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Algebra

Definition

Let A be a vector space over k and µ : A⊗ A→ A and η : k→ A
be linear maps. The triple (A, µ, η) is said to be an algebra if the
following diagrams commute:

A⊗ A⊗ A
µ⊗id //

id⊗µ
��

A⊗ A

µ

��
A⊗ A µ

// A

k ⊗ A
η⊗id //

∼=
$$

A⊗ A

µ

��

A⊗ k
id⊗ηoo

∼=
zz

A
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Coalgebra

Definition

Let A be a vector space over k and ∆ : A→ A⊗ A and ε : A→ k
be linear maps. The triple (A,∆, ε) is said to be a coalgebra if the
following diagrams commute:

A
∆ //

∆
��

A⊗ A

id⊗∆
��

A⊗ A
∆⊗id

// A⊗ A⊗ A

k ⊗ A A⊗ A
ε⊗idoo id⊗ε // A⊗ k

A

∼=

dd

∆

OO

∼=

::
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Sweedler’s sigma notation

Notation

(Sweedler’s sigma notation) In order avoid the complexity of index
notation we write

∆(x) =
∑
(x)

x ′ ⊗ x ′′

for any x ∈ A.
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If (A, µ, η) is an algebra then so is (A⊗ A, µ⊗ µ, η ⊗ η).

If (A,∆, ε) is a coalgebra then so is
(A⊗A, (id ⊗ τ ⊗ id)◦ (∆⊗∆), ε⊗ ε), where τ(a⊗b) = b⊗ a.
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If (A, µ, η) is an algebra then so is (A⊗ A, µ⊗ µ, η ⊗ η).
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Bialgebra

Definition

Let (A, µ, η) be an algebra and (A,∆, ε) is a coalgebra. The
quintuple (A, µ, η,∆, ε) is said to be a bialgebra if the maps µ and
η are morphisms of coalgebras or equivalently, the maps ∆ and ε
are morphisms of algebras.
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Hopf Algebra

Definition

Let (H, µ, η,∆, ε) be a bialgebra. An endomorphism S of H is
called an antipode for the bialgebra H if∑

(x)

S(x ′)x ′′ =
∑
(x)

x ′S(x ′′) = ε(x)1

for all x ∈ H.

A Hopf algebra is a bialgebra with an antipode.
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R-matrix

Definition

Let V be a vector space. An automorphism c of V ⊗ V is called
an R-matrix if it satisfies the Yang-Baxter equation

(c ⊗ idV )(idV ⊗ c)(c ⊗ idV ) = (idV ⊗ c)(c ⊗ idV )(idV ⊗ c)

which holds in the automorphism group of V ⊗ V ⊗ V
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Universal R-matrix

Definition

A bialgebra (H, µ, η,∆, ε) is called quasi-cocommutative if there
exists an invertible element R of the algebra H ⊗ H such that for
all x ∈ H we have

∆op(x) = R∆(x)R−1.

Here ∆op = τH,H ◦∆ where τH,H(h1 ⊗ h2) = h2 ⊗ h1. R is called
the universal R-matrix of the bialgebra H. A Hopf algebra is
quasi-cocommutative if its underlying bialgebra is
quasi-cocommutative.
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Braided Hopf Algebra

Definition

A quasi-cocommutative bialgebra (H, µ, η,∆, ε,R) or a
quasi-cocommutative Hopf algebra (H, µ, η,∆, ε,S ,R) is braided if
the universal R-matrix satisfies the following relations:

(∆⊗ idH)(R) = R13R23

(idH ⊗∆)(R) = R13R12.
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R-matrix from a Braided Hopf Algebra

Let (H, µ, η,∆, ε,R) be a braided bialgebra and V be an
H-module. The automorphism cRV ,V of V ⊗ V defined by

cRV ,V (v ⊗ w) = τV ,V [R(v ⊗ w)]

is an R-matrix.
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Module-coalgebra

Definition

Let (H, µ, η,∆H , εH) be a bialgebra and (C ,∆C , εC ) be a
coalgebra. C is said to be a module-coalgebra over H if there
exists a morphism of coalgebras φ : H ⊗ C → C inducing an
H-module structure on C, that is,

(φ⊗ φ)∆H⊗C = ∆Cφ

εH⊗C = εCφ

φ(µ⊗ idC ) = φ(idH ⊗ φ)

φ(η ⊗ idC ) = idC
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Matched pair

Definition

A pair (X ,A) of bialgebras is matched if there exist linear maps
α : A⊗ X → X and β : A⊗ X → A turning X into a
module-coalgebra over A, and turning A into a right
module-coalgebra over X , such that, if we set

α(a⊗ x) = a · x and β(a⊗ x) = ax ,

the following conditions are satisfied:
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a · (xy) =
∑

(a)(x)

(a′ · x ′)(a′′x
′′ · y),

a · 1 = ε(a)1,

(ab)x =
∑

(b)(x)

ab
′·x ′b′′x

′′
,

1x = ε(x)1,∑
(a)(x)

a′x
′ ⊗ a′′ · x ′′ =

∑
(a)(x)

a′′x
′′ ⊗ a′ · x ′

for all a, b ∈ A and x , y ∈ X.
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Theorem

Let (X ,A) be a matched pair of bialgebras. There exists a unique
bialgebra structure on the vector space X ⊗ A, called the bicrossed
product of X and A and denoted by X ./ A, such that its product,
unit, coproduct and counit are given by

(x ⊗ a)(y ⊗ b) =
∑

(a)(y) x(a′ · y ′)⊗ a′′y
′′
b,

η(1) = 1⊗ 1,

∆(x ⊗ a) =
∑

(a)(x)(x ′ ⊗ a′)⊗ (x ′′ ⊗ a′′),

ε(x ⊗ a) = ε(x)ε(a)
for all x , y ∈ X and a, b ∈ A.

If the bialgebras X and A have antipodes, X ./ A is a Hopf
algebra.
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Theorem

Let H = (H, µ, η,∆, ε,S ,S−1) be a finite-dimensional Hopf
algebra and X = (Hop)∗ = (H∗,∆∗, ε∗, (µop)∗, η∗, (S−1)∗,S∗) be
the dual of the opposite Hopf algebra. Let α : H ⊗ X → X and
β : H ⊗ X → H be the linear maps given by

α(a⊗ f ) = a · f =
∑
(a)

f (S−1(a′′)?a′), and

β(a⊗ f ) = af =
∑
(a)

f (S−1(a′′′)a′)a′′

for a ∈ H and f ∈ X, where f (S−1(a′′)?a′) is the map defined by
f (S−1(a′′)?a′)(x) = f (S−1(a′′)xa′), for all x ∈ H. Then the pair
(H,X ) is matched.
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Quantum double

Definition

The quantum double of H is defined by

D(H) = X ./ H

where H is a finite-dimensional Hopf algebra with invertible
antipode and X = (Hop)∗.
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Theorem

Let {ei}i∈I be a basis of H and {e i}i∈I be its dual basis. D(H) is
a braided Hopf algebra with the universal R-matrix

R =
∑
i∈I

(1⊗ ei )⊗ (e i ⊗ 1).
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Bialgebra Structure of Mp,q(n)

Definition

Let p and q be nonzero elements of a field K and
Mp,q(n) = K{aij |i , j ∈ {1, 2, ..., n}}/I be the quotient of the free
algebra generated by the generators {aij |i , j ∈ {1, 2, ..., n}} over K
by the two-sided ideal I generated by the relations

ailaik = paikail ,

ajkaik = qaikajk ,

ajkail = p−1qailajk ,

ajlaik = aikajl + (p − q−1)ajkail

whenever j > i and l > k.
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Bialgebra Structure of Mp,q(n)

Define coproduct and counit on the generators as follows:

∆(aij) =
n∑

k=1

aik ⊗ akj

ε(aij) = δij

where δij is the Kronecker delta and extend these maps to Mp,q(n)
as algebra maps.
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Special Cases

p = q =⇒ Mq(n)

detq = 1 =⇒ SLq(n)

detq 6= 0 =⇒ GLq(n)
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Definition

Let Uqgl(n) be the algebra generated by
ei , fi , kj , k

−1
j , i = 1, 2, ..., n − 1, j = 1, 2, ..., n with the following

relations:

kikj = kjki ,

kiejk
−1
i = qδi,j−δi,j+1ej ,

ki fjk
−1
i = q−δi,j+δi,j+1fj ,

ei fj − fjei = δi ,j
kik
−1
i+1 − k−1

i ki+1

q − q−1
,

eiej = ejei , fi fj = fj fi , if |i − j | ≥ 2,

e2
i ei±1 + ei±1e

2
i = (q + q−1)eiei±1ei ,

f 2
i fi±1 + fi±1f

2
i = (q + q−1)fi fi±1fi .
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Hopf Algebra Structure of Uqgl(n)

Define coproduct, counit and antipode on the generators as follows:

∆(k±1
i ) = k±1

i ⊗ k±1
i ,

∆(ei ) = ei ⊗ kik
−1
i+1 + 1⊗ ei ,

∆(fi ) = fi ⊗ 1 + k−1
i ki+1 ⊗ fi ,

ε(k±1
i ) = 1,

ε(ei ) = ε(fi ) = 0,

S(ki ) = k−1
i ,

S(ei ) = −eik−1
i ki+1,

S(fi ) = −kik−1
i+1fi .

and extend ∆ and ε on Uqgl(n) as algebra homomorphisms and S
as an algebra antihomomorphism.
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Definition

Let
Rp,q(n) = K{x (k)

i , y
(k)
i |k ∈ {1, 2, ..., n−1}, i ∈ {1, 2, ..., 2n−1}}/J

be the quotient of the free algebra over K generated by the

generators {x (k)
i , y

(k)
i |k ∈ {1, 2, ..., n − 1}, i ∈ {1, 2, ..., 2n − 1}} by

the two-sided ideal J generated by the relations

Münevver Çelik Quantum Groups, R-Matrices and Factorization



Quantum Groups
Factorization

Duality Between Uqgl(n) and Mq(n)

Factorization of Mp,q(n)
P.B.W. Basis of Uqgl(n)

Definition

x
(k)
2i x

(k)
2i−1 = px

(k)
2i−1x

(k)
2i , x

(k)
2i+1x

(k)
2i = qx

(k)
2i x

(k)
2i+1,

x
(k)
i x

(k)
j = x

(k)
j x

(k)
i , x

(k1)
i x

(k2)
l = x

(k2)
l x

(k1)
i ,

y
(k)
2i+1y

(k)
2i = py

(k)
2i y

(k)
2i+1, y

(k)
2i y

(k)
2i−1 = qy

(k)
2i−1y

(k)
2i ,

y
(k)
i y

(k)
j = y

(k)
j y

(k)
i , y

(k1)
i y

(k2)
l = y

(k2)
l y

(k1)
i ,

x
(k3)
i y

(k4)
l = y

(k4)
l x

(k3)
i

for every i , j , k, l , k1, k2, k3, k4 where k1 6= k2, |j − i | ≥ 2.
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X (k) =


x

(k)
1 x

(k)
2

x
(k)
3 x

(k)
4
. . .

. . .

x
(k)
2n−2

x
(k)
2n−1


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Y (k) =


y

(k)
1

y
(k)
2 y

(k)
3

y
(k)
4 y

(k)
5
. . .

. . .

y
(k)
2n−2 y

(k)
2n−1


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Theorem

The map φ : Mp,q(n)→ Rp,q(n) mapping aij to âij , where âij is the

ijth entry of the matrix Â = X (1)X (2)...X (n−1)Y (1)Y (2)...Y (n−1), is
well-defined, i.e. the entries of Â =

(
âij
)

satisfy relations

âil âik = pâik âil ,

âjk âik = qâik âjk ,

âjk âil = p−1qâil âjk ,

âjl âik = âik âjl + (p − q−1)âjk âil

whenever j > i and l > k.
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Sketch of the Proof

Use infinite matrices X̃ (1), X̃ (2), ..., X̃ (n).

Lemma

(X̃ (1)X̃ (2)...X̃ (n))ij =


x

(1)
2i−1x

(2)
2i−1...x

(n)
2i−1 if i = j

n∑
kj−i=j−i

...

k3−1∑
k2=2

k2−1∑
k1=1

ω if 0 < j − i ≤ n

0 otherwise

where ω = x
(1)
2i−1x

(2)
2i−1...x

(k1−1)
2i−1 x

(k1)
2i x

(k1+1)
2i+1 ...

x
(kj−i−1)
2j−3 x

(kj−i )

2(j−1)x
(kj−i+1)
2j−1 ...x

(n−1)
2j−1 x

(n)
2j−1.
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Ã
(n)
ij = Ã

(n−1)
ij−1 x

(n)
2j−2 + Ã

(n−1)
ij x

(n)
2j−1,

If d > c

Ã
(n)
ad Ã

(n)
ac = (Ã

(n−1)
ad−1 x

(n)
2d−2 + Ã

(n−1)
ad x

(n)
2d−1)(Ã

(n−1)
ac−1 x

(n)
2c−2 + Ã

(n−1)
ac x

(n)
2c−1)

= Ã
(n−1)
ad−1 x

(n)
2d−2Ã

(n−1)
ac−1 x

(n)
2c−2 + Ã

(n−1)
ad x

(n)
2d−1Ã

(n−1)
ac−1 x

(n)
2c−2

+ Ã
(n−1)
ad−1 x

(n)
2d−2Ã

(n−1)
ac x

(n)
2c−1 + Ã

(n−1)
ad x

(n)
2d−1Ã

(n−1)
ac x

(n)
2c−1

= pÃ
(n−1)
ac−1 x

(n)
2c−2Ã

(n−1)
ad−1 x

(n)
2d−2 + pÃ

(n−1)
ac−1 x

(n)
2c−2Ã

(n−1)
ad x

(n)
2d−1

+ pÃ
(n−1)
ac x

(n)
2c−1Ã

(n−1)
ad−1 x

(n)
2d−2 + pÃ

(n−1)
ac x

(n)
2c−1Ã

(n−1)
ad x

(n)
2d−1

= p(Ã
(n−1)
ac−1 x

(n)
2c−2 + Ã

(n−1)
ac x

(n)
2c−1)(Ã

(n−1)
ad−1 x

(n)
2d−2 + Ã

(n−1)
ad x

(n)
2d−1)

= pÃ
(n)
ac Ã

(n)
ad
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P.B.W. Basis of Uqgl(n)

We will follow the method of Marc Rosso in
An Analogue of P.B.W. Theorem and the Universal R-Matrix for
Uhsl(N + 1)
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Let α = α(i , j + 1) = αi + αi+1 + ...+ αj , γ = α− αj and
β = α− αi where i 6= j . Then define by induction

eα =

{
eγej − qejeγ if i 6= j
ei if i = j

fα =

{
fi fβ − q−1fβfi if i 6= j
fi if i = j
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We order the elements as follows:

eα(i ,j) < eα(k,l) if i > k or (i = k and j > l)

fα(i ,j) < fα(k,l) if i < k or (i = k and j < l)
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Proposition

Let α = αi + ...+ αj and β = αp + ...+ αr . Upto exchanging the
roles of α and β we may assume i ≤ p. Then,

eαeβ =



eβeα if p ≥ j + 2
qeβeα + eα+β if p = j + 1
q−1eβeα if p = i and r ≥ j + 1
eβeα if i < p < j and r < j
q−1eβeα if i < p ≤ j and r = j
eβeα − (q − q−1)eα′eα′′ if i < p ≤ j and r ≥ j + 1

where α′ = αp + ...+ αj and α′′ = αi + ...+ αr .
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Factorization of Mp,q(n)
P.B.W. Basis of Uqgl(n)

Theorem

1 The set B0 = {
∏n

i k
ci
i : ci ∈ Z} is a basis for U0

qgl(n).

2 The set
B+ = {

∏
α∈Φ+

ecαα : cα ∈ N},

where the product is in the order corresponding to that of the
elements eα, is a basis for U+

q gl(n).

3 The set
B− = {

∏
α∈Φ+

f cαα : cα ∈ N},

where the product is in the order corresponding to that of the
elements fα, is a basis for U−q gl(n).

4 Hence the set B = B− ⊗ B0 ⊗ B+ is a basis for Uqgl(n).
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Definition

Let (U, µ, η,∆, ε) and (H, µ, η,∆, ε) be bialgebras and <,> be a
bilinear form on U × H. We say that the bilinear form realizes a
duality between U and H, or that the bialgebras U and H are in
duality if we have

< uv , x > =
∑
(x)

< u, x ′ >< v , x ′′ >, (1)

< u, xy > =
∑
(u)

< u′, x >< u′′, y >, (2)

< 1, x > = ε(x), (3)

< u, 1 > = ε(u) (4)

for all u, v ∈ U and x , y ∈ H.
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Duality Between Hopf Algebras
Duality Between Uqgl(n) and Mq(n)

Definition

Moreover, if U and H are Hopf algebras with antipode S, then
they are said to be in duality if the underlying bialgebras are in
duality and we have

< S(u), x > =< u, S(x) >

for all u ∈ U and x ∈ H.
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Proposition

Let φ be the linear map from U to the dual vector space H∗ and ψ
be the linear map from H to the dual vector space U∗ defined by

φ(u)(x) =< u, x > ψ(x)(u) =< u, x >

With the above notation, the relations (1) and (3) of the previous
definition are equivalent to φ being an algebra morphism and the
relations (2) and (4) are equivalent to ψ being an algebra
morphism.

Münevver Çelik Quantum Groups, R-Matrices and Factorization



Quantum Groups
Factorization

Duality Between Uqgl(n) and Mq(n)
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Duality Between Uqgl(n) and Mq(n)

Construct an algebra map ψ from Mq(n) to the dual algebra
U∗qgl(n).
Consider the representation ρ defined on the generators by

ρ(ei ) = Ei ,i+1,

ρ(fi ) = Ei+1,i ,

ρ(ki ) = Di ,

where Eij denotes the elementary matrix and Di denotes the
diagonal matrix

Di = E11 + E22 + ...+ qEi ,i + Ei+1,i+1 + Ei+2,i+2 + ...+ Enn.
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Duality Between Uqgl(n) and Mq(n)

If u is an element of Uqgl(n) using the P.B.W. basis, we have

ρ(u) =


A11(u) A12(u) . . . A1n(u)
A21(u) A22(u) . . . A2n(u)

...
...

. . .
...

An1(u) An2(u) . . . Ann(u)


Let ψ : H = Mq(n)→ U∗ = Uqgl(n)∗ be the algebra morphism
defined on the generators by ψ(aij) = Aij .
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Theorem

The bilinear form < u, x >= ψ(x)(u) realizes a duality between
the bialgebras Uqgl(n) and Mq(n).
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ψ is well-defined.

<,> satisfies (1) and (3)
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ψ is well-defined.

<,> satisfies (1) and (3)
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Thank You ,
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