
Exam  solutions

Math , David Pierce

April , 

[Instructions given with exam:]
• This examination assumes the axioms of Equality, Null Set, Ad-
junction, Separation, Replacement, Union, and Infinity.

• Proofs are not required, unless they are explicitly asked for.
• In proofs, you may use any theorem that we know, unless you are
being asked to prove that theorem.

• All problems have equal weight.

Problem . Let a and b be sets.
a) Write down a formula that defines the class denoted by a×b. If you

use any symbols other than a, b, ∈, =, and logical symbols, you should
define them.
b) Prove that a× b is a set.

Solution.
a) Such a formula is

∃x ∃y (z = (x, y) ∧ x ∈ a ∧ y ∈ b),

where:

• z = (x, y) stands for z = {{x}, {x, y}},
• z = {u, v} stands for ∀x (x ∈ z ⇔ x = u ∨ x = v),

• x = {u} stands for ∀y (y ∈ x⇔ y = u).
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b) By the Null Set and Adjunction axioms, ordered pairs are sets.
Therefore, for each c in a, there is a well-defined function

y 7→ (c, y)

on b. The image of b under this function is the class {c} × b; this class
is a set, by the Replacement Axiom. Therefore there is a well-defined
function

x 7→ {x} × b

on a. The image of a under this function is the class

{{x} × b : x ∈ a};

this is a set, again by Replacement. By the Union Axiom, the class⋃
{{x} × b : x ∈ a}

is a set; but this class is just a× b.

Remark. This problem was Exercise ; it is also Theorem  of the
notes. For example, if a = 3 = {0, 1, 2}, then

a× b = ({0} × b) ∪ ({1} × b) ∪ ({2} × b) =
⋃
{{k} × b : k ∈ 3}.

Problem . Write down:
a) A transitive set that is not an ordinal.
b) A set that is well-ordered by membership, but is not an ordinal.

Solution.
a) {0, {0}, {{0}}}.
b) {{0}}.

Remark. There are many possible answers; those given are probably the
simplest. One can approach this problem as follows:
a) Start with a set a that is not an ordinal, then find the smallest set b

that contains a and is transitive. The simplest set that is not an ordinal
is {1}, that is, {{0}}; let this be a. Then a ∈ b, so we must also have
a ⊆ b, which means 1 ∈ b. So {a, 1} ⊆ b. But since 1 ∈ b, we must have
1 ⊆ b, that is, 0 ∈ b. So {a, 1, 0} ⊆ b. We are done: the set {a, 1, 0}, is
now transitive, but it is not an ordinal, since a is not an ordinal.
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b) Every set of ordinals is well-ordered by membership. So take a set
of ordinals that is not an ordinal. A set of one ordinal is enough, as long
as that ordinal is not 0.

Problem . Either prove or give a counterexample:
a) Every set of ordinals has a supremum.
b) Every class of ordinals has a supremum.

Solution.
a) Let a be a set of ordinals. Then its supremum is

⋃
a: we prove this

as follows.
First,

⋃
a is an ordinal. For, each ordinal is a set of ordinals, so

⋃
a is a

set of ordinals, and therefore it is well-ordered by membership. Moreover,
if α ∈

⋃
a, then α ∈ β for some β in a, so α ⊂ β, but also β ⊆

⋃
a, so

α ⊂
⋃
a. Thus

⋃
a is also transitive. Therefore it is an ordinal.

Now, if α ∈ a, then α ⊆
⋃
a. Thus

⋃
a is an upper bound of a. If β is an

upper bound, then for all α in a, we have α ⊆ β; but this shows
⋃
a ⊆ β.

Thus
⋃
a is the least upper bound of a.

b) The class ON itself has no supremum, since it is closed under x 7→
x′, and x ∈ x′.

Remark. The offered solution uses implicitly the theorem that, on ON,
the relations ∈ and ⊂ are the same (and are the relation by which ON
is well-ordered). Part (a) is really Theorem  of the notes.

Problem .
a) Find a set of successor ordinals whose supremum is a limit ordinal.
b) Prove that there is no set of limit ordinals whose union is a successor

ordinal.

Solution.
a) ω = sup{n+ 1: n ∈ ω}.
b) Say a is a set of limit ordinals, and let β = sup(a). If β ∈ a, it is a

limit. Say β /∈ a. Then for all α, if α < β, then α < γ < β for some γ in
a, and then α′ 6 γ < β. Thus β is still a limit, or 0.

Problem . Prove or disprove:
a) k + n = n+ k for all natural numbers k and n.
b) α+ β = β + α for all ordinals α and β.

Solution.
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a) The statement is true. To prove it, we shall use the definition of
addition on ω:

k + 0 = k, k + n′ = (k + n)′.

We first show 0 + k by induction:
i) 0 + 0 = 0 by definition of +.
ii) If 0 + k = k, then

0 + k′ = (0 + k)′ [by definition of +]
= k′ [by inductive hypothesis].

Next, we show n′ + k = (n+ k)′ by induction:
i) n′ + 0 = n′ = (n+ 0)′.
ii) If n′ + k = (n+ k)′, then

n′ + k′ = (n′ + k)′ [by definition of +]
= (n+ k)′′ [by inductive hypothesis]
= (n+ k′)′ [by definition of +].

Now we can prove the original claim by induction:
i) n+ 0 = n = 0 + n.
ii) If n+ k = k + n, then

n+ k′ = (n+ k)′

= (k + n)′ [by inductive hypothesis]
= k′ + n.

b) The statement is false:

1 +ω = sup{1 + n : n ∈ ω}
= sup{n+ 1: n ∈ ω]}
= ω

6= ω+ 1.

Remark. In part (a), it was not strictly required to prove the preliminary
lemmas, since it is permitted to assume Lemma  of the notes. What is
to be proved in part (a) is Theorem  of the notes; and doing this was
Exercise .




