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The words synthetic and analytic are sometimes used as opposites or comple-
ments. The geometry pioneered by Rene Descartes [] is called analytic ge-

ometry; by contrast, the geometry of ancient mathematicians like Euclid of
Alexandria [] and Apollonius of Perge [] is called synthetic geometry.

The word synthetic comes from the Greek συνθετικός meaning skilled in putting

together or constructive. This Greek adjective derives from the verb συντίθηµι
put together, construct. The word analytic is the English form of ¢ναλυτικός,
which derives from the verb ¢ναλύω undo, set free, dissolve.

What do these words mean in the context of mathematics? Although we refer to
ancient geometry as synthetic, the Ancients evidently recognized both analytic
and synthetic methods. Pappus of Alexandria writes:

Now analysis is a method of taking that which is sought as though
it were admitted and passing from it through its consequences in
order to something which is admitted as a result of synthesis; for in
analysis we suppose that which is sought to be already done, and
we inquire what it is from which this comes about, and again what
is the antecedent cause of the latter, and so on until, by retracing
our steps, we light upon something already known or ranking as a
first principle; and such a method we call analysis, as being a reverse
solution.

But in synthesis, proceeding in the opposite way, we suppose to
be already done that which was last reached in the analysis, and
arranging in their natural order as consequents what were formerly
antecedents and linking them one with another, we finally arrive at
the construction of what was sought; and this we call synthesis. [,
p. ]

The main point seems to be that synthesis (and synthetic geometry in particu-
lar) should start from first principles and build from there; while analysis (and
analytic geometry) is a kind of search for principles from which a desired result
would follow.

Euclid of Alexandria begins his Elements with five principles:

. any two points can be joined by a [straight] line;

. any [straight] line can be extended indefinitely;


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. a circle can be drawn with any center and radius;

. all right angles are equal;

. if two angles, say ABC and BCD, are together less than two right angles,
then lines BA and CD, extended as necessary beyond B and D, must
meet.

The th proposition that Euclid derives from these principles is commonly
known by another name:
Theorem  (Pythagoras). In a right triangle, the square on the hypotenuse is

equal to the squares on the legs.
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Proof. The proof is based on the picture at
the right, where ABC is a triangle with right
angle at A, the squares on the sides are drawn
as shown, and AL is perpendicular to BC.

The square ABFG is twice the triangle CBF ,
which is congruent to DBA, which is half
the rectangle DBML. So ABFG is equal
to DBML. Likewise, ACKH is equal to
ECML. But DBML and ECML are to-
gether the square BCED.

One way to analyze the Pythagorean Theo-
rem is to understand it as ‘really’ being about
lengths: If the side of ABC opposite angle A
has length a, and so forth, and the angle at A
is right, then

a2 = b2 + c2. ()

We shall see how such an equation can arise when we understand the points A,
B, and C as ordered pairs (or triples) of real numbers.
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In Euclidean geometry, two distinct lines intersecting
at a point determine a plane in the following sense.
Let the lines be OA and OB. If C is on OA, and D is
on OB, then there is a unique parallelogram CODP
for some point P . (The parallelogram is ‘degenerate’
if C or D is O.) Such points P compose a plane,
and every point P in this plane determines a unique
such parallelogram. Therefore, instead of working
with the points P , we can work with the pairs (x, y),
where x is the ‘signed’ distance of C from O (that

is, x is negative if it is on the opposite side of OA from A), and y is the signed
distance of D from O. Here we understand signed distances to be just real
numbers; so our plane becomes the set R × R or R

2 of ordered pairs of real
numbers.

So plane analytic geometry is about the set R
2; we think of its elements as

points. We conceive of R
2 as having axes, called X and Y respectively. The

X-axis consists of points (x, 0); the Y -axis consists of points (0, y). Nothing
that we have said so far requires these axes to be perpendicular; indeed, it is
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not yet clear what it would mean for the axes to be perpendicular, since these
axes are just sets of ordered pairs of numbers. However, Equation () is a clue.
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Not everything interesting that we can say
about R

2 requires us to conceive of the axes as
perpendicular. For example, from the inequality

0 6 (x − a)2 = x2 − 2ax + a2,

we obtain
2ax − a2

6 x2.

This means that every point on the curve de-
fined by y = x2 is above the point with the
same X-coordinate on the line y = 2ax−a2. As
the picture shows, this makes visual sense, even
if the two axes are not perpendicular.

The same element of R
2 can be written as ~u or (u1, u2). Then u1

2 +u2
2 > 0, so√

u1
2 + u2

2 is a well-defined, non-negative number: let us call this number the
norm of ~u and denote it by

|~u|.
So, by definition, we have the identity

|~u| =
√

u1
2 + u2

2. ()

The norm is intended to express a notion of distance: |~u| should make sense as
the distance between ~u and ~0 (that is, (0, 0)). Does it make sense? Well, in
Euclidean geometry, ~u is the length of the hypotenuse of a right triangle whose
legs have lengths u1 and u2. But what is a right triangle in R

2?

We can add elements of R
2 coordinate-wise:

~u + ~v = (u1 + v1, u2 + v2). ()

Likewise, we can multiply them by real numbers:

a · ~u = (a · u1, a · u2). ()

Here a may be called a scalar; the elements of R
2 are then called vectors.

The operations on vectors have various nice properties that follow from the
corresponding properties of operations on scalars.

Two vectors are parallel if one of them is a scalar multiple of the other: if
a · ~u = ~v, or a · ~v = ~u, then

~u ‖ ~v. ()

Some algebraic consequences of () follow almost immediately:
Theorem . For all ~u in R

2 and a in R,

. 0 6 |~u|;
. 0 = |~u| ⇐⇒ ~0 = ~u;

. |a · ~u| = |a| · |~u|.
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Proof. We observed () while defining |~u|. For (), the direction ⇐ follows by
computation: |~0| =

√
02 + 02 = 0; for the direction ⇒, we prove the contraposi-

tive: If ~0 6= ~u, then one of u1 and u2 is not 0; without loss of generality, we may
assume u1 6= 0. Then

|~u|2 = u1
2 + u2

2
> u1

2 > 0,

so |~u| > 0, and in particular |~u| 6= 0. Finally, for (), just compute:

|a · ~u| = |(a · u1, a · u2)|
=

√

(a · u1)2 + (a · u2)2

=
√

a2 · (u1
2 + u2

2)

= |a| ·
√

u1
2 + u2

2,

which is |a| · |~u|.

The theorem does not violate any notion of |~u| as the distance between ~u and
~0. For example, if a · ~u = ~v, then the distance from ~0 to ~v ought to be |a| times
the distance to ~u; but this is what () expresses.

But we should like |~u + ~v| to make sense as the length of the side of a triangle
whose other two sides have lengths |~u| and |~v|. In particular, we want

|~u + ~v| 6 |~u| + |~v|. ()

We cannot assume that this is true; it is already either true or not, since it
is stating a possible property of R. In fact, we shall prove that it is true. To-
wards doing so, we note first that (since norms are non-negative,) () is logically
equivalent to

|~u + ~v|2 6 (|~u| + |~v|)2

= |~u|2 + 2 · |~u| · |~v| + |~v|2,

which is equivalent to

|~u + ~v|2 − |~u|2 − |~v|2
2

6 |~u| · |~v|. ()

It turns out to be convenient to give the left-hand member of this inequality an
abbreviation and a name: it is the scalar product or dot-product of ~u and
~v, and it is denoted

~u · ~v.

So, by definition, we have the identity

~u · ~v =
|~u + ~v|2 − |~u|2 − |~v|2

2
. ()

Presently we shall see an alternative expression for ~u · ~v; but let us first note
that some basic properties of the scalar product follow directly from ():
Theorem . For all ~u and ~v in R

2:

. ~u · ~v = ~v · ~u;



] Angles in analytic geometry (draft) 

. ~u ·~0 = 0;

. ~u · ~u = |~u|2.

Proof. Left to the reader.

To be able to say much more, we need:
Lemma . For all ~u and ~v in R

2,

~u · ~v = u1 · v1 + u2 · v2. ()

Proof. Just compute.

The lemma allows us to show:
Theorem . For all ~u, ~v, and ~w in R

2, and a in R,

. ~u · (~v + ~w) = ~u · ~v + ~u · ~w;

. ~u · (a · ~v) = a · (~u · ~v).

Proof. Computation.

A special case of () is

~u · (−~v) = −~u · ~v.

Using this, in (), we can replace ~v with −~v and rearrange to get

|~u − ~v|2 = |~u|2 + |~v|2 − 2 · ~u · ~v. ()

Note the similarity to the Law of Cosines.
Theorem  (Cauchy–Schwartz). For all ~u and ~v in R

2,

|~u · ~v| 6 |~u| · |~v|, ()

with equality if and only if ~u ‖ ~v.

Proof. Let x be a scalar. Now matter how x changes, we must have

0 6 |~u − x · ~v|,

equivalently,

0 6 |~u − x · ~v|2. ()

Now compute:

|~u − x · ~v|2 = (~u − x · ~v) · (~u − x · ~v)

= ~u · ~u − 2x · ~u · ~v + x2 · ~v · ~v [by Theorem ]

= |~u|2 − 2x · ~u · ~v + x2 · |~v|2 [by Theorem ]

This is a quadratic polynomial in x; it may be written in the more usual fashion
as

|~v|2 · x2 − 2 · (~u · ~v) · x + |~u|2. ()



 David Pierce [November ,

By the general theory of such things, the polynomial ax2+bx+c takes an extreme
value at −b/(2a), and this extreme value is c−b2/(4a); this is a maximum value
if a > 0. In particular, our polynomial () has minimum value

|~u|2 − (~u · ~v)2

|~v|2 .

This cannot be negative, by (). That is,

0 6 |~u|2 − (~u · ~v)2

|~v|2 ,

(~u · ~v)2

|~v|2 6 |~u|2,

(~u · ~v)2 6 |~u|2 · |~v|2,

and therefore
|~u · ~v| 6 |~u| · |~v|.

Finally, this inequality is an equation if and only if it is possible for ~u− x · ~v to
be ~0; but this is possible if and only if ~u and ~v are parallel.

If we accept that there is a function cos on R that takes on every value in the
interval [−1, 1], then, by the Cauchy–Schwartz Inequality (), Theorem, if ~u
and ~v are non-zero, there is θ such that

cos θ =
~u · ~v

|~u| · |~v| ; ()

in particular, cos θ = 1 if and only if ~u ‖ ~v. Rewriting () as

|~u| · |~v| · cos θ = ~u · ~v ()

and substituting into (), we get a more familiar form of the Law of Cosines.
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