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important properties:

o v(1) = v(-1)=0
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@ v(x —y) > v(x)=v(y) & x =y modulo (with v = v(x))
K, :={z e K | v(z) > ~}, that means by setting
K>y :={z € K,v(z) > v} x and y have same residues in
Koy /Koy

This information can be given by k := K-o/K-o which is a field ,
the residue field of K. In fact K. is a local ring denoted by
Oy, the valuation ring of (K, v), and K. is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)).
In this talk we are interested in equal characteristic (p, p) where
p € PuU{0}.
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Let k be a field, k(¢) is valued by setting v(t) =1, vjxx = 0.
Hahn Fields: for a field k and ordered abelian group I', we set:
k(M) ={>,at" | a, € k.{v | a, # 0} is well ordered}
v(3_, ayt?) :=the first y such that a, # 0 :

For example: Laurent Series k((Z)) = {>_72; ajt'}, Puiseux

series o kK((12))
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Compatible couples of functions

Definition

Let (K, v) be a valued field. A couple of functions (f, f,) where
f:K— Kandf,:v(K)— v(K) is said to be compatible if
vof="f,ov.

Example Monomials: (M : x — ax* -M: vy — v(a) + k)
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o If o € Aut(K) with o(Oy) = O, then ¢ induces
automorphisms:
oy on v(K) and @ on k; (o,0y) is compatible and o, strickly
increasing

@ (k,o) is a difference field
In this case we say that (K, v, o) is a valued difference field.

Several people studied valued difference fields,
Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal ...
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o-polynomials: A finite sum of o-monomials which are of the
form

M : x — ax®(a(x))" ... (c"(x))",

where ais said to be the coefficient of M and the n+ 1-tuple
(fo, i1, - .., in) be the index of M, denoted by ind(M). We
consider n+ 1 tuples of integers under the partial ordering
induced by N.

For v € v(K), and x € K with v(x) = ~, by setting

v My = v(@ixb(o(x))t ... (a"(x)") = V(&) + o o (),
each (M, -M;) is compatible, -M; is increasing.

With the action of {-M | M a o-monomial with coefficient 1},
v(K*) is a Z[o]-module.
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Ax-Kochen and Ershov Principle

We want to have that: Given two valued difference fields
(K,v,c)and (K’, v/, ') such that

o (k,5) = (k',o’) as difference fields and

@ v(K) = v(K’) as Z[o]-modules
then (K, v,o0) = (K, v/, ¢’) as valued difference fields.
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Regularity

An element a € K is said to be regular for a (o-) polynomial P,
if v(P(a)) = v(a) - P, otherwise we say that it is irregular.

A “regular non-zero root” does not make sense and 0 is always
a regular root of any polynomial without constant term.

We will consider polynomials without constant term and
equations of type P(x) = b (b # 0) and say that “a is a regular
solution” if P(a) = b with a regular for P.
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Jump(P) :={v(x) | xirregular for P}

example: Take P(X) := XP — X, K := Fp(t). Jump(P) = {0}
and every x € K with v(x) = 0 is irregular.

Jump(P) is finite = P is “continious” :

for every pseudo-Cauchy (p.c.) sequence (a,), in K, with a limit
a, (P(ay)), has limit P(a).

If P € K[X] orif Pis any o-polynomial with o contractive
(:ov(y) > nvy forall v > 0 and n € N) then Jump(P) is finite.

if o is not contractive this can be drastically false:
beacause a,,1 — a, can be always irregular for P.

14/18
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We suppose " # Id on k, for all n € N\ {0}.

Lemma

Given a p.c. sequence (a,), in K, a € K, such that (a,),
converges to a and a o-polynomial P, we can find a p.c.
sequence (by) such that (a,), and (by), have same limits ,
(P(b,)), converges to P(a).

Proof.

(Main trick) Using above assumption we can find (b, ), such
that by, 1 — by is eventually regular for P. O

| \

4
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We need more...

From now on we consider the case of equal characteristic
(0,0).
Definition
Given a o-polynomial P we denote Lin(P) the o-linear part of
P. Let a € K, we say that (P, a) is in o-hensel configuration if
there exists v € T such that

@ v(P(a)) = Lin(P)

Q 7 M <~ M whenever M, M' are monomials of P such

that (0,...,0) # ind(M) < ind(M’).

Definition

We say that an valued difference field extension of (K, v, o) is
o-algebraic if all its elements are given by roots of
o-polynomials. (K, v, o) is said to be o-algebraically maximal if
it has no proper valued difference o-algebraic extension with
same residue field and same value group.

16/18



Finding regular solutions: o-hensenlianty

Lemma

Suppose that (K, v, o) is o-algebraically maximal and

17/18



Finding regular solutions: o-hensenlianty

Lemma

Suppose that (K, v, o) is o-algebraically maximal and (k, ) is
linearly difference closed, that is:

17/18



Finding regular solutions: o-hensenlianty

Lemma

Suppose that (K, v, o) is o-algebraically maximal and (k, ) is
linearly difference closed, that is: for every 5-linear Q, and
¢ € k the equation Q(x) = ¢ has solution in k.

17/18



Finding regular solutions: o-hensenlianty

Lemma

Suppose that (K, v, o) is o-algebraically maximal and (k, ) is
linearly difference closed, that is: for every 5-linear Q, and

¢ € k the equation Q(x) = ¢ has solution in k.

Conclusion: For every o-polynomial P and b € K* if for some
a € K such that v(P(a)) = b, (P, a) is in o-hensel configuration
then there is a regular solution of the equation P(x) = b.

Definition
(K, v, o) is said to be o-henselian if the conclusion of the above
lemma holds.
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Draft Results

@ All o-algebraically maximal extensions of a valued
difference field with a linearly difference closed residue
field are isomorphic.
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Draft Results

@ All o-algebraically maximal extensions of a valued
difference field with a linearly difference closed residue
field are isomorphic.

@ (A-K,E) principle for holds for the class of o-henselian
valued difference fields of characteristic (0, 0) with linearly
difference closed residue field.
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