


Set theory exercises

David Pierce

Spring semester, /

section 
The first set of  problems was available by March , ; the first exam was
on April .

. Without using the Completeness Theorem, show that it is a logical theorem
that sets exist.

. Ordered pairs are defined by (a, b) = {{a}, {b}}, and this ensures

(a, b) = (c, d)⇔ a = c & b = d.

If C and D are possibly-proper classes, find a way to define a class (C,D) so
that

(C,D) = (E,F )⇔ C = E & D = F .

. Triples can be defined by

{a, b, c} = {a, b} ∪ {c}.

Given a class C, show that there is a bijection between (C × C) × C and the
class defined by

∃y ∃z ∃w (y ∈ C & z ∈ C & w ∈ C & x = {{y}, {y, z}, {y, z, w}}).

. We define a′ = a ∪ {a}. Prove that

a′ =
⋂
{x : a ∈ x & a ⊆ x}.







. We have defined an ordinal as a transitive set that is well-ordered by mem-
bership. Show that, if a = {a}, then a is not an ordinal.

. The class of all ordinals is ON. Let ω be defined as the class of ordinals that
neither are limits nor contain limits. Using this only, show

ω =
⋃

ω.

. Prove that an ordinal α is 0 or a limit if and only if α =
⋃
α.

. Using that ω satisfies the Peano Axioms (Theorem  of the notes), prove
the various unproved lemmas and theorems about addition, multiplication, and
exponentiation on ω in §., ‘Arithmetic’, of the notes.

. We know by the Recursion Theorem that there is a unique homomorphism
from (ω, 0, ′) to (V, 0, x 7→ {x}). Let Z be the image of ω under this homomor-
phism. Find a way to define Z, and to prove that (Z, 0, x 7→ {x}) satisfies the
Peano Axioms, without any reference to ω. (Here Z stands for Zermelo, because
his class of natural numbers was this.)

. Prove that if ω is a proper class, it is ON.

. By the Replacement Axiom, every function whose domain is a set is a set,
since if F is a function with domain a, then F is the range of the function
x 7→ (x,F (x)). Hence there is a class of all functions from a to a given class D.
We can denote this class of functions by

aD.

Given also a good order (C, <), suppose E is the class of all functions whose
domains are sections of C and whose ranges are included in D. That is,

E = {x : ∃y (y ∈ C & x ∈ pred(y)D)}.

Say F is a function from E to D. Show that there is a unique function G from
C to D such that, for all a in C,

G(a) = F (G � pred(a)).

. Prove that every initial segment of a well-ordered class is either the class
itself or a section of it.





. Prove that there is at most one embedding of one well-ordered class in another
such that the range of the embedding is an initial segment.

. Prove that the union of a set of transitive sets is transitive, and the union of
a set of ordinals is either an ordinal or ON itself.

. Prove that, if b is a set of ordinals, then
⋃
{x′ : x ∈ b} is the least strict upper

bound of b.

. Prove from the definition that ON contains 0 and is closed under x 7→ x′.

. If c ⊆ ON, prove that
⋃
{x′ : x ∈ c} is the least of the upper bounds of c

that are in in c. [This doesn’t make sense; ‘in in’ should have been ‘not in’. This
would have made the problem a repetition of : so the problem should have
been deleted.]

. Prove that a× b is a set.

. Prove that the lexicographic ordering is indeed a linear ordering.

. Use transfinite induction to prove that, if α 6 β, then α + x = β has a
solution.

. Find an ordinal α such that ω+ α = α.

section 
The next exam, on May , concerned the following two problems:

. Find the Cantor normal forms of sums, products, and powers of ordinals
given in Cantor normal form.

. Using transfinite induction, prove all of our theorems about ordinal arith-
metic from the recursive definitions of addition, multiplication, and exponentia-
tion of ordinals.

section 
The third exam, May , concerns cardinality and some basics of the ‘well-founded
universe’ WF as discussed in class. Such things are treated by the following
problems. First, the Axiom of Choice is not assumed:





. Show that Zorn’s Lemma (every ordered set whose every linearly ordered
subset has an upper bound has a maximal element) implies the Axiom of Choice
(every set has a choice-function). Suggestion: Given a set a, find an appropriate
ordered set (b,⊂) of functions such that a maximal element of b will be a choice-
function for a. Note: The set of choice-functions for subsets of a is not an
appropriate ordered set b. (Earlier editions of the course notes suggested that it
was; this was a mistake.)

Now the Axiom of Choice is assumed, so that cardinal exponentiation is defined.

. Show that, for all cardinals κ, λ, µ, and ν,

κ0 = 1, 0λ =

{
1, if λ = 0,

0, if λ > 0,

κ1 = κ, 1λ = 1,

κλ+µ = κλ · κµ, κλ·µ = (κλ)µ,

κ 6 µ & λ 6 ν ⇒ κλ 6 µν .

. We have various operations on sets, such as r, ∩, ∪,
⋂
,
⋃
, P, ×, and

(x, y) 7→ xy. If various compositions of these operations are applied to sets of
known cardinality, what are the possible cardinalities of the results? (These
cardinalities may have to be given in the form iα or 2ℵα .)

. We can define a function F from ON×CN to CN by

F (0, κ) = 1, F (α′, κ) = κF (α,κ), F (β, κ) = sup
α<β

F (α, κ),

where β is a limit. Now define G on the class of infinite cardinals by

G(κ) = F (α, κ),

where κ = ℵα. Show that

G(ℵα) =


1, if α = 0,

iα−1(ℵα), if 0 < α < ω,

iα(ℵα), if ω 6 α,

for all α, where

i0(κ) = κ, iα+1(κ) = 2iα(κ), iβ(κ) = sup
α<β

iα(κ)

where β is a limit.





In the last problem, note that iα(ℵ0) = iα. Recall that the function R is
defined on ON by

R(0) = 0, R(α′) = P(R(α)), R(β) =
⋃
α<β

R(α).

. Show that

α < β ⇒ R(α) ⊆ R(β), α < β ⇒ R(α) ∈ R(β).

. Show that
card(R(ω+ α)) = iα.

. If α 6 β, show

ℵαℵβ = 2ℵβ , iαiβ = iβ+1.

. If α > β, show

ℵα 6 ℵαℵβ 6 2ℵα , iα 6 iαiβ 6 iα+1.

. Supposing

2 6 κ, 1 6 λ, ℵ0 6 κ+ λ,

show that
max(κ, 2λ) 6 κλ 6 max(2κ, 2λ).

. If k ∈ ω, show that
iα+kiα = iα+max(1,k).

. Compute
ℵω2+ω

ℵω3 .

. Find
sup{i1,i1

i1 ,i1
i1

i1
, . . . }.


