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The Steinberg Endomorphisms

Simple algebraic groups

Chevalley:

A simple algebraic group is one of the following types:

An, Bn, Cn, Dn (classical groups)
E6, E7, E8, F4, G2 (exceptional groups)
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The Steinberg Endomorphisms

Dynkin diagrams of simple algebraic groups
Classical Groups

An ◦ ◦ · · · ◦ ◦
Bn ◦ ◦ · · · ◦ ◦
Cn ◦ ◦ · · · ◦ ◦
Dn ◦ ◦ · · · ◦ ◦

◦

Exceptional Groups

E6 ◦ ◦ ◦ ◦ ◦
◦

E7 ◦ ◦ ◦ ◦ ◦ ◦
◦

E8 ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

F4 ◦ ◦ ◦ ◦
G2 ◦ ◦
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The Steinberg Endomorphisms

The Steinberg Endomorphisms

G simple algebraic group defined over Fp

σ rational endomorphism of G with finite group
of fixed points

Gσ group of fixed points of σ

Example: Frobenius map induced by x 7→ xq, q = pk .
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The Steinberg Endomorphisms

Classification of Finite Simple Groups

Every non-abelian finite simple group is one of:

I 26 sporadic groups;
I alternating groups;
I Op′

(Gσ) (generated in Gσ by p-elements): groups of
Lie type.
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The Steinberg Endomorphisms

Uniform description of finite groups of Lie type

I for T σ-invariant torus (Borel) in G form Tσ,
I for B σ-invariant Borel subgroup in G form Bσ, etc.

Lang-Steinberg: σ-invariant Borel subgroups do exist,
etc.

This is THE correct way to look at finite simple groups.
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Black Box Groups

Black box groups
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Black Box Groups

Example

I Matrix groups over finite fields
I S a small set of invertible matrices over a finite field
I X = 〈S〉 6 GLn(q)
I Input length: |S|n2 log q
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Black Box Groups

Matrix Groups

Let X = 〈x1, . . . , xn〉 6 GLn(q) be a big matrix group so
that |X | is astronomical.

I Statistical study of random products of x1, . . . , xn is
the only known approach to identification of X .

I Determination of orders involves either
I Factorization of integers into primes, or
I Discrete logarithm problem over finite fields.
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Black Box Groups

I Statistical study of ‘random’ products
(Leedham-Green et al.) of

x1, . . . , xk

is the only known approach to identification of X.
I Basically, we are looking for a

“short" and “easy to check by random testing"
first order formula which identifies X.

I Existence /non-existence of elements of
particular orders is an example.
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Black Box Groups

Limits of crude statistical approach
“Order of elements” approach fails for recognising

Bn(q) = Ω2n+1(q),

Cn(q) = PSp2n(q),

q odd:

they have virtually the same statistics of orders of
elements.
Here,

Ω2n+1(q) is the subgroup of index 2 in the orthogonal
group SO2n+1(q),

PSp2n(q) is the projective symplectic group.
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Black Box Groups

Why does statistics fail?

I For large q, unipotent and non-semisimple elements
occur with probability ∼ 1/q and are “invisible”: a
random element is semisimple.
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Black Box Groups

Why does statistics fail?

Let G = G(Fq) be a simple algebraic group.

I regular semisimple elements form an open subset of
G

I statistics of orders of regular semisimple elements is
determined by the Dynkin diagram of G, which is the
same in the case of groups Bn and Cn, n > 3:

BCn, n ≥ 2 d d d . . . d d d
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Black Box Groups

How one can fix the failure of statistics?

I But the conjugacy classes and the structure of
centralisers of involutions (elements of order 2) are
determined by the extended Dynkin diagrams which
are different:

C̃n, n ≥ 3 d d d . . . d d d

B̃n, n ≥ 3
d
d ���HHH d d . . . d d d
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Black Box Groups

How one can fix the failure of statistics?

(Extended) Dynkin diagrams are first order properties in
the language of groups!
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Black Box Groups

Black-Box Curtis–Tits Theorem (Yalçinkaya)

Theorem
Let G be a (quasi)-simple black box group of (unknown)
Lie type over a field of odd characteristic and known
“global exponent” N: gN = 1 for all g ∈ G.

There is a polynomial in log N algorithm which constructs
the extended Dynkin diagram of G . . .

. . . which also allows to construct “subgiagram”
subgroups, etc.—in sort, to do a lot of fascinating stuff.
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Black Box Groups

The moral of the story so far

Black box theory works much better . . .

. . . if groups are studied up to elementary
equivalence—rather than up to isomorphism
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Some model theory

Elementary theory and elementary equiavalence

Let G be a group

Th(G) the set of first order formulae true in G

Elementary equivalence:

G ≡ H ⇐⇒ Th(G) = Th(H)
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Some model theory

Pseudofinite groups

G is pseudofinite if

I every formula which is true on G is true on some finite
group.

One may think of pseudofinite groups as ultraproducts of
finite groups

G '
∏
i∈I

Gi/F .

Measure on G is the ultraproduct of canonical finite
measures on Gi .
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Some model theory

This is not a 0-1 measure!

There are sets of probability different from 0 and 1:

In PSL2 over a field of odd order, formula

“Z (CG(x)) contains an involution ′′

holds with probability ≈ 1/2 (or 1/2 + infinitesimal).

Formulae like that make a decent approximation to the
property

“x has even order”.
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Some model theory

Uncountable categoricity

G is ℵ1-categorical⇐⇒ ∃! G̃ ≡ G of cardinality ℵ1
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Some model theory

Definable set

Definable set: defined by a first order formula

CG(a) = { x : ax = xa },

aG = { x : ∃y x = ay }.
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Some model theory

Groups of finite Morley rank:

I have a rank function

{Definable sets in Gn } rk−→ N ∪ {0}

I behaves like dimension of Zariski closed sets
I axiomatised by natural axioms

In the case of simple groups:

ℵ1-categorical⇐⇒ of finite Morley rank
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Some model theory

The Cherlin-Zilber Conjecture (c. 1980):

A simple infinite group of finite Morley rank is isomorphic
as an abstract group to an algebraic group over an
algebraically closed field.
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The Hrushovski Programme

The Hrushovski Programme

The Hrushovski Programme
G simple group of finite Morley rank
ψ a generic automorphism
Then G0 = CG(ψ) is pseudofinite or at least behaves
like pseudofinite.

In “real life”, due to a theorem by Hrushovski:
If G is algebraic over an a.c. field then

I φ is generalised Frobenius, and
I G0 = CG(φ) is the group of points of G over a

pseudofinite field.
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The Hrushovski Programme

Pınar Uğurlu:

G simple group of finite Morley rank

α automorphism of G

d(CH(αkm)) = H for every connected αk -invariant H ≤ G
and every k ,m ∈ N.

CG(αk ) is pseudofinite for all k ∈ N.

Then G is algebraic.

Proof does not use CFSG (the Classification of Finite
Simple Groups).
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The Hrushovski Programme

Why CFSG has to be eliminated?

There is a good algebraic characterisation of pseudofinite
fields:

I perfect
I exactly one extension of every degree
I pseudo algebraically closed

but nothing of this kind is known for groups.
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The Larsen-Pink Theorem

Larsen and Pink, 1998

For every n there exists a constant J depending only on n
such that for any finite simple group X possessing a
faithful linear or projective representation of dimension n
over a field k we have either
(a) |X | < J(n), or
(b) p := char(k) is positive and X is a group of Lie type in

characteristic p.
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The Larsen-Pink Theorem

Larsen and Pink, equivalent statement:

A definably simple infinite pseudofinite subgroup G 6 GLn
is a Chevalley group over a pseudofinite field.
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The Larsen-Pink Theorem

Proof in odd characteristic

I Work in the pair G < G, where G is pseudofinite and
G is its Zariski closure (in GLn).

I No use of CFSG.
I Use of large “definable” fragments of CFSG, for

example:
I Component analysis in groups of odd type.
I Signalizer functor theory.



The Hrushovski Programme

Groups with count function

Count functions: motivation

I An attempt to replace both “finite” and “pseudofinite”
by an unifying algebraic concept.

I We need to balance:
I feasibility: the property needs to be verifiable in the

context of the Hrushovski Programme
I power: has to be strong enough to allow classification of

definably simple groups with this property.

What follows is just a first try to achieve power; the
feasibility was not even considered.
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Groups with count function

Count functions, after Krajíček and Scanlon

Let A be an algebraic structure and D the set of definable
subsets in all An, n = 1,2, . . . .

Let R be a linearly ordered unital commutative ring. A
function

µ : D → R

is a count function on A over R if and only if it satisfies the
following conditions.
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Groups with count function

Count functions, continued
1. µ({a}) = 1 for any a ∈ Ak .
2. µ(X ∪ Y ) = µ(X ) + µ(Y ), whenever X ,Y ∈ D and

X ,Y are disjoint.
3. µ(X × Y ) = µ(X )× µ(Y ), whenever X ,Y ,X × Y ∈ D.
4. µ(X ) = µ(Y ), whenever X ,Y ∈ D and there is a

definable bijection between X ,Y .
5. µ(X ) = c · µ(Y ), whenever c ∈ R,X ,Y ∈ D , and

there is a definable map f : X −→ Y such that each of
its fibers f (−1)(y), where y ∈ Y , has count
µ(f (−1)(y)) = c.

6. µ(X ) ≥ 0 for all X ∈ D.

A count function is nontrivial if 0 < 1 and the image of µ is
not just {0}.
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Groups with count function

Tallied structures

For brevity, a structure with a nontrivial count function is
called tallied.

Krajíček: Let Ai , for i ∈ I, be structures of the same
languages, and assume that A is an ultraproduct of Ai .
Assume that all Ai are tallied. Then A is tallied.
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Groups with count function

Tallied fields

A field F is quasi-finite if F is perfect and has precisely
one extension of each degree (in a fixed algebraic closure
F̃ ).

Scanlon: Any field admitting a non-trivial count function is
quasi-finite.
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Groups with count function

Frobenious groups

A group G is called Frobenius if it contains a non-trivial
proper subgroup H such that

H ∩ Hg = 1 for all g ∈ G \ H;

H is called a Frobenius complement of G. The set

K =

G \
⋃

g∈G\H

Hg

 ∪ {1}.
is called the Frobenius kernel of G.
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Groups with count function

A version of the Frobenius Complement Theorem

B-Alshanqiti: Assume G is a tallied Frobenius group with
a definable Frobenius complement H and the Frobenius
kernel K . In addition, assume that H contains an
involution.Then

I K is a definable normal subgroup of G.
I K is an abelian group.
I H contains exactly one involution.

Counting arguments work!
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