The Markov-Zariski topology of an infinite group

Dikran Dikranjan

Mimar Sinan Güzel Sanatlar Üniversitesi Istanbul January 23, 2014

joint work with Daniele Toller and Dmitri Shakhmatov

- 1. Markov's problem 1 and 2
- 2. The three topologies on an infinite group
- 3. Problem 1 and 2 in topological terms
- 4. The Markov-Zariski topology of an abelian group
- 5. Markov's problem 3.

Markov's problem 1

Definition

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Problem 1. [Markov Dokl. AN SSSR 1944]

Does there exist a (countably) infinite non-topologizable group?

- Yes (under CH): Shelah, On a problem of Kurosh, Jonsson groups, and applications. In Word Problems II. (S. I. Adian, W. W. Boone, and G. Higman, Eds.) (North-Holland, Amsterdam, 1980), pp.373–394.
- Yes (in ZFC): Ol'shanskij, A note on countable non-topologizable groups. Vestnik Mosk. Gos. Univ. Mat. Mekh. (1980), no. 3, 103.

Markov's problem 2

Definition (Markov)

A subset S of a group G is called:

- (a) elementary algebraic if $S = \{x \in G : a_1 x^{n_1} a_2 x^{n_2} a_3 \dots a_m x^{n_m} = 1\}$ for some natural m, integers n_1, \dots, n_m and elements $a_1, a_2, \dots, a_m \in G$.
- (b) algebraic, if S is an intersection of finite unions of elementary algebraic subsets.
- (c) unconditionally closed, if S is closed in every Hausdorff group topology of G.

Every centralizer $c_G(a) = \{x \in G : axa^{-1}x^{-1} = 1\}$ is an elementary algebraic set, so Z(G) is an algebraic set. (a) \to (b) \to (c)

Problem 2. [Markov 1944]

Is (c) \rightarrow (b) always true ?

The Zariski topology

 \mathfrak{E}_G the family of elementary algebraic sets of G.

 \mathfrak{A}_G^a the family of all finite unions of elementary algebraic sets of G. \mathfrak{A}_G the family of all algebraic sets of G.

The Zariski topology \mathfrak{F}_G of G has \mathfrak{A}_G as family of all closed sets. It is a T_1 -topology as \mathfrak{E}_G contains all singletons.

Example

- (a) $\mathfrak{E}_{\mathbb{Z}} = {\mathbb{Z}, \emptyset} \cup {\{n\} : n \in \mathbb{Z}\}}$, so $\mathfrak{A}_G = \mathfrak{A}_G^a = {\mathbb{Z}} \cup {\mathbb{Z}}^{<\omega}$. Hence, $\mathfrak{Z}_{\mathbb{Z}}$ is the cofinite topology of \mathbb{Z} .
- (b) Analogously, if G is a torsion-free abelian group and $S = \{x \in G : nx + g = 0\} \in \mathfrak{E}_G$, then either S = G or $|S| \leq 1$, so again \mathfrak{Z}_G is the cofinite topology of G.
- (c) [Banakh, Guran, Protasov, Top. Appl. 2012] $\mathfrak{Z}_{Sym(X)}$ coincides with the point-wise convergence topology of the permutation group Sym(X) of an infinite set X.
- (a) and (b) show that \mathfrak{Z}_G need not be a group topology.

Bryant, Roger M. *The verbal topology of a group.* J. Algebra 48 (1977), no. 2, 340–346.

Wehrfritz's MR-review to Bryant's paper:

This paper is beautiful, short, elementary and startling. It should be read by every infinite group theorist. The author defines on any group (by analogy with the Zariski topology) a topology which he calls the verbal topology. He is mainly interested in groups whose verbal topology satisfies the minimal condition on closed sets; for the purposes of this review call such a group a VZ-group.

The author proves that various groups are VZ-groups. By far the most surprising result is that every finitely generated abelian-by-nilpotent-by-finite group is a VZ-group.

Less surprisingly, every abelian-by-finite group is a VZ-group. So is every linear group. Also, the class of VZ-groups is closed under taking subgroups and finite direct products.

The Markov topology and the \mathfrak{P} -Markov topology

The *Markov* topology \mathfrak{M}_G of G has as closed sets all unconditionally closed subsets of G, in other words

 $\mathfrak{M}_G = \inf\{\text{all Hausdorff group topologies on } G\},$

where inf taken in the lattice of all topologies on G.

 $\mathfrak{P}_G = \inf\{\text{all precompact group topologies on } G\}$ - precompact Markov topology (a group is precompact if its completion is compact).

Clearly, $\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G$ are T_1 topologies.

Problem 2. [topological form]

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ always true?

- Perel'man (unpublished): Yes, for abelian groups
- Markov [1944]: Yes, for countable groups.
- Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH Shelah's example works as well).

Markov's first problem through the looking glass of $\mathfrak{M}_{\mathcal{G}}$

A group G 3-discrete (resp., \mathfrak{M} -discrete, \mathfrak{P} -discrete), if \mathfrak{J}_G (resp., \mathfrak{M}_G , resp., \mathfrak{P}_G) is discrete. Analogously, define 3-compact, etc.

- G is \mathfrak{Z} -discrete if and only if there exist $E_1, \ldots, E_n \in \mathfrak{E}_G$ such that $E_1 \cup \ldots \cup E_n = G \setminus \{e_G\};$
- G is \mathfrak{M} -discrete iff G is non-topologizable. So, G is non-topologizable whenever G is \mathfrak{F} -discrete.

Ol'shanskij proved that for Adian group G = A(n, m) the quotient $G/Z(G)^m$ is a countable 3-discrete group, answering positively Porblem 1.

Example

- (a) Klyachko and Trofimov [2005] constructed a finitely generated torsion-free \mathfrak{Z} -discrete group G.
- (b) Trofimov [2005] proved that every group H admits an embedding into a \mathfrak{Z} -discrete group.

Example (negative answer to Problem 2)

(Hesse [1979]) There exists a \mathfrak{M} -discrete group G that is not \mathfrak{F} -discrete.

Criterion [Shelah]

An uncountable group G is \mathfrak{M}_G -discrete whenever the following two conditions hold:

- (a) there exists $m \in \mathbb{N}$ such that $A^m = G$ for every subset A of G with |A| = |G|;
- (b) for every subgroup H of G with |H| < |G| there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in G$ such that the intersection $\bigcap_{i=1}^n x_i^{-1} H x_i$ is finite.
 - (i) The number n in (b) may depend of H, while in (a) the number m is the same for all $A \in [G]^{|G|}$.
- (ii) Even the weaker form of (a) (with m depending on A), yields that every proper subgroup of G has size < |G| (if $|G| = \omega_1$, groups with this property are known as $Kurosh\ groups$).

(iii) Using the above criterion, Shelah produced an example of an \mathfrak{M} -discrete group under the assumption of CH. Namely, a torsion-free group G of size ω_1 satisfying (a) with m=10000 and (b) with n=2. So every proper subgroup H of G is malnormal (i.e., $H\cap x^{-1}Hx=\{1\}$), so G is also simple.

Proof.

Let \mathcal{T} be a Hausdorff group topology on G. There exists a \mathcal{T} -neighbourhood V of e_G with $V \neq G$. Choose a \mathcal{T} -neighbourhood W of e_G with $W^m \subseteq V$. Now $V \neq G$ and (a) yield |W| < |G|. Let $H = \langle W \rangle$. Then $|H| = |W| \cdot \omega < |G|$. By (b) the intersection $O = \bigcap_{i=1}^n x_i^{-1} H x_i$ is finite for some $n \in \mathbb{N}$ and elements $x_1, \ldots, x_n \in G$. Since each $x_i^{-1} H x_i$ is a \mathcal{T} -neighbourhood of 1, this proves that $1 \in O \in \mathcal{T}$. Since \mathcal{T} is Hausdorff, it follows that $\{1\}$ is \mathcal{T} -open, and therefore \mathcal{T} is discrete.

3-Noetherian groups

A topological space X is Noetherian, if X satisfies the ascending chain condition on open sets (or, equivalently, the minimal condition on closed sets). Obviously, a Noetherian space is compact, and a subspace of a Noetherian space is Noetherian itself. Actually, a space is Noetherian iff all its subspaces are compact (so an infinite Noetherian spaces are never Hausdorff).

Theorem

- (Bryant) A subgroup of a 3-Noetherian group is 3-Noetherian,
- (D.D. D. Toller) A group G is 3-Noetherian iff every countable subgroup of G is 3-Noetherian.

Using the fact that linear groups are 3-Noetherian, and the fact that countable free groups are isomorphic to subgroups of linear groups, one gets

Theorem (Guba Mat. Zam.1986, indep., D. Toller - DD, 2012)

Every free group is 3-Noetherian.

The Zariski topology of a direct product

The Zariski topology \mathfrak{Z}_G of the direct product $G = \prod_{i \in I} G_i$ is coarser than the product topology $\prod_{i \in I} \mathfrak{Z}_{G_i}$.

These two topologies need not coincide (for example $\mathfrak{Z}_{\mathbb{Z} \times \mathbb{Z}}$ is the co-finite topology of $\mathbb{Z} \times \mathbb{Z}$, so neither $\mathbb{Z} \times \{0\}$ nor $\{0\} \times \mathbb{Z}$ are Zariski closed in $\mathbb{Z} \times \mathbb{Z}$, whereas they are closed in $\mathfrak{Z} \times \mathfrak{Z}_{\mathbb{Z}}$). Item (B) of the next theorem generalizes Bryant's result.

Theorem (DD - D. Toller, Proc. Ischia 2010)

- (A) Direct products of 3-compact groups are 3-compact.
- (B) $G = \prod_{i \in I} G_i$ is \mathfrak{Z} -Noetherian iff every G_i is \mathfrak{Z} -Noetherian and all but finitely many of the groups G_i are abelian.

According to Bryant's theorem, abelian groups are 3-Noetherian.

Corollary

A nilpotent group of nilpotency class 2 need not be 3-Noetherian.

Take an infinite power of finite nilpotent group, e.g., Q_8 .

$\mathfrak{Z} ext{-Hausdorff groups}$ and $\mathfrak{M} ext{-Hausdroff groups}$

If $\{F_i \mid i \in I\}$ is a family of finite groups, and $G = \prod_{i \in I} F_i$, then the product $\prod_{i \in I} \mathfrak{Z}_{F_i}$ is a compact Hausdorff group topology, so $\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G \subseteq \prod_{i \in I} \mathfrak{Z}_{F_i}$.

- (1) G is 3-Hausdorff if and only if $\mathfrak{F}_G=\mathfrak{M}_G=\mathfrak{P}_G=\prod_{i\in I}\mathfrak{F}_{F_i}$.
- (2) G is \mathfrak{M} -Hausdorff if and only if $\mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{F}_{F_i}$.

Theorem (DD - D. Toller, Proc. Ischia 2010)

If $\{F_i \mid i \in I\}$ is a non-empty family of finite center-free groups, and $G = \prod_{i \in I} F_i$, then $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$ is a Hausdorff group topology on G.

Theorem (Gaughan Proc. Nat. Acad. USA 1966)

The permutation group Sym(X) of an infinite set X is \mathfrak{M} -Hausdorff.

Since 3-Hausdorff \Rightarrow \mathfrak{M} -Hausdorff, this follows also from Banakh-Guran-Protasov theorem. In particular, $\mathfrak{M}_{Sym(X)} = \mathfrak{Z}_{Sym(X)}$ coincides with the point-wise convergence topology of Sym(X).

\mathfrak{P} -discrete groups

A group G is \mathfrak{P} -discrete iff G admits no precompact group topologies (i.e., G is not maximally almost periodic, in terms of von Neumann).

In particular, examples of \mathfrak{P} -discrete groups are provided by all minimally almost periodic (again in terms of von Neumann, these are the groups G such that every homomorphism to a compact group K is trivial).

Example

- (a) (von Neumann and Wiener) $SL_2(\mathbb{R})$;
- (b) The permutation group Sym(X) of an infinite set X (as $\mathfrak{M}_{Sym(X)}$ is not precompact).

Theorem (DD - D. Toller, Topology Appl. 2012)

Every divisible solvable non-abelian group is \$\pi\$-discrete.

Proof.

Let G be a divisible solvable non-abelian group. It suffices to see that G admits no precompact group topology. To this end we show that every divisible precompact solvable group must be abelian. Let G be a divisible precompact solvable group. Then its completion K is a connected group. On the other hand, K is also solvable. It is enough to prove that K is abelian. Arguing for a contradiction, assume that $K \neq Z(K)$, is not abelian. By a theorem of Varopoulos, K/Z(K) is isomorphic to a direct product of simple connected compact Lie groups, in particular, K/Z(K) cannot be solvable. On the other hand, K/Z(K) has to be solvable as a quotient of a solvable group, a contradiction.

Corollary

For every field K with $\operatorname{char} K = 0$ the Heisenberg group

$$H_{\mathcal{K}} = \begin{pmatrix} 1 & \mathcal{K} & \mathcal{K} \\ & 1 & \mathcal{K} \\ & & 1 \end{pmatrix}$$
 is \mathfrak{P} -discrete.

The Zariski topology of an abelian group: Markov's problem 3

Definition (Markov, Izv. AN SSSR 1945)

A subset A of a group G is potentially dense in G if there exists a Hausdorff group topology T on G such that A is T-dense in G.

Example (Markov)

Every infinite subset of \mathbb{Z} is potentially dense in \mathbb{Z} .

By Weyl's uniform disitribution theorem for every infinite $A=(a_n)$ in $\mathbb Z$ there exists $\alpha\in\mathbb R$ such that $(a_n\alpha)$ is uniformly distributed modulo 1, so the subset $(a_n\overline{\alpha})$ of $\mathbb R/\mathbb Z$ is dense in $\mathbb R/\mathbb Z$ (so in $\langle \overline{\alpha} \rangle$ as well). Now the topology $\mathcal T$ on $\mathbb Z$ induced by $\mathbb Z\cong\overline{\alpha}\hookrightarrow\mathbb R/\mathbb Z$ works.

Problem 3 [Markov]

Characterize the potentially dense subsets of an abelian group.

A hint. [two necessary conditions]

- a potentially dense set is Zarisky-dense;
- if G has a countable potentially dense set, then $|G| \leq 2^{c}$.

Theorem (Tkachenko-Yaschenko, Topology Appl. 2002)

If an Abelian group with $|G| \le c$ is either torsion-free or has exponent p, then every infinite set of G is potentially dense.

Question [Tkachenko-Yaschenko]

Can this be extended to groups with $|G| \leq 2^{\mathfrak{c}}$?

The answer is (more than) positive:

Theorem (DD - D. Shakhmatov, Adv. Math. 2011)

For a countably infinite subset A of an Abelian group G TFAE:

- (i) A is potentially dense in G,
- (ii) there exists a precompact Hausdorff group topology on G such that A becomes \mathcal{T} -dense in G,
- (iii) $|G| \leq 2^{c}$ and A is Zarisky dense in G.

The proof if based on a realization theorem for the Zariski closure by means of (metrizable) precompact group topologies. For $n \in \omega$ and $E \subseteq G$ let

$$G[n] = \{x \in G : nx = 0\} \text{ and } nE = \{nx : x \in E\}.$$

 $\forall E \in \mathfrak{E}_G, \exists a \in G, n \in \omega \text{ such that}$

$$E=a+G[n]=\{x\in G: nx=na\}.$$

So \mathfrak{E}_G is stable under finite intersections:

$$(a+G[n])\cap(b+G[m])=c+G[d]$$
, with $d=GCD(m,n)$ (if $\neq\emptyset$)

Lemma

If G is abelian, then \mathfrak{A}_G consists of finite unions of elementary algebraic sets \mathfrak{E}_G , i.e., $\mathfrak{A}_G = \mathfrak{A}_G^a$. Moreover:

- (a) (G, \mathfrak{Z}_G) is Noetherian (hence, compact).
- (b) $\mathfrak{Z}_G|_H = \mathfrak{Z}_H$ and $\mathfrak{M}_G|_H = \mathfrak{M}_H$ or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when G is a countable \mathfrak{Z} -discrete group).

Example

 \mathfrak{Z}_G coincides with the cofinite topology of an abelian group G iff either $r_p(G) < \infty$ for all primes p or G has a prime exponent p.

An algebraic description of the 3-irredducible sets

Definition

A topological space X is irreducible, if $X = F_1 \cup F_2$ with closed F_1, F_2 yields $X = F_1$ or X_2 .

Lemma

For a countably infinite subset A of G TFAE:

- (a) A is irreducible;
- (b) A carries the cofinite tiopology;
- (c) there exists $n \in \mathbb{N}$ such that for every $a \in A$
- (†) E = A a satisfies nE = 0 and $\{x \in E : dx = h\}$ is finite for each $h \in G$ and every divisor d of n with $d \neq n$.

Let $\mathfrak{T}(G) = \{E \in \mathcal{P}(G) : E \text{ is irreducible and } 0 \in cl_{\mathfrak{F}_G}(E)\}$. For every $E \in \mathfrak{T}(G)$ the set $E_0 = E \cup \{0\}$ is still irreducible. Let $o(E) = o(E_0)$ be the number n determined by (\dagger) and let $\mathfrak{T}_n(G) = \{E \in \mathfrak{T}(G) : o(E) = n\}$. Then $\mathfrak{T}(G) = \bigcup_n \mathfrak{T}_n(G)$, $\mathfrak{T}_1(G) = \emptyset$ and $\mathfrak{T}_m(G) \cap \mathfrak{T}_n(G) = \emptyset$ whenever $n \neq m$.

 $E \in \mathfrak{T}_n(G)$ iff every infinite subset of E is \mathfrak{Z}_G -dense in G[n].

Example

Let G be an infinite abelian group.

- (a) Every countably infinite subset of G is irreducible if G is torsion-free.
- (b) $\mathfrak{T}_0(G) = \emptyset$ iff G is bounded.
- (c) $\mathfrak{T}_n(G)
 eq \emptyset$ for some n>1 iff there exists a monomorphism
- $\bigoplus_{\omega} \mathbb{Z}(n) \hookrightarrow G$.

Theorem

Let S be an infinite subset of an abelian group G. Then there exist a finite $F \subseteq S$, infinite subsets $\{S_i : i = 1, 2, ..., k\}$ of S and a finite set $\{a_1, a_2, ..., a_k\}$ of G such that

- (a) $S_i a_i \in \mathfrak{T}_{n_i}(G)$ for some $n_i \in \omega \setminus \{1\}$;
- (b) $S = F \cup \bigcup_{i=1}^k S_i$;
- (c) $cl_{\mathfrak{Z}_G}(S) = F \cup \bigcup_i cl_{\mathfrak{Z}_G}(S_i)$ and each S_i is \mathfrak{Z}_G -dense in $G[n_i]$.

The realization theorem

Theorem (DD - D. Shakhmatov, J. Algebra 2010)

Let G be an Abelian group with $|G| \le \mathfrak{c}$ and $\mathcal E$ be a countable family in $\mathfrak T(G)$. Then there exists a metrizable precompact group topology $\mathcal T$ on G such that $\operatorname{cl}_{3_G}(S) = \operatorname{cl}_{\mathcal T}(S)$ for all $S \in \mathcal E$.

The realization of the Zariski closure of uncountably many sets is impossible in general.

Corollary

For an abelian group G with $|G| \le 2^{c}$ the following are equivalent:

- (a) every infinite subset of G is potentially dense in G;
- (b) G is either almost torsion-free or has exponent p for some prime p;
- (c) every Zariski-closed subset of G is finite.

This corollary resolves Tkachenko-Yaschenko's problem.

Corollary

 $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G$ for every abelian group G.