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Algebra

Definition

Let A be a vector space overk and p : AQ A— Aandn: k— A
be linear maps. The triple (A, 1, n) is said to be an algebra if the
following diagrams commute:

pid

ARARA—AR®A
id®ul lli
AR A m A
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Coalgebra

Definition
Let A be a vector space overk and A :A— A®Aande: A—k

be linear maps. The triple (A, A, €) is said to be a coalgebra if the
following diagrams commute:

A A L A®A

d e

k® A e®id id®e

AR A A® k
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Sweedler’s sigma notation

Notation

(Sweedler’s sigma notation) In order avoid the complexity of index

notation we write
A(x) = Zx' ® x”
(x)

for any x € A.
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o If (A, p,m) is an algebra then sois (A® A, 1 ® p,n ®@n).
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Hopf Algebras

Examples of Hopf algebras

o If (A, u,m) is an algebra then sois (A® A, 1 ® p,n @ n).
e If (A, A ¢) is a coalgebra then so is

(ARA, (ideT®id)o (A®A),e®¢), where T(a® b) = bR a

=

a
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Bialgebra

Definition

Let (A, u,n) be an algebra and (A, A, €) is a coalgebra. The
quintuple (A, u,m, A, €) is said to be a bialgebra if the maps p and
1 are morphisms of coalgebras or equivalently, the maps A and ¢
are morphisms of algebras.
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Let (H,pu,n,A,e) be a bialgebra. An endomorphism S of H is
called an antipode for the bialgebra H if

Z S(x"x" = ZX/S(X”) = ¢g(x)1
(x) (x)

for all x € H.

A Hopf algebra is a bialgebra with an antipode.
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R-matrix

Definition

Let V be a vector space. An automorphism ¢ of V ® V s called
an R-matrix if it satisfies the Yang-Baxter equation

(C X id\/)(id\/ & C)(C & id\/) = (id\/ X C)(C & id\/)(id\/ X C)

which holds in the automorphism group of V.® V @ V
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Universal R-matrix

Definition

A bialgebra (H, p,n, A, €) is called quasi-cocommutative if there
exists an invertible element R of the algebra H ® H such that for
all x € H we have

A%(x) = RA(x)R™L.

Here AP = 1y 1y o A where Th H(h1 ® ho) = hy @ hi. R is called
the universal R-matrix of the bialgebra H. A Hopf algebra is
quasi-cocommutative if its underlying bialgebra is
quasi-cocommutative.
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Definition

A quasi-cocommutative bialgebra (H, u,n,A,e, R) or a
quasi-cocommutative Hopf algebra (H, ji,m, A, e, S, R) is braided if
the universal R-matrix satisfies the following relations:

(A ®idy)(R) = Ri3Ro3

(idH & A)(R) = R13R12.
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R-matrix from a Braided Hopf Algebra

Let (H,u,n, A, &, R) be a braided bialgebra and V be an
H-module. The automorphism C5,V of V ® V defined by

ey (v e w) = 7y v[R(v ® )]

is an R-matrix.
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Module-coalgebra

Definition

Let (H, p,m,Ay,en) be a bialgebra and (C,Ac,ec) be a
coalgebra. C is said to be a module-coalgebra over H if there
exists a morphism of coalgebras ¢ : H® C — C inducing an
H-module structure on C, that is,

(¢ ® P)Angc = DAco
EHRC = ECP
P(p® idc) = ¢(idy ® ¢)
o(n @ idc) = idc
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Definition

A pair (X, A) of bialgebras is matched if there exist linear maps
a:ARX = Xand B: A® X — A turning X into a
module-coalgebra over A, and turning A into a right
module-coalgebra over X, such that, if we set

ala®x)=a-x and pa®x)=a",

the following conditions are satisfied:
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2- ()= D> (@)@ - y),

(a)(x)

a-1=¢(a)l,

(ab)X _ Z a2 /. x b//x”

(b)(x)

1* = ¢(x)1,

Z a/x -X” _ Z a//x" ® a/ . X,
(a)(x) (a)(x)
for all a,b € A and x,y € X.
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Theorem

Let (X, A) be a matched pair of bialgebras. There exists a unique
bialgebra structure on the vector space X ® A, called the bicrossed
product of X and A and denoted by X <1 A, such that its product,
unit, coproduct and counit are given by

o (x®a)(y ®b) =D, x(a-y)®@a""b,

o n(l)=1®1,

0 Ax®a) =3 (X ®d)®(x"®a"),

e ¢(x®a) = e(x)e(a)

for all x,y € X and a, b € A.
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Theorem

Let (X, A) be a matched pair of bialgebras. There exists a unique

bialgebra structure on the vector space X ® A, called the bicrossed
product of X and A and denoted by X <1 A, such that its product,
unit, coproduct and counit are given by

o (x®a)(y®b) =Y (5 x(@ y) @b,
°n(l)=1®1,
0 A(x®a) =3 (X ®ad) e (x" ®a"),
e ¢(x®a) = e(x)e(a)
for all x,y € X and a, b € A.

@ If the bialgebras X and A have antipodes, X <1 A is a Hopf
algebra.

Miinevver Celik Quantum Groups, R-Matrices and Factorization



Quantum Groups
Factorization
Duality Between Uggl(n) and Mg (n)

Hopf Algebras
Examples of Hopf algebras

Theorem

Let H= (H,u,n,A,e,S,5 1) be a finite-dimensional Hopf
algebra and X = (HP)* = (H*, A*,&*, (u°P)*,n*, (S~1)*, S*) be
the dual of the opposite Hopf algebra. Let oo : H® X — X and
B :H®X — H be the linear maps given by

a(a@f)=a-f=> f(SHa")?d), and
(a)

5(3 ® f) _ af _ Z f(s—l(a///)a/)a//
(a)

fora€ H and f € X, where f(S71(a")?a") is the map defined by
f(S71(a")?a')(x) = F(S~Y(a")xa"), for all x € H. Then the pair
(H, X) is matched.
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Definition
The quantum double of H is defined by

D(H) = X > H

where H is a finite-dimensional Hopf algebra with invertible
antipode and X = (H°P)*.
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Let {ei}ic; be a basis of H and {e'};c; be its dual basis. D(H) is
a braided Hopf algebra with the universal R-matrix

R=> (1ee)®(®1).

i€l
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Definition

Let p and g be nonzero elements of a field K and

M, q(n) = K{aj|i,j € {1,2,...,n}}/I be the quotient of the free
algebra generated by the generators {ajj|i,j € {1,2,...,n}} over K
by the two-sided ideal | generated by the relations

ajldjk = PAajkajl,
djkdik = qaikajk,

-1
ajkdil = P ~qajdjk,

—1
ajjaik = ajkaj + (p— q~ " )ajkai

whenever j > i and | > k.
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Define coproduct and counit on the generators as follows:

n
Aay) =) ai © ay
k=1

e(aj) = 6;

where §j; is the Kronecker delta and extend these maps to M, 4(n)
as algebra maps.
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@ p=q — Mq(n)

o detg =1 = SL(n)
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e p=q = Mgy(n)

o dety =1 = Sl4(n)
o dety #0 = GLg(n)
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Definition

Let Uggl(n) be the algebra generated by
&, fi, kj, kj_l,i =1,2,...n—1,j=1,2, ..., n with the following
relations:

kiki = kiki,
ki ejk_ = q‘s"vf*‘s"’/+1 €,
kil = ooy,
kik L — k7l
eif; — fie; = 6; 'H s I+17
qa—4q
e,ej eJe,,ff fi, if |i—j| >2,

e?eji1 + ejr1€? (q+q Deiejrie;,
f2fiiy 4 fixrf? = (g + g H)fifiasfr.
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Define coproduct, counit and antipode on the generators as follows:

i) =k j

Ale)) =6 ® k,-k,.:_ll +1®e,
A(f)=f@1+k Thkip1®f,
(ki) =1,

e(e)) =e(f;) =0,

S(ki) = ki 1,

S(ej) = —ejki kit

S(f)) = —kik 4 f:.

and extend A and € on Uggl(n) as algebra homomorphisms and S
as an algebra antihomomorphism.
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Factorization Factorization of My, (n)

P.B.W. Basis of Uqgl(n)

Definition
Let

Roq(n) = K{xM y® ke (1,2, . n—1},i € {1,2,....2n—1}}/J
be the quotient of the free algebra over K generated by the
generators {x,.(k),yi(k)\k €{1,2,...,n—1},ie€{1,2,...,2n—1}} by
the two-sided ideal J generated by the relations

v
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(k) (k) (k) (k) (k) (k) (k) (k)

Xoi " Xoil1 = PXoi L1 %7, Xoit1Xpi " = AX3; " X515
39" = xgY, A = P,
k)  (k k) (k k) (k k)  (k
y2(i-|)-1y2(i) = Py2(i )y2(i—|)-17 y2(i)y2(ill = qy2(i21y2(i )v
yi(k)yj(k) _ yj(k)yi(k)v yi(kl)yl(kz) _ y/(k2)yi(kl)’
Xi(k3)yl(k4) _ yl(k4)xi(k3)

for every i,j, k, I, kl, k2, k3, k4 where kl ;é k2, J — I‘ > 2.
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Factorization of My, ¢(n)
P.B.W. Basis of Uqgl(n)

e
2
y (k) — Ya

0

®

Yon=2 Yon—a
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P.B.W. Basis of Uqgl(n)

Theorem

The map ¢ : M, q(n) — Rp q(n) mapping aj; to aj;, where &j; is the
ijth entry of the matrix A = XWXx@_ x(-1)yD)y@)  y-1) js
well-defined, i.e. the entries of A = (é,-j) satisfy relations

3jjdik = Paikai,
djkdik = qaikAjk,

A A 1 A A~
djkdjl = P ~qadjdjk,

A A A A —ina 4
djjdik = aidj + (p— q~ 7 )ajdi

whenever j > i and | > k.
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Sketch of the Proof

Factorization of My, (n)
P.B.W. Basis of Uqgl(n)

Use infinite matrices X(1), X X(n)

xz(llz X2(Ill.. X2(7) ifi=j

(FOXO_ o) = S N Yy ifo<j-i<n

Ki_i=j—i k=2 ki=1
0 otherwise

1 @ (ki=1) (ki) (ki+1)
where w = X5;” 1%;” 151 Xpj Xpiiq

(kj—i—1) (kj—i) (k‘erl) n—1
2jj—3 2(11'_1) 2jj—1 X2(J 1)X2(J)1
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~(n ~(n—1 n n—1
A = ArDdn gn0)

Ifd>c
~(n) x(n n n—1 n n—1 n
A AR = (RS0 + AL D) AT gt + A )

n—1 n n—1 n n—1 n—1 n
= Agd 1) 2(d) 2Agc 1) 2(c) +A( ) 2(d) 1Agc 1)X2(c)72
n—1 n n n—1 n—1 n
I e ORy (aN O CONDRY (S NOR
n—1 n n
= pA(ac 1)X2(c) 2Agd 1)X2(d) +pA‘(ac 1)X2(c) 2Agd Y 2(d) 1

T Ny e Ny (NN MU

X2c—172d—1%2d
n—1 n n—1 n n—1 n n— 1 n
= p(AL DD, + AN )(Agd 1) éd) 2+A( )X2(d) 1)
PR AL
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P.B.W. Basis of Uqgl(n)

We will follow the method of Marc Rosso in
An Analogue of P.B.W. Theorem and the Universal R-Matrix for
UhS/(N + 1)

=
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Factorization of My, ¢(n)
P.B.W. Basis of Uqgl(n)

Leta=a(i,j+1)=aj+ajit1+ ...+, y=a—qj and
B8 = a — «a; where i # j. Then define by induction

{ evej — gejey, if i
=1
1

if i = j
¢ _{ fifs —q sy if i ]
L

ifi=j

a
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Factorization of My, ¢(n)
P.B.W. Basis of Uqgl(n)

We order the elements as follows:

€a(ij) < €aksy if i > kor (i=kand >
fu(igy < faqisy if i < k or (i =k and j < /)

=

a
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P.B.W. Basis of Uqgl(n)

Proposition

Let o = aj+ ...+ aj and 8 = ap + ... + a,. Upto exchanging the
roles of a and B we may assume i < p. Then,

[ egen if p>j+2
qegea + €ats if p=j+1
o en — q_leﬁea if p=iandr>j+1
=p egeq if i<p<jandr<j
q_leﬁea if i<p<jandr=j
( esea — (9 —q Newear if i<p<jandr>j+1

where o/ = ap+ ...+ ajand o' = aj + ... + a,.
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Proposition
Let o = aj+ ...+ aj and 8 = ap + ... + a,. Upto exchanging the
roles of a and B we may assume i < p. Then,

fofs if p=j+2
q(fafs — fatp) if p=j+1
Ff — q_lfafﬁ if p=iandr>j+1
e fafs if i<p<jandr<j
q L fs if i<p<jandr=]
fufs —(q— g Vfufar if i<p<jandr>j+1

where o/ = aj+ ...+ o, and o/ = ap+ ... + ¢.
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Q The set B® = {[]7 k7" : ¢i € Z} is a basis for Udgl(n).
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Factorization of My, ¢(n)
P.B.W. Basis of Uqgl(n)

Theorem

Q The set B® = {[]7 k7" : ¢i € Z} is a basis for Udgl(n).
@ The set
BT ={ H es® 1 co € N},

acdt

where the product is in the order corresponding to that of the
elements e, is a basis for U gl(n).
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Factorization of My, ¢(n)
P.B.W. Basis of Uqgl(n)

Theorem

Q The set B® = {[]7 k7" : ¢i € Z} is a basis for Udgl(n).
@ The set
BT ={ H es® 1 co € N},

acdt
where the product is in the order corresponding to that of the
elements e, is a basis for U gl(n).

© The set
B~ ={]] £ :caeN},

acdt
where the product is in the order corresponding to that of the
elements f,, is a basis for U, gl(n).
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Theorem

Q The set B® = {[]7 k7" : ¢i € Z} is a basis for Udgl(n).
@ The set
BT ={ H es® 1 co € N},

acdt
where the product is in the order corresponding to that of the
elements e, is a basis for U gl(n).

© The set
B~ ={]] £ :caeN},
acdt
where the product is in the order corresponding to that of the
elements f,, is a basis for U, gl(n).

@ Hence the set B= B~ ® B® @ BY is a basis for Uggl(n).
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Duality Between Uggl(n) and My (n)

Definition

Let (U, pu,m, A, e) and (H, u,m, A, &) be bialgebras and <,> be a
bilinear form on U x H. We say that the bilinear form realizes a
duality between U and H, or that the bialgebras U and H are in
duality if we have

<uv,x>:Z<u,x/>< v, x" >, (1)
(x)
<u,xy>:Z<u',x><u”,y>7 (2)
(u)
<1,x>=¢(x), (3)
<u,1>=c¢(u) (4)

for all u,v € U and x,y € H.
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Duality Between Hopf Algebras
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Definition
Moreover, if U and H are Hopf algebras with antipode S, then

they are said to be in duality if the underlying bialgebras are in
duality and we have

< S(u),x >=<u,S(x) >

forall u € U and x € H.
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Proposition

Let ¢ be the linear map from U to the dual vector space H* and
be the linear map from H to the dual vector space U* defined by

d(u)(x) =< u,x > P(x)(u) =< u,x >

With the above notation, the relations (1) and (3) of the previous
definition are equivalent to ¢ being an algebra morphism and the
relations (2) and (4) are equivalent to 1) being an algebra
morphism.
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Duality Between Hopf Algebras
Duality Between Uqgl(n) and M (n)

Construct an algebra map % from Mg(n) to the dual algebra

U;g/(n).
Consider the representation p defined on the generators by

plei) = Ei iy,
p(fi) = Eiy1,i
p(ki) = Di,

where Ej; denotes the elementary matrix and D; denotes the
diagonal matrix

Di = E11 + Exp + ... +qE; i + Eip1,i41 + Eigoivo + ... + Epp.
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If uis an element of Uggl(n) using the P.B.W. basis, we have

All(u) Alg(u) e Al,,(u)

Ani(u) Axp(u) ... Azn(u)
Plu)=1 S

Ani(u) Am(u) ... Apn(u)

Let ¢ : H = Mg(n) — U* = Uqsgl(n)* be the algebra morphism
defined on the generators by ¥(a;;) = Aj;.
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The bilinear form < u,x >= 1)(x)(u) realizes a duality between
the bialgebras Uggl(n) and Mg(n).
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@ 1) is well-defined.

e <, > satisfies (1) and (3)
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Duality Between Hopf Algebras
Duality Between Uqgl(n) and Mq(n)

Thank You ®
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