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The Equation

Today I will concentrate on the following equation:

s∑
i=1

pi (X)βX
i = 0,

where X = (X1, . . . ,Xt) is a tuple of indeterminates,
p1, . . . , ps ∈ C[X], β1, . . . ,βs ∈ (C×)t , and βX

i is short for∏t
j=1 β

Xj

ij .



Why?

On November 6, 2009, Amador (Martin-Pizarro) told me about
the following:

Question 1. Assume Schanuel’s Conjecture. Is it correct that
given a variety V ⊂ C2n defining a minimal extension of
predimension 0, there is a generic point in V of the form
(z , exp(z))?



Why?

I will not explain the second italic phrase, because we wanted to
attack the following easiest case which does not involve that
phrase:

Question 2.0. Assume Schanuel’s Conjecture. Let
p(X ,Y ) ∈ C[X ,Y ] be an irreducible polynomial in which both X
and Y appear, defining a curve C ⊆ Cn. Is it the case that there
are algebraically independent complex numbers α1, α2, . . . such
that each (αj , e

αj ) ∈ C ?



Why?

The following special case is proven by D. Marker:

Theorem

Assume Schanuel’s Conjecture. Let p(X ,Y ) ∈ Q[X ,Y ] be an
irreducible polynomial in which both X and Y appear, defining a
curve C ⊆ Cn. Then there are algebraically independent complex
numbers α1, α2, . . . such that each (αj , e

αj ) ∈ C ?



Why?

How to attack Question 2.0? Let p and C be as in Question 2.0.

It follows from Hadamard Factorization Theorem that there are
always infinitely many points on C of the form (α, eα). How to
choose them to be algebraically independent?

Say K ⊆ C is an arbitrary algebraically closed subfield of finite
transcendence degree. We would have a positive answer to
Question 2.0, if there were only finitely many α ∈ K such that
(α, eα) ∈ C . (Because in that case, we could keep finding new
solutions outside of the algebraic closure of finitely many solutions.)



Why?

So we could reduce Question 2.0 to the following:

Question 2.1. Assume Schanuel’s Conjecture. Let p and C be as
in Question 2.0 and let K ⊆ C be an algebraically closed subfield
of finite transcendence degree. Is it the case that there are only
finitely many α ∈ K such that (α, eα) ∈ C ?



Schanuel’s Conjecture

Here it is:

Conjecture. Let α1, . . . , αn ∈ C be Q-linearly independent. Then

trdegQ(α1, . . . , αn, e
α1 , . . . , eαn) ≥ n.

A very popular consequence of this is that e and π are algebraically
independent. Another -known- special case is :

Theorem (Lindemann-Weierstrass)

If algebraic numbers α1, . . . , αn are Q-linearly independent, then
eα1 , . . . , eαn are algebraically independent.



Schanuel’s Conjecture

The consequence that is important for our purpose is the following:

Lemma

Assume Schanuel’s Conjecture and let p,C ,K be as in Question
2.1. Then there is a finite dimensional Q-subspace V of K such
that for each α ∈ K if (α, eα) ∈ C , then α ∈ V .



Why? - Final

Let {α1, . . . , αt} ⊆ K be a basis of V and write

p(X ,Y ) =
s∑

i=0

p̃i (X )Y i .

With this notation in hand, we want to solve the following for
(X1, . . . ,Xt) ∈ Qt :

s∑
i=0

p̃i (X1α1 + · · ·+ Xtαt)β
iX1
1 · · ·β

iXt
t = 0

Now defining pi (X) = p̃i (X1α1 + · · ·+ Xtαt) and βij = βij , this is
exactly the equation! (Well, after changing the index set a little.)

So this settles the why.



Integer Solutions of the Equation

The integer solutions of the equation are well known. Many people
worked on that subject; I will mention only the first one.

Theorem (M. Laurent)

(i) If pi is constant for each i , then the set of nondegenerate
solutions of the equation is a finite union of translates of

H := {n ∈ Zt :
t∏

j=1

β
nj
ij =

t∏
j=1

β
nj
i ′j for every i , i ′ ∈ {1, . . . , s}}

.
(ii) There are constants c, d ∈ R depending on the pi ’s and the
βij ’s such that if n = (n1, . . . , nt) is a nondegenerate solution of
the equation, then there is n′ = (n′1, . . . , n

′
t) ∈ H such that

|n− n′| < c log(|n|) + d.

(Nondegenerate means ”no subsum vanishes”.)



Integer Solutions of the Equation

This theorem has the following consequence:

Corollary

If the numbers βij are multiplicatively independent. Then the
equation has only finitely many nondegenerate integer solution.

Proof.

The multiplicative dependence assumption means that H is trivial.
So if n = (n1, . . . , nt) is a nondegenerate solution of the equation,
then |n| < c log(|n|) + d . But there are only finitely many such n.



Rational Solutions of the Equation

In the remaining time, I will illustrate a sketch of the proof of this
corollary with the word integer replaced by rational:

Theorem

Let {αij ∈ C : i = 1, . . . , s, j = 1, . . . , t} be a Q-linearly
independent set and p1, . . . , ps ∈ C[X1, . . . ,Xt ]. Then there only
finitely many q = (q1, . . . , qt) ∈ Qt such that∑s

i=1 pi (q) exp(q1αi1 + · · ·+ qtαit) = 0 and∑
i∈I pi (q) exp(q1αi1 + · · ·+ qtαit) 6= 0 for every proper nonempty

I ⊆ {1, . . . , s}.

The main idea is to reduce the rational case to finitely many
integer cases.



Some Notation

Definition

Let G be an abelian group, written multiplicatively. For n > 0 put
G [n] = {gn : g ∈ G}. We say that H is radical in G if
H ∩ G [n] = H [n] for all n > 0 and it contains all the torsion
elements of G .Given A ⊆ G , we set 〈A〉G to be the smallest radical
subgroup of G containing A.
That is,

〈A〉G = {g ∈ G | gn ∈ [A]G for some n ∈ N}

where [A]G is the subgroup generated by A.
When G is clear from the context, we will drop the subscripts and
just write 〈A〉 and [A].

Also U denotes the multiplicative group of roots of unity.



Linear Relations in Multiplicative Groups

For a field K and a subgroup Γof K× consider the solutions in Γ of

λ1x1 + · · ·+ λkxk = 1, (*)

where λ1, . . . , λk ∈ K .
We say that a solution γ = (γ1, . . . , γk) in Γ of (*) is
non-degenerate if

∑
i∈I
λiγi 6= 0 for every nonempty proper subset I

of {1, . . . , k}.
The main result we need is the following:

Lemma (van den Dries - G.)

Let E ⊆ F be fields such that E ∩ U = F ∩ U and G be a radical
subgroup of E×. Then given λ1, . . . , λn ∈ E×, the equation (*)
has the same non-degenerate solutions in G as in 〈G 〉F× .



The Proof

We apply the lemma in the following setting: let A be a finite set
containing the coefficients of the pi ’s and the numbers βij and put
Γ = 〈A〉C× .

If q ∈ Qt is a nondegenerate solution of the equation, then the
tuple (exp(q ·αi ) : i = 1, . . . , s) ∈ Γs is a non-degenerate solution
of the linear equation

p1(q)Y1 + · · ·+ ps(q)Ys = 0. (**)

Let E := Q(U∪A) and G := 〈A〉E× . Now by taking C in the place
of F in the lemma, we see that all the possible solutions of the
linear equation (**) in Γ are in G .



The Proof

Let G ′ be the complement of U in G .

If G ′ were finitely generated, we would be halfway there. Is it?
Yes; here is why:

Theorem (Zilber)

Let L be a finitely generated extension of Q(U). Then the quotient
group L×/U is a free abelian group.

So G ′, being a subgroup of a free group, is free. But it is also of
finite Q-rank. So it is indeed finitely generated.



The Proof

Say G ′ = γZ1 · · · γZr .

Then a rational solution of the equation is reduced to an integer
solution up to a root of unity!

However, it is not a big problem; using the multiplicative
independence assumption, one can deduce that only finitely many
roots of unity could be involved. Hence considering the integer
solutions of finitely many different equations, we get the desired
finiteness result.


