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Valued Fields

A valued field is given by a field K , an ordered abelian group Γ,
a surjective group homomorphism v : K× → Γ, such that
v(x − y) > min{v(x), v(y)} (ultrametric triangle inequality).
We extend v on K by setting v(0) =∞, and we extend Γ to
Γ ∪ {∞}.

In this talk (K , v) will denote a valued field.
important properties:

v(1) = v(−1) = 0
v(x) 6= v(y)⇒ v(x − y) = min{v(x), v(y)}.
⇒ for a polynomial P =

∑
i X iai and x ∈ K ,

v(P(x)) = mini{v(x iai)} = mini{iv(x) + v(ai)} if for all
i 6= j we have v(ajx i) 6= v(aix j).
v(x − y) 6= min{v(x), v(y)} ⇔ v(x − y) > v(x) = v(y)
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Valuation Ring and Residue Field

v(x − y) > v(x) = v(y)⇔ x = y modulo (with γ = v(x))
K>γ := {z ∈ K | v(z) > γ}, that means by setting
K>γ := {z ∈ K , v(z) > γ} x and y have same residues in
K>γ/K>γ

This information can be given by k := K>0/K>0 which is a field ,
the residue field of K . In fact K>0 is a local ring denoted by
Ov , the valuation ring of (K , v), and K>0 is its maximal ideal.

Characteristic of (K , v) := (char(K ), char(k)).
In this talk we are interested in equal characteristic (p,p) where
p ∈ P ∪ {0}.
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Examples

Let k be a field, k(t) is valued by setting v(t) = 1, v|k× = 0.
Hahn Fields: for a field k and ordered abelian group Γ, we set:
k((Γ)) := {

∑
γ aγtγ | aγ ∈ k , {γ | aγ 6= 0} is well ordered}

v(
∑

γ aγtγ) := the first γ such that aγ 6= 0 :
For example: Laurent Series k((Z)) = {

∑∞
i=i0 ai t i}, Puiseux

series
⋃

n>0 k(( 1
nZ))
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Compatible couples of functions

Definition
Let (K , v) be a valued field. A couple of functions (f , fv ) where
f : K → K and fv : v(K )→ v(K ) is said to be compatible if
v ◦ f = fv ◦ v .

Example Monomials: (M : x 7→ axk , ·M : γ 7→ v(a) + kγ)
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Valued difference fields

If σ ∈ Aut(K ) with σ(Ov ) = Ov then σ induces
automorphisms:
σv on v(K ) and σ on k ; (σ, σv ) is compatible and σv strickly
increasing
(k , σ̄) is a difference field

In this case we say that (K , v , σ) is a valued difference field.
Several people studied valued difference fields,
Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal . . .
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σ-polynomials and Z[σ]-module v(K )

σ-polynomials: A finite sum of σ-monomials which are of the
form

M : x 7→ ax i0(σ(x))i1 . . . (σn(x))in ,

where a is said to be the coefficient of M and the n + 1-tuple
(i0, i1, . . . , in) be the index of M, denoted by ind(M). We
consider n + 1 tuples of integers under the partial ordering
induced by N.

Remark
For γ ∈ v(K ), and x ∈ K with v(x) = γ, by setting
γ ·Mj = v(ajx i0(σ(x))i1 . . . (σn(x))in ) = v(aj) +

∑n
j=0 ijσ

j
v (γ),

each (Mj , ·Mj) is compatible, ·Mj is increasing.

With the action of {·M | M a σ-monomial with coefficient 1},
v(K×) is a Z[σ]-module.
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Ax-Kochen and Ershov Principle

We want to have that: Given two valued difference fields
(K , v , σ) and (K ′, v ′, σ′) such that

(k , σ̄) ≡ (k ′, σ̄′) as difference fields and
v(K ) ≡ v(K ′) as Z[σ]-modules

then (K , v , σ) ≡ (K ′, v ′, σ′) as valued difference fields.
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Polynomial couples (P, ·P)

For P =
∑

j Mj a σ-polynomial and for γ ∈ Γ we set
γ · P := minj{γ ·Mj}
!: (P, ·P) is in general not a compatible couple: if x a non-zero
root of P, v(P(x)) =∞ > v(x) · P.
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Regularity

An element a ∈ K is said to be regular for a (σ-) polynomial P,
if v(P(a)) = v(a) · P, otherwise we say that it is irregular.

Remark
A “regular non-zero root” does not make sense and 0 is always
a regular root of any polynomial without constant term.

We will consider polynomials without constant term and
equations of type P(x) = b (b 6= 0) and say that “a is a regular
solution” if P(a) = b with a regular for P.
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σ-linear polynomials and Kaplansky fields

A linear σ-polynomial is one of the form:
anσ

n(x) + · · ·+ a1x .

If (K , v) is of characteristic (p,p) (p > 0), and perfect, then
(K , v) is already a difference valued field with Frob : x 7→ xp

An additive polynomial is an linear Frob-polynomial, i.e. is of
the form:
anpn(x) + · · ·+ a1x

Definition
A valued field (K , v) is said to be Kaplansky if v(K ) is
p-divisible and if every equation of the form P(x) = b where
P ∈ k [X ], is additive, has solutions in k ; it is said to be
algebraically maximal if it has no proper algebraic extension
with same residue field and same value group (that is it has no
immediate algebraic extension).
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Algebraically maximal Kaplansky fields are nice: We have
(A-K,E) principle for algebraically maximal Kaplansky fields.
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Two very similar caracterization of algebraically
maximal Kaplasky fields

Theorem (O.)
A Kaplansky field is algebraically maximal if and only if every
equation of the form P(x) = b (b 6= 0), where P ∈ K [X ] is
additive, has a regular solution.

Theorem (Durhan)
A Kaplansky field is algebraically maximal if and only if it is
p-henselian.
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Finding regular elements

Problem : Jump values
Jump(P) := {v(x) | x irregular for P}
example: Take P(X ) := X p − X , K := Fp(t). Jump(P) = {0}
and every x ∈ K with v(x) = 0 is irregular.
Jump(P) is finite⇒ P is “continious” :

for every pseudo-Cauchy (p.c.) sequence (aρ)ρ in K , with a limit
a, (P(aρ))ρ has limit P(a).

If P ∈ K [X ] or if P is any σ-polynomial with σ contractive
(:σv (γ) > nγ for all γ > 0 and n ∈ N) then Jump(P) is finite.

if σ is not contractive this can be drastically false:
beacause aρ+1 − aρ can be always irregular for P.
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Solution

We suppose σn 6= Id on k , for all n ∈ N \ {0}.

Lemma
Given a p.c. sequence (aρ)ρ in K , a ∈ K , such that (aρ)ρ
converges to a and a σ-polynomial P, we can find a p.c.
sequence (bλ)λ such that (aρ)ρ and (bλ)λ have same limits ,
(P(bρ))ρ converges to P(a).

Proof.
(Main trick) Using above assumption we can find (bλ)λ such
that bλ+1 − bλ is eventually regular for P.
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We need more...

From now on we consider the case of equal characteristic
(0,0).

Definition
Given a σ-polynomial P we denote Lin(P) the σ-linear part of
P. Let a ∈ K , we say that (P,a) is in σ-hensel configuration if
there exists γ ∈ Γ such that

1 v(P(a)) = γ · Lin(P)

2 γ ·M < γ ·M ′ whenever M,M ′ are monomials of P such
that (0, . . . ,0) 6= ind(M) < ind(M ′).

Definition
We say that an valued difference field extension of (K , v , σ) is
σ-algebraic if all its elements are given by roots of
σ-polynomials. (K , v , σ) is said to be σ-algebraically maximal if
it has no proper valued difference σ-algebraic extension with
same residue field and same value group.
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Finding regular solutions: σ-hensenlianty

Lemma
Suppose that (K , v , σ) is σ-algebraically maximal and (k , σ̄) is
linearly difference closed, that is: for every σ̄-linear Q, and
c ∈ k the equation Q(x) = c has solution in k.
Conclusion: For every σ-polynomial P and b ∈ K× if for some
a ∈ K such that v(P(a)) = b, (P,a) is in σ-hensel configuration
then there is a regular solution of the equation P(x) = b.

Definition
(K , v , σ) is said to be σ-henselian if the conclusion of the above
lemma holds.
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Draft Results

All σ-algebraically maximal extensions of a valued
difference field with a linearly difference closed residue
field are isomorphic.
(A-K,E) principle for holds for the class of σ-henselian
valued difference fields of characteristic (0,0) with linearly
difference closed residue field.
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