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o Ritt’s Factorization Theorem

@ Schanuel’s Conjecture and Shapiro’s Conjecture



Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) where
R is a ring (commutative with 1) and

E:(R,+)— (UR),")

a morphism of the additive group of R into the multiplicative
group of units of R satisfying

Q@ E(x+y)=E(x)-E(y) forall x,y e R
Q@ E(0)=1.

(K, E) is an E-field if K is a field.



Examples:
9 (R,&¥); (C,e);
@ (R, E) where R is any ring and E(x) =1 for all x € R.

© (S[t], E) where S is E-field of characteristic 0 and S[t] the
ring of formal power series in t over S. Let f € S[t], where
f=r+fwthres$s

E(f) = E(r)- ) _(f)"/n!

n=0

@ K|[X]E E-ring of exponential polynomials over (K, E)



Exponential polynomials

Let R be a partial E-ring, R = D @& A, where D = dom(E).
Let t2 be a multiplicative copy of A, and consider R[t2].
Extend E to R by defining E(6) = t°, § € A.

Decompose R[t2] = R @ t2~ {0}, Iterate w times, and get E total.

Q@ Let R=Z[X], D=(0)e A=R.
The limit of previous construction is [X]E, the free E-ring on
X.

@ Let (K, E) be an E-field and R = K[X]. Decompose
K[X] = K& A, where D = K and A = {f : f(0) = 0}.

The limit of previous construction is the E-ring K[X]E of
exponential polynomials in X over K.



Exponential polynomials

An exponential polynomial in [x, y]£ is represented as

P(x,y) = —3X2y _ x5y7 + (2xy + 5y2)e(,7x3+1lxsy4)

e5x—10y2

+(6 — 2xy5)e(5x+2x7y2)

Let (R, E) be an E-domain. Then R[X]E is an integral domain
whose units are uE(f), where u is invertible in R and f € R[X]E.

An element f € R[X]E is irreducible if there are no non-units g
and h in R[X]E such that f = gh.




Exponential polynomials

Let f = "N a;t% be an exponential polynomial. Then the
support of f = supp(f) = Q-space generated by oy, ..., ap.

An exponential polynomial f(x) is simple if dim supp(f) = 1.

2mix —2mix

sin(2mx) = —°

2i



Factorization theory

@ Ritt in 1927 studied factorizations of exponential polynomial
1+ 31e%% + ... + Bre?

over C, using factorizations in fractional powers of classical
polynomials in many variables.

e Gourin (1930) and Macoll (1935) gave a refinement of Ritt's
factorization theorem for exponential polynomials of the form

pi(z)e™* + ... + pi(z)e™*
with a; € C, and p;(z) € C|z].

e D’'A. and Terzo (2011) gave a factorization theorem for
general exponential polynomials f(X) € K[X]E, where K is
an algebraically closed field of characteristic 0 with an
exponentiation.



Ritt: reduce the factorization of an exponential polynomial to that
of a classical polynomial in many variables in fractional powers.

If Q(Y1,...,Yn) € K[Y1,...,Yy] is an irreducible polynomial over
K, it can happen that for some q1,...,q, € Ny, Q(Y{™",...,Y3")
becomes reducible:

X — Y irreducible, but X3 — Y3 = (X — Y)(X% + XY + Y?)

A polynomial Q(Y') is power irreducible (over K) if for each
Ge N7, Q(YY) is irreducible.

A factorization of Q(Y) gives a factorization of Q(Y?)

A factorization of Q(Vﬁ) = Q(Y{",...,Ys") gives a factorization
of Q(Y1,...,Yn) in fractional powers of Yi,..., Y.



Associate polynomial

Let £(X) = >, aptPr, where a € K[X] and b, € A and
let {B1,...,0} be a Z-basis of supp(f).

Modulo a monomial we consider f as polynomial in e ... eP,
with coefficients in K[X]. Let Y; =% fori=1,...,1.

f(X) € KIX|E ~ Q(V4,..., V) € KIX][V4, ..., Y]] I

Y™ .- Y™ where my,...,m, € Z, i.e. an
invertible element in K[X]F

Simple exponential polynomials correspond to a single variable
classical polynomials




Factorization theorem

If Q(Y)=@i(Y) ... - Q(Y) then f(X) = A(X)-... - f{(X)
and for any @ positive integers

if QY) = Ry(Y) ...  Ry(Y) then f(X) = g1(X) - ... go(X).

All the factorizations of f(X) are obtained in this way.

LEMMA

Let £(X) and g(X) be in € K[X]E. If g(X) divides f(X) then
supp(ag) is contained in supp(bf), for some units a, b.

Remark: If f is a simple polynomial and g divides f then g is also
simple.
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Factorization theorem

Problem: How many tuples g are there such that Q(Va) is
reducible?

Have to avoid Y — Z since Y% — Z% is a factor for all kK >0

There is a uniform bound for the number of irreducible factors of

QY ..., Y™

for Q(Y1,...,Y)) irreducible with more than two terms and
arbitrary q1,...,q, € Ny. The bound depends only on

M = max{dyl, 000 dy,}.




Factorization Theorem

Tueorem (Ritt)

Let f(z) = M\ef1Z 4+ ... + AyetN?, where \j, pu; € C. Then f can
be written uniquely up to order and multiplication by units as

f(Z):Sl-...~5k-/1-...-lm

where S; are simple polynomials with supp(S;,) # supp(S;,) for
J1 # jo, and Iy, are irreducible exponential polynomials.




Factorization Theorem

Tueorem (D’A-Terzo)

Let f(X) € K[X]E, where (K, E) is an algebraically closed E-field
of char 0 and f # 0. Then f factors, uniquely up to units and
associates, as finite product of irreducibles of K[X], a finite
product of irreducible polynomials @; in K[X]E with support of
dimension bigger than 1, and a finite product of polynomials P;
where supp(Pj1) # supp(Pj2), for j1 # j> and whose supports are
of dimension 1.

COROLLARY

If f is irreducible and the dimension of supp(f) > 1 then f is prime




Schanuel’s conjecture

Let asg,...,a, € C,

l.d.(cu,...,an) =linear dimension of < a1,...,a, >0
tr.d.g(ai, ..., an) =transcendence degree of Q(a1, ..., ap) over
Q.

SC tr.d.o(at,...,a,, e, ..., e") > 1d.(ag,...,«a,
Q

Generalized Schanuel Conjecture Assume (R, E) is an E-ring
and char(R) = 0. Let A\1,..., Ay € R then

tr.d.oAs, .-, Am e, @) = Ld.(Ag, ..., A,) >0



Known cases

Generalization of Lindemann-Weierstrass Theorem:
Let a1, ..., a, be algebraic numbers which are linearly independent
over Q. Then e* ... e“" are algebraic independent over Q.

@ )\ =1 transcendence of e
@ )\ = 2w/ transcendence of

© )\ = (m,i7) then tr.d.(m, im, e, e™) =2, ie. m, e" are
algebraically independent over Q

Q (SC) is true for power series C[[t]]



The Schanuel machine

o \=(1,7i),
SC = t.d(1,im e e™) > I.d.(1,in).

Then e, m, are algebraically independent over Q;
o \=(1,im,e)

SC = t.d(1,im,e,e, e, e®) > 1.d.(1,im, e).

Then 7, e, e€ are algebraically independent over Q;

~ . . P2
o \=(1,im, in? e, e e™),
SC d : -2 e _in? i i e _e e’
= t.d(1,im, it e, e e'™ e e e e e e )
> 1.d.(1,im, it% e, €%, &™)
e * * ) ) ) ) M

)
e (2 i . .
Then 7, e, e, e ,e'™ ,e® are algebraically independent / Q.



Algebraic consequences of Schanuel’s Conjecture

Tueorem (Macintyre)

Suppose S is an E-ring satisfying (SC), and Sp is the E-subring of
S generated by 1. Then the natural E-morphism ¢ : [)]E — S is
an E-isomorphism, i.e. Sy is isomorphic to E-free ring on the
empty set.

COROLLARY

(SC) There is an algorithm which decides if two exponential
constants coincide.




Algebraic consequences of Schanuel’s Conjecture

TaEOREM (Terzo)

(SC) Let [x, y]F be the free E-ring generated by {x, y} and let v
be the E-morphism:

¥ [x,y]f = (C, exp)

defined by ¢(x) = 7 and ¢(y) = i. Then there exists a unique

isomorphism
f: [x,¥]5/Kerp — (i,m)"

and

Kerp = (¥ +1,y? + 1)E.

COROLLARY

(SC) The only algebraic relations among m, e and i over C are

e™=—1land i’ =-1




Algebraic consequences of Schanuel’s Conjecture
THEOREM (Terzo)

(SC) Let [x]E be the free E-ring generated by {x} and let R be the
E-subring of (R, exp) generated by 7. Then the E-morphism

¢ [xIF = (R, exp)

X = T

is an E-isomorphism.

(SC)
@ There is an algorithm for deciding if two exponential
polynomials in 7 and / are equal in C.

@ There is an algorithm for deciding if two exponential
polynomials in 7 are equal in R.




K[X]E is sharply Schanuel

[X]E satisfies Schanuel Conjecture

Tureorem (D., Macintyre and Terzo)

Let (K, E) be an exponential field satisfying Schanuel Conjecture.
Suppose that

Y, -, € K[X]E — K are Q-linearly independent over K.
Then

t.d.xkK(v,- s E(M1)s---, E(yn)) = n+1.




Shapiro's Conjecture

Shapiro’s Conjecture (1958): If two exponential polynomials
f, g of the form
f=ceM + .. +cet?

g = b1e"? + ...+ bpetm?,

where ¢;, bj, A, p1j € C have infinitely many zeros in common they
are both multiples of some exponential polynomial.

This conjecture comes out of complex analysis (and early work of
Polya, Ritt and many other). It was formulated by H.S. Shapiro in
a paper entitled:

The expansion of mean-periodic functions in series of exponentials.



Shapiro’s Conjecture

REMARK

The factorization theorem implies that we need to consider only
two cases of the Shapiro problem.

CASE 1. At least one of the exponential polynomial is a simple
polynomial.

CASE 2. At least one of the exponential polynomials is irreducible.J




Case 1.

Over C answer is positive unconditionally

Tueorem (van der Poorten and Tijdeman, 1975)

Let f(z) = Zajeﬁfz, with aj, 3; € C, be a simple exponential
polynomial and let g(z) be an arbitrary exponential polynomial
such that f(z) and g(z) have infinitely many common zeros. Then
there exists an exponential polynomial h(z), with infinitely many
zeros, such that h is a common factor of f and g in the ring of
exponential polynomial.




Ingredients of the proof

If every zero of an exponential polynomial f(z) is a zero of g(z)
then f(z) divides g(z).

TueEoREM (Skolem, Mahler, Lech)

Let f(z) = >_ aje’?, be an exponential polynomial, where

a, 5 € K where K is a field of characteristic 0. If f(z) vanishes for
infinitely many integers z = z;, then there exists an integer d and
certain set of least residues modulo d, di, ..., d; such that f(z)
vanishes for all integers z = d;j(mod d), for i =1,...,/, and f(z)
vanishes only finitely often on other integers.




Setting: Over (K, E) algebraically closed field with an
exponentiation, char(K) =0, ker(E) = wZ, E surjective
answer is positive unconditionally

Let h(z) = A\et? + ... + AnetV?, where \j, pij € K. If h vanishes
over all integers then sin(7z) divides h.

We use Vandermonde determinant.

Let f be a simple exponential polynomial, and let g be an arbitrary
exponential polynomial such that f and g have infinitely many
common roots. Then there exists an exponential polynomial which
divides both f and g.




Schanuel — Shapiro

TaeEOREM (A. Skhop, 2010)

(SC) Let f and g be exponential polynomials as above with
ci, bj, A\, pj € Q?%. If f and g have no common factors except
monomials then f and g have only finitely many common zeros.

TaEOREM (D'A, Macintyre, Terzo, 2011)

Schanuel’s conjecture implies Shapiro’s conjecture.

The proof uses no logic, but substantial work by Bombieri, Masser
and Zannier, and work of Evertse, Schlickewei and Schmidt on
linear functions of elements of finite rank groups.



Consider the following system:

f(z) = \e"? + ...+ Ayetn? =0 (1)
g(z) =he™* 4+ ...+ Iye™* =0
where \;, u;, /j, mj € K.

Let D = I.d.(supp(f) U supp(g)), b1,

..., bp a Z-basis, and
Y =ebiZfori=1,...,D.

To system (1) associate:

F(Yi,...,Yp) =0
{G(yll,...,yg) —0 (2)

where F(Y1,...,Yp),G(Y1,...,Yp) € Q(\, N)[Y1,. .., Ypl.



Let L =Q(\,1)?8, t.d.g(L) < cc. Let S be the infinite set of non
zero common solutions of system (1).

If s € S then (e°, ..., eP%) is a solution of system (2).

Tueorem (D’A, Macintyre and Terzo)

(SC) The Q-vector space generated by S is finite dimensional.

(SC) gives bounds on linear dimensions and transcendence degrees
of finite subsets of S and their exponentials.

Let V be an irreducible component of the subvariety of the
algebraic group GP defined by (2) over L containing
(ePrs, ..., ebps) for infinitely many s € S.



Ingredients

An irreducible subvariety W of V is anomalous in V if W is
contained in an algebraic subgroup I of GY with

dim W > max{0,dim V — codim[ '}

Turorem (Bombieri, Masser, Zannier (2007))

Let V be an irreducible variety in G2 of positive dimension defined
over C. There is a finite collection ®\ of proper tori H such that
1 < D — dimH < dimV and every maximal anomalous subvariety
W of V is a component of the intersection of V' with a coset H0
for some H € ®\, and 0 € GE.




Second case of Shapiro's Conjecture

BMZ result holds for every algebraically closed field K with
char(K) =0

For a finite sequence 5 = s1,...,sc € S consider the variety
Ws C VK generated by (eb*1,..., eP), where b= by, ..., bp.
For big k, either dim W5 = 0 or W5 is anomalous.

If for infinitely many k's dim Ws = 0 then we are done.

Otherwise, we are forced into anomalous case, and using BMZ we
get finite dimensionality of the set of solutions.



COROLLARY (D MT)

If G is the divisible hull of G the group generated by all e/®’s
where s € S then G has finite rank.

TuEOREM (D MT)

(SC) Let f(z) be an irreducible polynomial and suppose the
following system

f(z) = Me"? + ...+ Ayetn? =0
g(z) = he™z+ ...+ Iye™* =0

has infinitely common zeros. Then f divides g.




Degenerate solutions

DEFINITION

A solution (a1, ..., a,) of a linear equation
aix1+...+apx, =1

over a field K is non degenerate if for every proper non empty
subset / of {1,...,n} we have ), , aja; # 0.

Tueorem (Evertse, Schlickewei, Schmidt)

Let K be a field, char(K) = 0, n a positive integer, and I a finitely
generated subgroup of rank r of (K*)". There exists a positive

integer R = R(n, r) such that for any non zero ay, ..., a, elements
in K, the equation aijx; + ...+ anx, = 1 does not have more than
R non degenerate solutions (a1,...,ap) in T.




Associated linear equation

By finite dimensionality of S, /.d.(S) = p, where p € N. Denote by
{s1,...,sp} a Q-basis of S. For any s € S we have:

P
S = E C|S|
=1

where ¢; € Q.

N p
0= f( ) — Aleltl(Z/ 1C/S/)+ +)‘NeHN Z, 1C/S/ Z)\j H(ews’)cl
Jj=1 1=1

Any solution s € S produces a solution @ of the linear equation
associated to f,

MXi+ ...+ Ay Xy =0

where w; = et as) j=1,....,Nandw € G.
D



Proof of main result

Induction of length of g(z).
e M =2 (g simple);
e N, M > 2 we associate to

g(z) s h X1+ oo+ X

By (ESS) result we have that there are infinitely many
degenerate solutions. By PHP there exist a subset
I ={i,...,i,} of {1,..., M} such that i, > 2 and

/,'1)<,'1 +...+ /,'rX,'r =0

has infinitely many zeros.

8(z) = g1(z) + g2(2), where gi1(z) = [, ™% + ... + [; i,

and g»(z) = g(z) — g1(z). By inductive hypothesis and by the
irreducibility of f, we have that f divides g3 and f divides g,
and hence f divides g.



