
Exponential polynomials

Paola D’Aquino

Seconda Universita’ di Napoli

Cesme, May 2012



Topics

Exponential rings, exponential fields and exponential
polynomial ring

Ritt’s Factorization Theorem

Schanuel’s Conjecture and Shapiro’s Conjecture



Exponential rings

Definition: An exponential ring, or E -ring, is a pair (R,E ) where
R is a ring (commutative with 1) and

E : (R,+)→ (U(R), ·)

a morphism of the additive group of R into the multiplicative
group of units of R satisfying

1 E (x + y) = E (x) · E (y) for all x , y ∈ R

2 E (0) = 1.

(K ,E ) is an E -field if K is a field.



Examples

Examples:

1 (R, ex); (C, ex);

2 (R,E ) where R is any ring and E (x) = 1 for all x ∈ R.

3 (S [t],E ) where S is E -field of characteristic 0 and S [t] the
ring of formal power series in t over S . Let f ∈ S [t], where
f = r + f1 with r ∈ S

E (f ) = E (r) ·
∞∑
n=0

(f1)n/n!

4 K [X ]E E-ring of exponential polynomials over (K ,E )



Exponential polynomials

Sketch of the construction:

Let R be a partial E -ring, R = D ⊕∆, where D = dom(E ).

Let t∆ be a multiplicative copy of ∆, and consider R[t∆].

Extend E to R by defining E (δ) = tδ, δ ∈ ∆.

Decompose R[t∆] = R ⊕ t∆−{0}. Iterate ω times, and get E total.

1 Let R = Z[X ], D = (0) e ∆ = R.

The limit of previous construction is [X ]E , the free E-ring on
X .

2 Let (K ,E ) be an E-field and R = K [X ]. Decompose
K [X ] = K ⊕∆, where D = K and ∆ = {f : f (0) = 0}.

The limit of previous construction is the E-ring K [X ]E of
exponential polynomials in X over K .



Exponential polynomials

An exponential polynomial in [x , y ]E is represented as

P(x , y) = −3x2y − x5y7 + (2xy + 5y2)e(−7x3+11x5y4)

+(6− 2xy5)e(5x+2x7y2)e5x−10y2

THEOREM

Let (R,E ) be an E-domain. Then R[X ]E is an integral domain
whose units are uE (f ), where u is invertible in R and f ∈ R[X ]E .

DEFINITION

An element f ∈ R[X ]E is irreducible if there are no non-units g
and h in R[X ]E such that f = gh.



Exponential polynomials

DEFINITION

Let f =
∑N

i=1 ai t
αi be an exponential polynomial. Then the

support of f = supp(f ) = Q-space generated by α1, . . . , αN .

DEFINITION

An exponential polynomial f (x) is simple if dim supp(f ) = 1.

sin(2πx) =
e2πix − e−2πix

2i



Factorization theory

Ritt in 1927 studied factorizations of exponential polynomial

1 + β1e
α1z + . . .+ βke

αkz

over C, using factorizations in fractional powers of classical
polynomials in many variables.

Gourin (1930) and Macoll (1935) gave a refinement of Ritt’s
factorization theorem for exponential polynomials of the form

p1(z)eα1z + . . .+ pk(z)eαkz

with αi ∈ C, and pi (z) ∈ C[z ].

D’A. and Terzo (2011) gave a factorization theorem for
general exponential polynomials f (X ) ∈ K [X ]E , where K is
an algebraically closed field of characteristic 0 with an
exponentiation.



Ritt’s basic idea

Ritt: reduce the factorization of an exponential polynomial to that
of a classical polynomial in many variables in fractional powers.

If Q(Y1, . . . ,Yn) ∈ K [Y1, . . . ,Yn] is an irreducible polynomial over
K , it can happen that for some q1, . . . , qn ∈ N+, Q(Y q1

1 , . . . ,Y qn
n )

becomes reducible:

Ex: X − Y irreducible, but X 3 − Y 3 = (X − Y )(X 2 + XY + Y 2)

DEFINITION

A polynomial Q(Y ) is power irreducible (over K ) if for each

q ∈ Nn
+, Q(Y

q
) is irreducible.

A factorization of Q(Y ) gives a factorization of Q(Y
q
)

A factorization of Q(Y
q
) = Q(Y q1

1 , . . . ,Y qn
n ) gives a factorization

of Q(Y1, . . . ,Yn) in fractional powers of Y1, . . . ,Yn.



Associate polynomial

Let f (X ) =
∑m

h=1 aht
bh , where ah ∈ K [X ] and bh ∈ ∆ and

let {β1, . . . , βl} be a Z-basis of supp(f ).

Modulo a monomial we consider f as polynomial in eβ1 , . . . , eβl ,
with coefficients in K [X ]. Let Yi = eβi , for i = 1, . . . , l .

f (X ) ∈ K [X ]E  Q(Y1, . . . ,Yl) ∈ K [X ][Y1, . . . ,Yl ]

monomial: Ym1
1 · . . . · Ymn

n , where m1, . . . ,mn ∈ Z, i.e. an
invertible element in K [X ]E

Simple exponential polynomials correspond to a single variable
classical polynomials



Factorization theorem

If Q(Y ) = Q1(Y ) · . . . · Qr (Y ) then f (X ) = f1(X ) · . . . · fr (X )

and for any q positive integers

if Q(Y
q
) = R1(Y ) · . . . · Rp(Y ) then f (X ) = g1(X ) · . . . · gp(X ).

All the factorizations of f (X ) are obtained in this way.

LEMMA

Let f (X ) and g(X ) be in ∈ K [X ]E . If g(X ) divides f (X ) then
supp(ag) is contained in supp(bf ), for some units a, b.

Remark: If f is a simple polynomial and g divides f then g is also
simple.



Factorization theorem

Problem: How many tuples q are there such that Q(Y
q
) is

reducible?

Have to avoid Y − Z since Y
1
k − Z

1
k is a factor for all k > 0

THEOREM

There is a uniform bound for the number of irreducible factors of

Q(Y q1
1 , . . . ,Y ql

l )

for Q(Y1, . . . ,Yl) irreducible with more than two terms and
arbitrary q1, . . . , ql ∈ N+. The bound depends only on

M = max{dY1 , . . . , dYl
}.



Factorization Theorem

THEOREM (Ritt)

Let f (z) = λ1e
µ1z + ...+ λNe

µNz , where λi , µi ∈ C. Then f can
be written uniquely up to order and multiplication by units as

f (z) = S1 · . . . · Sk · I1 · . . . · Im

where Sj are simple polynomials with supp(Sj1) 6= supp(Sj2) for
j1 6= j2, and Ih are irreducible exponential polynomials.



Factorization Theorem

THEOREM (D’A-Terzo)

Let f (X ) ∈ K [X ]E , where (K ,E ) is an algebraically closed E -field
of char 0 and f 6= 0. Then f factors, uniquely up to units and
associates, as finite product of irreducibles of K [X ], a finite
product of irreducible polynomials Qi in K [X ]E with support of
dimension bigger than 1, and a finite product of polynomials Pj

where supp(Pj1) 6= supp(Pj2), for j1 6= j2 and whose supports are
of dimension 1.

COROLLARY

If f is irreducible and the dimension of supp(f ) > 1 then f is prime



Schanuel’s conjecture

Let α1, . . . , αn ∈ C,

l .d .(α1, . . . , αn) =linear dimension of < α1, . . . , αn >Q

tr .d .Q(α1, . . . , αn) =transcendence degree of Q(α1, . . . , αn) over
Q.

(SC) tr .d .Q(α1, . . . , αn, e
α1 , . . . , eαn) ≥ l .d .(α1, . . . , αn)

Generalized Schanuel Conjecture Assume (R,E ) is an E -ring
and char(R) = 0. Let λ1, . . . , λn ∈ R then

tr .d .Q(λ1, . . . , λn, e
λ1 , . . . , eλn)− l .d .(λ1, . . . , λn) ≥ 0



Known cases

Generalization of Lindemann-Weierstrass Theorem:
Let α1, . . . , αn be algebraic numbers which are linearly independent
over Q.Then eα1 , . . . , eαn are algebraic independent over Q.

1 λ = 1 transcendence of e (Hermite 1873)

2 λ = 2πi transcendence of π (Lindemann 1882)

3 λ = (π, iπ) then tr.d.(π, iπ, e, e iπ) = 2, i.e. π, eπ are
algebraically independent over Q (Nesterenko 1996)

4 (SC) is true for power series C[[t]] (Ax 1971)



The Schanuel machine

λ = (1, πi),

SC⇒ t.d(1, iπ, e, e iπ) ≥ l .d .(1, iπ).

Then e, π, are algebraically independent over Q;

λ = (1, iπ, e)

SC⇒ t.d(1, iπ, e, e, e iπ, ee) ≥ l .d .(1, iπ, e).

Then π, e, ee are algebraically independent over Q;

λ = (1, iπ, iπ2, e, ee , e iπ
2
),

SC⇒ t.d(1, iπ, iπ2, e, ee , e iπ
2
, e, e iπ, e iπ

2
, ee , ee

e
, ee

iπ2

)

≥ l .d .(1, iπ, iπ2, e, ee , e iπ
2
).

Then π, e, ee , ee
e
, e iπ

2
, ee

iπ2

are algebraically independent / Q.



Algebraic consequences of Schanuel’s Conjecture

THEOREM (Macintyre)

Suppose S is an E -ring satisfying (SC), and S0 is the E -subring of
S generated by 1. Then the natural E-morphism ϕ : [∅]E → S0 is
an E -isomorphism, i.e. S0 is isomorphic to E -free ring on the
empty set.

COROLLARY

(SC) There is an algorithm which decides if two exponential
constants coincide.



Algebraic consequences of Schanuel’s Conjecture

THEOREM (Terzo)

(SC) Let [x , y ]E be the free E -ring generated by {x , y} and let ψ
be the E -morphism:

ψ : [x , y ]E → (C, exp)

defined by ψ(x) = π and ψ(y) = i . Then there exists a unique
isomorphism

f : [x , y ]E/Kerψ → 〈i , π〉E

and
Kerψ = 〈exy + 1, y2 + 1〉E .

COROLLARY

(SC) The only algebraic relations among π, e and i over C are

e iπ = −1 and i2 = −1



Algebraic consequences of Schanuel’s Conjecture

THEOREM (Terzo)

(SC) Let [x ]E be the free E-ring generated by {x} and let R be the
E-subring of (R, exp) generated by π. Then the E-morphism

ϕ : [x ]E → (R, exp)

x 7→ π

is an E-isomorphism.

COROLLARY

(SC)

1 There is an algorithm for deciding if two exponential
polynomials in π and i are equal in C.

2 There is an algorithm for deciding if two exponential
polynomials in π are equal in R.



K [X ]E is sharply Schanuel

[X ]E satisfies Schanuel Conjecture

THEOREM (D., Macintyre and Terzo)

Let (K ,E ) be an exponential field satisfying Schanuel Conjecture.
Suppose that

γ1, . . . , γn ∈ K [X ]E − K are Q-linearly independent over K .

Then
t.d .KK (γ1, . . . , γn,E (γ1), . . . ,E (γn)) ≥ n + 1.



Shapiro’s Conjecture

Shapiro’s Conjecture (1958): If two exponential polynomials
f , g of the form

f = c1e
λ1z + . . .+ cne

λnz

g = b1e
µ1z + . . .+ bme

µmz ,

where ci , bj , λi , µj ∈ C have infinitely many zeros in common they
are both multiples of some exponential polynomial.

This conjecture comes out of complex analysis (and early work of
Polya, Ritt and many other). It was formulated by H.S. Shapiro in
a paper entitled:

The expansion of mean-periodic functions in series of exponentials.



Shapiro’s Conjecture

REMARK

The factorization theorem implies that we need to consider only
two cases of the Shapiro problem.

CASE 1. At least one of the exponential polynomial is a simple
polynomial.

CASE 2. At least one of the exponential polynomials is irreducible.



Case 1.

Over C answer is positive unconditionally

THEOREM (van der Poorten and Tijdeman, 1975)

Let f (z) =
∑
αje

βjz , with αj , βj ∈ C, be a simple exponential
polynomial and let g(z) be an arbitrary exponential polynomial
such that f (z) and g(z) have infinitely many common zeros. Then
there exists an exponential polynomial h(z), with infinitely many
zeros, such that h is a common factor of f and g in the ring of
exponential polynomial.



Ingredients of the proof

THEOREM (Ritt)

If every zero of an exponential polynomial f (z) is a zero of g(z)
then f (z) divides g(z).

THEOREM (Skolem, Mahler, Lech)

Let f (z) =
∑
αje

βjz , be an exponential polynomial, where
α, β ∈ K where K is a field of characteristic 0. If f (z) vanishes for
infinitely many integers z = zi , then there exists an integer d and
certain set of least residues modulo d , d1, . . . , dl such that f (z)
vanishes for all integers z ≡ di (mod d), for i = 1, . . . , l , and f (z)
vanishes only finitely often on other integers.



Case 1.

Setting: Over (K ,E ) algebraically closed field with an
exponentiation, char(K ) = 0, ker(E ) = ωZ, E surjective
answer is positive unconditionally

LEMMA (DMT)

Let h(z) = λ1e
µ1z + . . .+ λNe

µNz , where λj , µj ∈ K . If h vanishes
over all integers then sin(πz) divides h.

We use Vandermonde determinant.

THEOREM (DMT)

Let f be a simple exponential polynomial, and let g be an arbitrary
exponential polynomial such that f and g have infinitely many
common roots. Then there exists an exponential polynomial which
divides both f and g .



Schanuel → Shapiro

THEOREM (A. Skhop, 2010)

(SC) Let f and g be exponential polynomials as above with
ci , bj , λi , µj ∈ Qalg . If f and g have no common factors except
monomials then f and g have only finitely many common zeros.

THEOREM (D’A, Macintyre, Terzo, 2011)

Schanuel’s conjecture implies Shapiro’s conjecture.

The proof uses no logic, but substantial work by Bombieri, Masser
and Zannier, and work of Evertse, Schlickewei and Schmidt on
linear functions of elements of finite rank groups.



Case 2.

Consider the following system:{
f (z) = λ1e

µ1z + . . .+ λNe
µNz = 0

g(z) = l1e
m1z + . . .+ lMemMz = 0

(1)

where λi , µi , lj ,mj ∈ K .

Let D = l .d .(supp(f ) ∪ supp(g)), b1, . . . , bD a Z-basis, and

Yi = ebiz for i = 1, . . . ,D.

To system (1) associate:{
F (Y1, . . . ,YD) = 0
G (Y1, . . . ,YD) = 0

(2)

where F (Y1, . . . ,YD),G (Y1, . . . ,YD) ∈ Q(λ, l)[Y1, . . . ,YD ].



Case 2.

Let L = Q(λ, l)alg , t.d .Q(L) <∞. Let S be the infinite set of non
zero common solutions of system (1).

REMARK

If s ∈ S then (eb1s , . . . , ebDs) is a solution of system (2).

THEOREM (D’A, Macintyre and Terzo)

(SC) The Q-vector space generated by S is finite dimensional.

(SC) gives bounds on linear dimensions and transcendence degrees
of finite subsets of S and their exponentials.

Let V be an irreducible component of the subvariety of the
algebraic group GD

m defined by (2) over L containing
(eb1s , . . . , ebDs) for infinitely many s ∈ S .



Ingredients

DEFINITION

An irreducible subvariety W of V is anomalous in V if W is
contained in an algebraic subgroup Γ of GD

m with

dimW > max{0, dimV − codimΓ}

THEOREM (Bombieri, Masser, Zannier (2007))

Let V be an irreducible variety in GD
m of positive dimension defined

over C. There is a finite collection ΦV of proper tori H such that
1 ≤ D − dimH ≤ dimV and every maximal anomalous subvariety
W of V is a component of the intersection of V with a coset Hθ
for some H ∈ ΦV and θ ∈ GD

m .



Second case of Shapiro’s Conjecture

REMARK

BMZ result holds for every algebraically closed field K with
char(K ) = 0

For a finite sequence s = s1, . . . , sk ∈ S consider the variety
Ws ⊆ V k generated by (ebs1 , . . . , ebsk ), where b = b1, . . . , bD .

For big k , either dimWs = 0 or Ws is anomalous.

If for infinitely many k ’s dimWs = 0 then we are done.

Otherwise, we are forced into anomalous case, and using BMZ we
get finite dimensionality of the set of solutions.



COROLLARY (DMT)

If Ĝ is the divisible hull of G the group generated by all eµj s ’s
where s ∈ S then Ĝ has finite rank.

THEOREM (DMT)

(SC) Let f (z) be an irreducible polynomial and suppose the
following system{

f (z) = λ1e
µ1z + . . .+ λNe

µNz = 0
g(z) = l1e

m1z + . . .+ lMemMz = 0

has infinitely common zeros. Then f divides g .



Degenerate solutions

DEFINITION

A solution (α1, . . . , αn) of a linear equation

a1x1 + . . .+ anxn = 1

over a field K is non degenerate if for every proper non empty
subset I of {1, . . . , n} we have

∑
i∈I aiαi 6= 0.

THEOREM (Evertse, Schlickewei, Schmidt)

Let K be a field, char(K ) = 0, n a positive integer, and Γ a finitely
generated subgroup of rank r of (K×)n. There exists a positive
integer R = R(n, r) such that for any non zero a1, . . . , an elements
in K , the equation a1x1 + . . .+ anxn = 1 does not have more than
R non degenerate solutions (α1, . . . , αn) in Γ.



Associated linear equation

By finite dimensionality of S , l .d .(S) = p, where p ∈ N. Denote by
{s1, . . . , sp} a Q-basis of S . For any s ∈ S we have:

s =

p∑
l=1

clsl

where cl ∈ Q.

0 = f (s) = λ1e
µ1(

∑p
l=1 cl sl )+. . .+λNe

µN(
∑p

l=1 cl sl ) =
N∑
j=1

λj

p∏
l=1

(eµj sl )cl

Any solution s ∈ S produces a solution ω of the linear equation
associated to f ,

λ1X1 + . . .+ λNXN = 0

where ωi = eµi (
∑p

l=1 cl sl ), i = 1, . . . ,N and ω ∈ Ĝ .



Proof of main result

Induction of length of g(z).

M = 2 (g simple);

N,M > 2, we associate to

g(z) l1X1 + . . .+ lMXM .

By (ESS) result we have that there are infinitely many
degenerate solutions. By PHP there exist a subset
I = {i1, . . . , ir} of {1, . . . ,M} such that ir > 2 and

li1Xi1 + . . .+ lirXir = 0

has infinitely many zeros.
g(z) = g1(z) + g2(z), where g1(z) = li1e

mi1
z + . . .+ lir e

mir z ,
and g2(z) = g(z)− g1(z). By inductive hypothesis and by the
irreducibility of f , we have that f divides g1 and f divides g2,
and hence f divides g .


