ≤ 3|S | − 3.
We want to show that 〈S〉 is abelian.
If k = 2 or k = 3, we prove directly the result.
Suppose k > 3 and argue by induction on k . Write T = {x1, · · · , xk−1}.
Then either 〈T 〉 is abelian or |T 2| = 3|T | − 3, by the previous remarks.
By induction we can assume that 〈T 〉 is abelian.
If xixk ∈ T 2, for some i < k , then xk ∈ 〈T 〉 and 〈S〉 ⊆ 〈T 〉 is abelian ,
as required. Hence we can assume that x1xk , · · · , xk−1xk , x2

k /∈ T 2, then
|T 2| ≤ |S2| − k = 3k − 3− k = 2(k − 1)− 1. Then

T = {a, ac , · · · , ack−2}

is a geometric progression with [a, c] = 1.
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Proof of Theorem 2

Write
V = {x2, · · · , xk}.

Considering the order opposite to < and arguing on V as we did on T we
get that V is abelian.
Moreover |V | ≤ 3, since k > 3. Then there exist i 6= j such that
[xk , ac i ] = [xk , ac j ] = 1. Then [xk , c i−j ] = 1 and

[xk , c] = 1.

since we are in an ordered group.
From [xk , ac j ] = 1, we get that also

[xk , a] = 1.

Thus xk ∈ CG (T ) and 〈S〉 is abelian, as required.



Problems

Problem

Let (G ,≤) be an ordered group, S a finite subset of G of order k > 3.
What is the structure of S , if

|S2| ≤ 3k − 2?



Theorem (4)

Let G be an ordered group and let S be a subset of G of finite size
k > 3. If

|S2| ≤ 3k − 2,

then one of the following holds:

(1) 〈S〉 is abelian;
(2) 〈S〉 = 〈a, b |[a, b] = c , [c , a] = [c , b] = 1〉;
(3) 〈S〉 = 〈a, b |[a, b] = c , [c , a] = 1, cb = c2〉;
(4) 〈S〉 = 〈a, b |[a, b] = c , [c , a] = 1, (c2)b = c〉;
(5) 〈S〉 = 〈a, b | ab = a2〉;
(6) 〈S〉 = 〈a, b | ba2 = ab2, a2ba−2 = bab−1〉.



Problems

Problem

Let (G ,≤) be an ordered group, S a finite subset of G of order k > 3.
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What is it known about the group
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Problem
Let S be a finite subset of an ordered group. What is the maximal upper
bound on |S2| which implies that the subgroup 〈S〉 is soluble of fixed
length s?

We have solved the problem if s = 1. If |S2| ≤ 3|S | − 3 the group 〈S〉 is
abelian and there exists an ordered group with a subset S of order k (for
any k) such that |S2| = 3k − 2 and 〈S〉 non-abelian.
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Let S be a finite subset of an ordered group. What is the maximal upper
bound on |S2| which implies that the subgroup 〈S〉 is soluble?
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Thank you for the attention !
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