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Introduction

Gröbner and Gröbner-Shirshov bases theories are generating
increasing interest because of its usefulness in providing
computational tools and in giving algebraical structures which
are applicable to a wide range of problems in mathematics,
science, engineering, and computer science. In general,
Gröbner-Shirshov bases theory is a powerful tool to solve the
following classical problems.

(i) normal form;
(ii) word problem;

(iii) rewriting system;
(iv) embedding theorems;
(v) extentions;

(vi) growth function;
(vii) Hilbert series; etc.
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Introduction

In particular, the technique of Gröbner-Shirshov bases is
proved to be very useful in the study of presentations of
associative algebras, Lie algebras, semigroups, groups, etc. by
generators and defining relations, see, for example, the book
[4] written by L. A. Bokut and G. Kukin, survey papers [[5], [6]]
written by L. A. Bokut and P. Kolesnikov, and [7] written by L. A.
Bokut and Yuqun Chen.
My thesis deals with Gröbner-Shirshov bases theory for affine
Weyl groups. Gröbner-Shirshov bases and normal form of the
elements were already found for the Coxeter groups of type An;
Bn and Dn in [1]. The Gröbner-Shirshov bases of the other finite
Coxeter groups are given in [10] and [16].
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Monomial Ordering

Suppose S is a linearly ordered set and k is a field. Let S∗ be
the free monoid generated by S. The elements of S∗ are called
words. The empty word is the identity which is denoted by 1.
Let k < S > be free associative algebra over k defined by

k < S > = {
m∑

i=1

cαi wi , cαi ∈ k and wi ∈ S∗}.

Definition
A well ordering < on S∗ is called monomial ordering if it agrees
with left and right multiplications by words:

u > v ⇒ w1uw2 > w1vw2 ∀w1,w2 ∈ S∗.

For a word w ∈ S∗, we denote the length of w by |w |.
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Leading Word & Monic

Definition

Let f = αf +
∑
αiui ∈ k < S > where α, αi ∈ k, f ∈ S∗ and

ui < f for each i . Then we call f the leading word of f .

Definition

If leading word f of f has a coefficient 1, then f is called monic.
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Composition of Intersection & Composition of Including

Definition
For two monic polynomials f and g in k < S > and a word w ,
the composition of intersection is defined by

(f ,g)w = fb − ag if w = f b = ag, |f |+ |g| > |w |

Definition
For two monic polynomial f and g in k < S > and a word w , the
composition of including is defined by

(f ,g)w = f − agb if w = f = agb
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Trivial Relative

Definition
A composition (f ,g)w is called trivial relative to some
R ⊂ k < S > if (f ,g)w =

∑
αiai tibi where αi ∈ k, ti ∈ R,

ai ,bi ∈ S∗ and ai tibi < w . In particular, if
f 7→ (f ,g)w = f − agb = 0 of R, then (f ,g)w is trivial relative to
R.
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Gröbner-Shirshov Basis

Definition
A subset R of k < S > is called a Gröbner-Shirshov basis if any
composition of polynomials from R is trivial relative to R.
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Buhberger-Shirshov Algorithm

Definition
If a subset R of k < S > is not a Gröbner-Shirshov basis then
one can add to R all nontrivial compositions of polynomials of
R, and continue this process until get a Gröbner-Shirshov
basis. This procedure is named as Buchberger Shirshov
algorithm. Unfortunately this process may continue infinitely
many steps.
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Gröbner-Shirshov Basis for Ãn

Definition

The affine Weyl group Ãn has a presentation with generators
{r0, r1, . . . , rn} and defining relations
ri ri = 1 0 ≤ i ≤ n
ri rj = rj ri 0 ≤ i < j − 1 < n and (i , j) 6= (0,n)
ri ri+1ri = ri+1ri ri+1 0 ≤ i ≤ n − 1
r0rnr0 = rnr0rn.
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Let us define

rij =


ri ri+1 . . . rj , i < j ;
ri ri−1 . . . rj , i > j ;
ri , i = j ;
1, i = 1, j = 0;
1, i = n, j = n + 1.
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Identifying each relation u = v by u − v , we define the following
polynomials
f (i)1 = ri ri − 1 0 ≤ i ≤ n
f (i,j)2 = ri rj − rj ri 0 ≤ i < j − 1 < n and (i , j) 6= (0,n)
f (i)3 = ri ri+1ri − ri+1ri ri+1 0 ≤ i ≤ n − 1
f4 = r0rnr0 − rnr0rn
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Lemma

Let R = {f1, f2, f3, f4}. A Gröbner-Shirshov Basis of Ãn with
respect to deglex order with r0 > r1 > · · · > rn contains the
following polynomials.
g(i,j)

1 = rij ri − ri+1rij 0 ≤ i < j − 1 < n with (i , j) 6= (0,n)
g2 = r0nr0rn − r1r0nr0

g(j,k)
3 = r0rnk rj − rj r0rnk 2 ≤ j < k − 1 < n

g(j)
4 = r0rnj rj+1 − rj r0rnj 2 ≤ j < n

g(k)
5 = r0rnk r0 − rnr0rnk 2 ≤ k < n
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Lemma

g(k ,l)
6 = r0rnk r1l r0l − rnr0rnk r1l r0,l−1 1 ≤ l < n, 2 ≤ k ≤ n

g(k ,l)
7 = r0rnk r1l r0rnk − r1r0rnk r1l r0rn,k+1 1 ≤ l < k − 1 < n

g(k ,l)
8 = r0rnk r1l r0rn,k−1 − r1r0rnk r1l r0rnk 3 ≤ k ≤ n, k − 1 ≤

l ≤ n
g(j,k ,l)

9 = r0rnk r1l r0rnj r1l − rnr0rnk r1l r0rnj r1,l−1
2 ≤ k ≤ n − 1, k + 1 ≤ j ≤ n, 1 ≤ l ≤ j − 2

g(j,k ,l)
10 = r0rnk r1l r0rnj r1,l+1 − rnr0rnk r1l r0rnj r1l

2 ≤ k ≤ n, k ≤ j ≤ n, j − 1 ≤ l ≤ n − 1
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Let R′ be a set of the polynomials given in previous lemma
together with defining polynomials. At this point we cannot
claim that R′ is a Gröbner-Shirshov basis for Ãn because
Bucberger-Shirshov algorithm may contain infinitely many
steps. However using famous Composition-Diamond Lemma,
we can prove that R′ is a Gröbner-Shirshov basis for Ãn.
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Composition-Diamond Lemma for associative algebras

Lemma
Let k be a field, A = k〈S|R〉 = k〈S〉/Id(R) and < a monomial
ordering on S∗, where Id(R) is the ideal of k〈S〉 generated by
R. Then the following statements are equivalent:

(i) R is a Gröbner-Shirshov basis.
(ii) f ∈ Id(R)⇒ f = asb for some s ∈ R and

a,b ∈ S∗.
(iii) The set of R-reduced words

Red(R) = {w ∈ S∗|w 6= asb,a,b ∈ S∗, s ∈ R}

is a k-linear basis for the algebra A = k〈S|R〉.
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Our strategy is to obtain the set Red(R′) as an explicit classes
of words. After that, we compute the number of all reduced
words with respect to these classes by means of a generating
function. This generating function turns out to be same with the
generating function which gives the number of elements in
each length of the affine Weyl group Ãn. Therefore, by the
Composition-Diamond Lemma the functions in R′ form
Gröbner-Shirshov basis for the affine Weyl group Ãn.
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Lemma

Any reduced word not containing r0 is in the form

r = (rnjn)
αn(rn−1,jn−1)

αn−1 , . . . , (r2j2)
α2(r1j1)

α1

where i ≤ ji ≤ n and αi ∈ {0,1}.
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Lemma

The following words are reduced.
(i) w = r0rnk r1l 2 ≤ k ≤ n + 1, 0 ≤ l ≤ n
(ii)

where r0rn,n+1r1l = r0l and r0rnk r10 = r0rnk .
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Definition

Define
u = (an)

mn(an−1)
mn−1 . . . (a1)

m1

where mi ≥ 0 for i = 1, . . . ,n. Here, if ai = r0rnk r1l , then we
have two possibilities for ai−1.
(i) ai−1 = r0rn,k+1r1l
(ii) ai−1 = r0rnk r1,l−1.
We call ai ’s the components of the word u.

Notice that the number of possible u’s is 2n−1.
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Definition
Define

v (bt ) = bt(bt−1)
αt−1 · · · (bs)

αs

where αi ∈ {0,1}. Here, if bi = r0rnpi r1qi , then
bi−1 = r0rnpi−1r1qi−1 for pi < pi−1 and qi > qi−1.
Furthermore, if pi = n + 1 or qi = 0, then αj = 0 for
j = s, . . . , i − 1.
For the convenience, we define 1 = r0rn,∞r1,−1 and v (1) = 1.

Notice that the number of possible v is n!.
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Proposition

The word u, v (bt ) and their combinations w = uv (bt ) are
reduced words if a1 = r0rnk r1l and bt = r0rnpr1q with p ≥ k and
q < l in w.
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Reduced Words for n = 4

w1 = (r0r42r14)
m1(r0r42r13)

m2(r0r43r13)
m3(r0r4r13)

m4r01
w2 = (r0r42r14)

m1(r0r43r14)
m2(r0r4r14)

m3(r0r4r13)
m4r01.
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w1 = (r0r42r14)
m1(r0r42r13)

m2(r0r43r13)
m3(r0r4r13)

m4r01

and

w2 = (r0r42r14)
m1(r0r43r14)

m2(r0r4r14)
m3(r0r4r13)

m4r01.

If we take m2 = m3 = 0 and m1 = m4 = 1 in both w1 and w2,
then the subword (r0r42r14)(r0r4r13)r01 is written twice. To avoid
this situation, we force m2 ≥ 1 in w1.
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Arranged Word

In general to avoid repetition we defined arranged words an
marked components as follows,

Definition

Let w = uv (bt ) be a reduced word where bt = r0rnpr1q and

u = (an)
(mn)(an−1)

(mn−1) · · · (a1)
(m1).

For i = 2, . . . ,n − 1, ai is called marked component if
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Arranged Word

Definition
a1 is called marked component if

where p > k . If we let the power of marked components starts
from 1 , then w is called arranged word.
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Theorem

If all reduced words w = uv (bt ) are arranged, then each
subword is written uniquely.
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Counting Reduced Words

The number of the elements in an arranged word w = uv (bt )

given by the generating function

xα

(1− x2n)(1− x2n−1) · · · (1− xn+1)

where α is the length of the word ŵ which is correspondence to
marked components of w . In order to count all reduced words
starting with r0 we have to find the number of the words ŵ
whose length is α for any power α. To do this, we will find a
correspondence between these words and some special
partitions of integers.
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Let n be a positive integer. Any partition m = d1 + d2 + . . .+ dk
where k ≤ n can be identify by the n−tuple
(d1,d2, . . . ,dk ,0,0, . . . ,0).
We can also represent each word

r0rnk r1l ↔ (k ,1, . . . ,1,0, . . . ,0)
rnk ↔ (k ,0, . . . ,0)
r0l ↔ (1,1 . . . ,1,0, . . . ,0)

where the number of 1 is equal to l for 2 ≤ k ≤ n− 1,1 ≤ l ≤ n.
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Basic Partition

Definition
Let n be a positive integer. The n-tuples (k ,1 . . . ,1,0, . . . ,0)
where the number of 1’s is l for 1 ≤ k ≤ n, 1 ≤ l ≤ n − 1 are
called basic partitions.
The basic partition (k1,1 . . . ,1,0 . . . ,0) is said to be connected
to the basic partition (k2,1, . . . ,1,0, . . . ,0) if k1 > k2 and the
number of 1’s in the first one is greater than number of 1’s in the
second one. Hence a chain of connected partition a1a2 . . . am
corresponds to a word ŵ .
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Let a1a2 . . . am be a chain of connected partitions where
ai = (ki ,

li

1, . . . ,1︸ ︷︷ ︸,0, . . . ,0). Hence ki > kj and li > lj for

1 ≤ i < j ≤ m.
Define

m⊕
i=1

ai =
m∑

i=1

σi−1(ai)

where σ(p1,p2, . . . ,pn−1,pn) = (pn,p1,p2, . . . ,pn−1).
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Using the sum defined in previous slide, we found one to one
correspondence between sequences of connected partitions
and the partitions in which there are at most n parts and in
which no parts is larger than n. Hence

Theorem

There is one to one correspondence between words ŵ and the
partitions in which there are at most n parts and in which no
parts is larger than n.
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q-Binomials

The number of partitions in which there are at most r parts and
in which no parts is larger than m − r is given by the
q-binomials.

Definition
Let m and r be positive integers. The q-binomial is defined by(

m
r

)
q
=

(1− qm)(1− qm−1) · · · (1− qm−r+1)

(1− q)(1− q2) · · · (1− qr )
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In particular
(

2n
n

)
q

gives the number of partitions in which

there are at most n parts and in which no parts are larger than n
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The number of reduced words starting with r0
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The number of reduced words not including r0

(1 + x)(1 + x + x2) · · · (1 + x + · · ·+ xn).

Hence, the number of all reduced words

(1 + x)(1 + x + x2) · · · (1 + x + · · ·+ xn)

(1− x)(1− x2) · · · (1− xn)

which is well known Poincaré polynomial of the affine Weyl
group Ãn. (see [19]). Therefore these are all reduced words of
Ãn.
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Main Result

Theorem
Then the reduced Gröbner-Shirshov basis of the affine Weyl
group Ãn is the set R′. Moreover all the reduced words are the
form rw where r is a reduced word not including r0 and w is a
arranged word.
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Further

We published this article whose subject is "Gröbner-Shirshov
Bases and Reduced Words for Affine Weyl Group Type Ãn at
arXiv.com. We submitted this article to a good Algebraic
Journal. Now, we are studying about the Gröbner-Shirshov
Bases for Affine Weyl Groups Type B̃n and D̃n.
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