
ELEMENTARY NUMBER THEORY

DAVID PIERCE

These notes are based on my lectures, in the fall of , in Elementary Number Theory
(Math ). I wrote from memory and from the handwritten notes that I used during
the lectures. The main reference for the course was [], but I used also []. The Tuesday
lectures were two hours; Thursday, one. (Each hour is  minutes.)

There were three in-term examinations, on October  (Tuesday), November  (Tues-
day), and December  (Thursday). On those days in class, I introduced no new material.
Class was cancelled November  and , because was at the Centre Internationale de
Rencontres Mathématiques. October  (Thursday) fell within the Şeker Bayramı; De-
cember  (Thursday), the Kurban Bayramı.

As the semester progressed, I made available on the web some notes (with exercises)
called ‘Foundations of number-theory’ [], along with ten more sets of exercises.
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ELEMENTARY NUMBER THEORY 

. September ,  (Thursday)

What can we say about the sequence

3, 6, 10, 15, 21, 28, . . .?

We can add a couple of terms to the beginning, making it

0, 1, 3, 6, 10, 15, 21, 28, . . .

The terms increase by 1, 2, 3, and so on. What do the numbers look like? They are the
triangular numbers:

s s s s s s s s s s . . .
s s s s s s

s s s

s

Let t0 = 0, t1 = 1, t2 = 3, &c. The recursive definition is

t0 = 0, tn+1 = tn + n+ 1.

There is a closed form:

tn =
n∑

k=1

k =

(
n+ 1

2

)

=
n(n + 1)

2
. (∗)

We can prove this by induction: It is true when n = 0 (or n = 1), and if it is true when
n = k, then

tk+1 = tk + k + 1 =
k(k + 1)

2
+ k + 1 =

(k + 1)(k + 2)

2
,

so it is true when n = k + 1. By induction, (∗) is true for all n.
But why is equation (∗) true? This can be seen from a picture: two copies of tn fit

together to make a rectangle of n(n+ 1) dots:
s s s s

s s s

s s

s

c

c c

c c c

c c c c

Similarly, (n + 1)2 = tn+1 + tn, since

tn+1 + tn =
(n + 1)(n+ 2)

2
+
n(n + 1)

2
=
n+ 1

2
(n+ 2 + n) = (n+ 1)2;

but this can be seen in a picture:
s s s s s

s s s s

s s s

s s

s

c

c c

c c c

c c c c

What can we say about the following sequence?

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, . . .

It is the sequence of odd numbers. Also, the first n terms seem to add up to n2, that is,

n2 =

n∑

k=1

(2k − 1). (†)

We can prove this by induction: It is true when n = 0, and if it is true when n = k, then

(k + 1)2 = k2 + 2k + 1 =

k∑

j=1

(2j − 1) + 2k + 1 =

k+1∑

j=1

(2j − 1),

so it is true when n = k + 1. Therefore (†) is true for all n. A picture shows why:
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Finally, observe:

1, 3, 5
︸︷︷︸

8

, 7, 9, 11
︸ ︷︷ ︸

27

, 13, 15, 17, 19
︸ ︷︷ ︸

64

, 21, 23, 25, 27, 29
︸ ︷︷ ︸

125

, . . .

Does the pattern continue? As an exercise, write the suggested equation,

n3 =

...∑

...

. . . ,

and prove it. (The theorem was apparently known to Nicomachus of Gerasa [, II..,
p. ], almost  years ago.)

∗ ∗ ∗ ∗ ∗
We are studying the natural numbers, , , , . . . . (Some people start with  instead.)

They compose the set N. Everything about N follows from the following five conditions:

(a) there is a first natural number, zero (0);
(b) each n in N has a successor, s(n);
(c) 0 is not a successor;
(d) distinct numbers have distinct successors: if n 6= m, then s(n) 6= s(m);
(e) induction: if A ⊆ N, and

(i) 0 ∈ A, and
(ii) if n ∈ A, then s(n) is in A,

then A = N.

. September ,  (Tuesday)

Theorem (Recursion). Suppose A is a set with an element b, and f : A → A. Then
there is a unique function g from N to A such that

(a) g(0) = b, and
(b) g(s(n)) = f(g(n)) for all n in N.

For the proof, see []. By recursion, we define addition and multiplication:

m + 0 = m, m · 0 = 0,

m+ s(n) = s(m + n), m · s(n) = m · n +m.

Then the usual properties can be proved, usually by induction (exercise; see []). We
write 1 for s(0), so s(n) = n+ 1.

Some books suggest wrongly that everything about N is a consequence of:

Theorem (Well-Ordering Principle). Every non-empty subset of N has a least element.

But what does least mean? The least element of A is some n such that

(a) n ∈ A;
(b) if m ∈ A, then n 6 m.

On N, we define 6 by

m 6 n ⇐⇒ m + k = n for some k in N.

Again, the usual properties can be proved (exercise; see []).
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Let’s try to prove the WOP (the Well-Ordering Principle). Suppose A ⊆ N, and A has
no least element. We want to show that A is empty, that is, N r A = N. Try induction.
For the base step, we cannot have 0 ∈ A, since then 0 would be the least element of A.
So 0 /∈ A.

For the inductive step, suppose n /∈ A. This is not enough to establish n+1 /∈ A, since
maybe n− 1 ∈ A, so n + 1 can be in A without being least.

We need:

Theorem (Strong Induction). Suppose A ⊆ N, and for all n in N, if all predecessors of
n belong to A, then n ∈ A. Then A = N.

For the proof, see []. Now we can prove well-ordering: If A has no least element, and
no member of the set {x ∈ N : x < n} belongs to A, then A must not belong either.
Therefore, by strong induction, A = ∅.

∗ ∗ ∗ ∗ ∗
Our course is Elementary Number Theory. Here ‘elementary’ does not mean easy; it

means not involving mathematical analysis. For example, although the function given by

Γ(x) =

∫ ∞

0

e−ttx−1 d x

satisfies Γ(n+ 1) = nΓ(n), and Γ(1) = 1, so that G(n+ 1) = n!, we shall not study such
facts.

∗ ∗ ∗ ∗ ∗
Our main object of study is the integers, which compose the set

N ∪ {−x : x ∈ N r {0}},
denoted by Z. Then we extend addition and multiplication and the ordering to Z, and
we define additive inversion on Z, so that

a+ (b + c) = (a+ b) + c a · (b · c) = (a · b) · c,
b + a = a+ b, b · a = a · b,
a+ 0 = a, a · 1 = a,

a+ (−a) = 0,

a · (b + c) = a · b + a · c,
a < b⇒ a+ c < b+ c,

0 < a & 0 < b ⇒ 0 < a · b.
So Z is an ordered domain (but it is not necessary to know this term).

If a ∈ Z, let the set {ax : x ∈ Z} be denoted by Za or aZ or

(a).

Then b ∈ (a) if and only if a divides b, which is denoted by

a | b.
If c− b ∈ (a), then we may also write

b ≡ c (mod a) :

b and c are congruent modulo a. Congruence is an equivalence-relation. The congru-
ence-class of b modulo a is

{x ∈ Z : b− x ∈ (a)}.
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How many congruence-classes modulo a are there?
If a = 0, then congruence modulo a is equality. Otherwise, there are |a| congruence-

classes modulo a, namely the classes of 0, 1,. . . , |a| − 1. This is by:

Theorem (Division). If a 6= 0, and b ∈ Z, then the system

b = ax + y & 0 6 y < |a|
has a unique solution.

Proof. The set {z ∈ N : z = b − ax for some x in Z} is non-empty (why?). Let r be its
least element, and let q be such that r = b− aq. Then b = aq + r and 0 6 r < |a|. �

Consequently, every square has the form 3n or 3n + 1. Indeed, every number is 3k or
3k + 1 or 3k + 2, and

(3k)2 = 9k2 = 3(3k2),

(3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1,

(3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1.

Alternatively, since ongruent numbers have congruent squares,

02 = 0,

12 = 1,

22 = 4 ≡ 1 (mod 3).

Similarly, every cube is 7n or 7n± 1, since

03 = 0, 13 = 1, 23 = 8 = 7 + 1 ≡ 1 (mod 7), . . .

Facts about divisibility:

a | 0;

0 | a ⇐⇒ a = 0;

1 | a & a | a;
a | b & b 6= 0 ⇒ |a| 6 |b|;
a | b & b | c⇒ a | c

a | b & c | d⇒ ac | bd;
a | b⇒ a | bx; (∗)

a | b & a | c⇒ a | b + c. (†)
By the last two implications, (∗) and (†), if a | b and a | c, then a divides every linear
combination

ax+ by

of a and b. Let the set {ax + by : x, y ∈ Z} of these linear combinations be denoted by

(a, b).

Then (0, 0) = (0). Otherwise, assuming one of a and b is not 0, let n be the least positive
element of (a, b). Then n divides a and b. Indeed, a = nq + r and 0 6 r < n for some
q and r. Then r = a − nq = a − (ax + by)q = a(1 − qx) + b(−qy) for some x and y, so
r ∈ (a, b), and hence r = 0 by minimality of n, so n | a. Similarly, n | b.
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Then n is the greatest common divisor of a and b. Why? If d | a and d | b, then d | n,
since n is a linear combination of a and b; so d 6 |d| 6 |n| = n. Therefore n is the
greatest common divisor of a and b:

n = gcd(a, b).

We have also

(a, b) = (n)

(so Z is a principal ideal domain). Indeed, immediately, (n) ⊆ (a, b). Also, as n
divides a and b, it divides every element of (a, b), so (a, b) ⊆ (n).

If gcd(a, b) = 1, then a and b are relatively prime or co-prime. So this is the case
if and only if the equation

ax+ by = 1

has a solution.
In general, if gcd(a, b) = n, then

gcd

(
a

n
,
b

n

)

= 1,

since both ax + by = n and (a/n)x + (b/n)y = 1 have solutions.
Suppose a and b are co-prime, and each divides c; then so does ab. Indeed, the following

have solutions:

ax + by = 1,

acx + bcy = c,

absx + bary = c,

ab(sx + ry) = c,

where c = bs = ar.

Lemma (Euclid, VII.). If a | bc and gcd(a, b) = 1, then a | c.

Proof. Again, the following have solutions:

ax + by = 1,

acx + bcy = c.

Since a | ac and a | bc, we are done. �

∗ ∗ ∗ ∗ ∗
How can we find solutions to an equation like the following?

63x+ 7 = 23y.

Rewrite as

63x− 23y = −7.

For a solution, we must have

gcd(63, 23) | 7.

But how do we know what the gcd is?
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. September ,  (Thursday)

Recall that (a, b) = {linear combinations of a and b}; its least positive element (if one
of a and b is not 0) is gcd(a, b). Let this be n. We showed

(a, b) = (n). (∗)
The set (a)∩ (b) consists of the common multiples of a and b; so its least positive element
is the least common multiple of a and b, or

lcm(a, b).

Suppose this is m. As we showed (∗), so we can show

(a) ∩ (b) = (m).

For example,

lcm(10, 15) = 30

10

pppppppppppp

15

NNNNNNNNNNNN

gcd(10, 15) = 5

NNNNNNNNNNNN

pppppppppppp

Note 5 · 30 = 10 · 15. In general, since ab ∈ (a) ∩ (b), we have

lcm(a, b) | ab. (†)

Theorem. gcd(a, b) lcm(a, b) = |ab|.

Proof. Let n = gcd(a, b) and m = lcm(a, b). We can solve

ax + by = n,

amx + bmy = mn.

But a, b | m, so ab | am, bm, so ab | mn, hence

|ab| 6 mn. (‡)
Also, m = ar = bs for some r and s; and gcd(r, s) = 1 by minimality of m as a divisor of
a and b. Hence we can solve

sx + ry = 1,

absx + abry = ab,

amx + bmx = ab,

ax+ by =
ab

m

(using (†)). As n | a, b, so n | ab/m, and hence

|n| 6
|ab|
m

(assuming ab 6= 0), so mn 6 |ab|. By this and (‡), mn = |ab|. �
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∗ ∗ ∗ ∗ ∗
How can we find gcd(a, b)? The Euclidean algorithm. What is it? For example,

gcd(9, 12) = 3, by

12 = 9 · 1 + 3,

9 = 3 · 3 + 0.

In general, suppose a0 > a1 > 0. By strong recursion, define a2, a3,. . . by

an = an+1q + an+2 & 0 6 an+2 < an+1 (§)
(for some q) if an+1 6= 0; but if an+1 = 0, then let an+2 = 0. Then the descending sequence

a0 > a1 > a2 > · · ·
must stop. That is, let am be the least element of {an : an > 0}, so that am+1 = 0. Then

gcd(a0, a1) = am;

why? Because, if an+1 6= 0, then gcd(an, an+1) = gcd(an+1, an+2) by (§); so, by induction,

gcd(a0, a1) = gcd(a1, a2) = · · · = gcd(am, am+1) = gcd(am, 0) = am.

∗ ∗ ∗ ∗ ∗
A cock costs  L; a hen,  L;  chicks,  L. Can we buy  birds with  L? Let

x = # cocks,

y = # hens,

z = # chicks.

We want to solve
x + y + z = 100,

5x+ 3y +
1

3
z = 100.

(¶)

Eliminate z and proceed:

z = 100 − x− y,

15x+ 9y + z = 300,

15x+ 9y + 100 − x− y = 300,

14x + 8y = 200,

7x+ 4y = 100. (‖)
Since 4 | 100, one solution is (0, 25), that is, x = 0 and y = 25. Then y = 75. So the
answer to the original question is Yes. But can we include at least one cock? What are
all the solutions?

Think of linear algebra. If (x0, y0) and (x1, y1) are two solutions to (‖), then

7x0 + 4y0 = 100,

7x1 + 4y1 = 100,

7(x1 − x0) + 4(y1 − y0) = 0.

So we want to solve

7x+ 4y = 0.
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Since gcd(7, 4) = 0, the solutions are (4t,−7t). (Here is a difference with the usual linear
algebra.) So the original system (¶) has the general solution

(x, y, z) = (4t, 25 − 7t, 75 + 3t).

If we want all entries to be positive, this means

4t > 0, 25 − 7t > 0, 75 + 3t > 0;

t > 0, 7t < 25, 3t > −75;

0 < t <
25

7
;

0 < t 6 3.

So there are three solutions:
x y z
4 18 78
8 11 81
12 4 88

. October ,  (Tuesday)

A curiosity (from ‘On Teaching Mathematics’ by V. I. Arnold):

1,

3 = 1 + 1 + 1,

5 = 3 + 1 + 1 = 2 + 2 + 1 = 1 + 1 + 1 + 1 + 1,

7 = 5 + 1 + 1 = 4 + 2 + 1 = 3 + 3 + 1 = 3 + 2 + 2 =

= 3 + 1 + 1 + 1 = 2 + 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1,

9 = · · · .
Write the odd numbers as sums of odd numbers of summands. Then we have

n # sums for n
1 1
3 2
5 4
7 8
9 16
11 29

Thus the pattern 20, 21, 22, . . . breaks down. Is there a formula for the sequence of
numbers of sums?

∗ ∗ ∗ ∗ ∗
A positive integer is prime if it has exactly two distinct positive divisors. So, 1 is not

prime. Also, p is prime if and only if p > 1 and

a | p⇒ |a| ∈ {1, p}.
Let p and q always stand for primes. Then

gcd(a, p) ∈ {1, p},
so either a and p are co-prime, or else p | a.

Suppose p | ab. Either p | a, or else gcd(a, p) = 1, so p | b by Euclid’s Lemma. Hence,
by induction, if p | a0 · · ·an, then p | ak for some k. Indeed, the claim is true when n is
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0 or 1. Suppose it is true when n = m. Say p | a0 · · ·am+1. By the case n = 1, we have
that p | a0 · · ·am or p | am+1. In the former situation, by the inductive hypothesis, p | ak

for some k. So the claim holds when n = m + 1.

Theorem (Fundamental, of Arithmetic). Every positive integer is uniquely a product

p1 · · · pn

of primes, where
p1 6 · · · 6 pn.

Proof. Note that 1 is such a product, where n = 0. Suppose m > 1. Let p1 be the least
element of {x ∈ N : x > 1 & x | m}. Then p1 must be prime; otherwise, if a | p1, and
a > 0, but a /∈ {1, p}, then 1 < a < p, but a | m, so the minimality of p1 is contradicted.
Now let p2 be the least prime divisor of m/p1, and so forth. We have

m >
m

p1

>
m

p1p2

> · · ·

This must terminate in
m

p1 . . . pn
= 1

by the Well-Ordering Principle, so that m = p1 · · · pn.
For uniqueness, suppose also m = q1 · · · q`. Then q1 | m, so q1 | pi for some i, and

therefore q1 = pi. Hence
p1 6 pi = q1.

By the symmetry of the argument, q1 6 p1, so p1 = q1. Similarly, p2 = q2, &c., and
n = `. �

An analogous statement fails in some similar contexts. For example,

(4 +
√

10)(4 −
√

10) = 6 = 2 · 3;

but among the numbers a+b
√

10, the numbers 4±
√

10, 2, 3 are “irreducible” (like primes).
Such matters are studied in algebraic number theory.

A positive non-prime number is composite if it has prime factors. Then every positive
number is uniquely prime, composite, or 1.

∗ ∗ ∗ ∗ ∗
Theorem. The equation

x2 = 2y2

has no non-zero solution.

Proof. Suppose a2 = 2b2. Then 2 | a2, so 2 | a, so 4 | a2, so 4 | 2b2, so 2 | b2, so 2 | b.
But if a and b are not 0, then we may assume they are co-prime (otherwise, replace them
with a/d and b/d, where d = gcd(a, b)). So a and b must be 0. �

∗ ∗ ∗ ∗ ∗
One can find primes with the Sieve of Eratosthenes. . . Eratosthenes also measured the

circumference of the earth, by measuring the shadows cast by posts a certain distance
apart in Egypt. Measuring this distance must have needed teams of surveyors and a
government to fund them. Columbus was not in a position to make the measurement
again, so he had to rely on ancient measurements [].

∗ ∗ ∗ ∗ ∗
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Theorem (Euclid, IX.). If n ∈ N, then there are more than n primes.

Proof. Suppose p0 < · · · < pn−1, all prime. Then p0 · · · pn−1 + 1 has a prime factor,
distinct from the pk. �

An alternative argument by Filip Saidak () is reported in the latest Matematik
Dünyası: Define a0 = 2 and an+1 = an(1 + an). If k < n, then ak | ak+1, and ak+1 | ak+2,
and so on, up to an−1 | an, so ak | an. Similarly, since 1 + ak | ak+1, we have 1 + ak | an.
Therefore gcd(1+ak, 1+an) = 1. Thus any two elements of the infinite set {1+an : n ∈ N}
are co-prime.

∗ ∗ ∗ ∗ ∗
I state some theorems, without giving proofs; some of them are recent and reflect

ongoing research:

Theorem (Dirichlet). If gcd(a, b) = 1, and b > 0, then {a+bn : n ∈ N} contains infinitely
many primes.

That is, arithmetic progressions (with the obvious condition. . . ) contain infinitely
many primes.

The textbook [] omits the following.

Theorem (Ben Green and Terence Tao [], ). For every n, there are a and b such
that each of the numbers a, a+ b, a + 2b, . . . , anb is prime (and b > 0).

That is, there are arbitrarily long arithmetic progressions of primes.
Is it possible that each of the numbers

a, a+ b, a + 2b, a+ 3b, . . .

is prime? Yes, if b = 0. What if b > 0? Then No, since a | a + ab. But what if a = 1?
Then replace a with a+ b.

Two primes p and q are twin if |p− q| = 2. The list of all primes begins:

2, 3, 5, 7
︸ ︷︷ ︸

, 11, 13
︸ ︷︷ ︸

, 17, 19
︸ ︷︷ ︸

, 23, 29, 31
︸ ︷︷ ︸

, 37, 41, 43
︸ ︷︷ ︸

, 47, . . .

and there are several twins. Are there infinitely many? People think so, but can’t prove
it. We do have:

Theorem (Goldston, Pintz, Yıldırım [], ). For every positive real number ε, there
are primes p and q such that 0 < q − p < ε · ln p.

∗ ∗ ∗ ∗ ∗
I return to the irrationality of

√
2 (there is no non-zero solution to x2 = 2y2). Geomet-

rically, the claim is that the side and diagonal of a square are incommensurable: there
is no line segment that evenly divides them. We can see this as follows [, v. I, p. ]:
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A B

CD

E

F
d

Let ABCD be a square. On the diagonal BD, mark BE equal to AB. Let the perpen-
dicular at E meet AD at F . Draw BF . Then triangles ABF and EBF are congruent, so
EF = AF . Also, DEF is an isosceles right triangle, so DE = EF . Suppose d measures
both AB and BD. Then it measures ED and DF , since

ED = BD − AB,

DF = AB − ED.

Now do the same construction toDEF in place ofDAB. Since 2ED < AB, we eventually
get segments that are shorter than d, but are measured by it, which is absurd. So such
d cannot exist.

This argument can be made more algebraic. We have

1 = 2 − 1 = (
√

2)2 − 12 = (
√

2 + 1)(
√

2 − 1),

so
√

2 + 1 =
1√

2 − 1
.

Then
√

2 + 1 = 1 · 2 + (
√

2 − 1),

1 = (
√

2 − 1) · 2 + (3 − 2
√

2),
√

2 − 1 = · · · .

That is, if we let a0 =
√

2 + 1 and a1 = 1, then we can define

an = an+1 · 2 + an+2.

So we have

a0 = a1 · 2 + a2,

a1 = a2 · 2 + a3,

a2 = a3 · 2 + a4,

and so on. Then

a0

a1
= 2 +

a2

a1
= 2 +

1
a1

a2

= 2 +
1

2 +
a3

a2

= 2 +
1

2 +
1
a2

a3

= 2 +
1

2 +
1

2 +
a4

a3

= · · · ,
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which means
√

2 + 1 = 2 +
1

2 +
1

2 +
1

2 +
1

2 +
1

. . .

(∗)

. October ,  (Thursday)

Last time we obtained (∗) by the Euclidean Algorithm.

s

s

s

d

s

Let d and s be the diagonal and side of a square. Then we have

d+ s

s
=

s

d− s

since d2 − s2 = s2. Applying the Algorithm, we have

d+ s = s · 2 + d− s,

s = (d− s) · 2 + · · · ,
d− s = · · · 2 + · · · ,

so that

d+ s

s
= 2 +

1

2 +
1

2 +
1

. . .

Compare with an ordinary application of the Algorithm. What is gcd(134, 35)? We have

134 = 35 · 3 + 29,

35 = 29 · 1 + 6,

29 = 6 · 4 + 5,

6 = 5 · 1 + 1,

5 = 1 · 5.
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Therefore gcd(134, 35) = 1; but what is the significance of the numbers , , , , ?
They appear in the continued fraction:

134

35
= 3 +

29

35
= 3 +

1

35

29

= 3 +
1

1 +
6

29

= 3 +
1

1 +
1

29

6

= 3 +
1

1 +
1

4 +
5

6

= 3 +
1

1 +
1

4 +
1

6

5

= 3 +
1

1 +
1

4 +
1

1 +
1

5

∗ ∗ ∗ ∗ ∗
Let P be the set of primes; an alternative proof of its infinity, using the full Fundamental

Theorem of Arithmetic, is as follows. Consider the product

∏

p∈P

1

1 − 1
p

.

If P is finite, then so is this product. But what can we say about
1

1 − 1
p

? We have

1

1 − 1
p

= 1 +
1

p
+

1

p2
+ · · · =

∞∑

k=0

1

pk
.

Hence
∏

p∈P

1

1 − 1
p

=
∏

p∈P

(1 +
1

p
+

1

p2
+ · · · ).

Alternatively, if P = {p1, p2, . . . }, then this product is
(

1 +
1

p1

+
1

p1
2

+ · · ·
)

·
(

1 +
1

p1

+
1

p1
2

+ · · ·
)

· · ·

which is the sum of terms
1

p0
e(0)p1

e(1) · · · pe(n)
n

,

where e(i) > 0. Rather, the product is the sum of terms

1

q0f(0)q1f(1) · · · qm−1
f(m−1)

,

where qi are prime and f(i) > 0. But every positive integer is uniquely a product
q0

f(0)q1
f(1) · · · qm−1

f(m−1), by the Fundamental Theorem. Therefore

∏

p∈P

1

1 − 1
p

=
∞∑

n=1

1

n
.
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If P is infinite, then we must talk about convergence; but if P is finite, there is no problem.
But the harmonic series

∑∞
n=1

1
n

diverges:

1 +
1

2
+

1

3
+

1

4
︸ ︷︷ ︸

> 1
2

+
1

5
+

1

6
+

1

7
+

1

8
︸ ︷︷ ︸

> 1
2

+ · · ·

Therefore P must be infinite. Using similar ideas, one can show that
∑

p∈P

1
p

diverges.
∗ ∗ ∗ ∗ ∗

Suppose p ∈ P. If p | ab, but p - a, then p | b.
If p = ab, but p - a, then p | b, but also b | p, so b = ±p, and then a = ±1.
Among the integers, what property do 1 and −1 have uniquely? They have multiplica-

tive inverses:

(−1) · (−1) = 1, 1 · 1 = 1,

but if |n| > 1, then the equation nx = 1 has no solution. In a word, ±1 are units in Z.
Then an integer n is called irreducible if

(a) n = ab⇒ (a or b is a unit);
(b) n is not a unit.

Then the irreducibles of Z are ±p, where p is prime.
But irreducibility of primes is not enough to prove uniqueness of prime factorizations.

If

p1 · · · pm = q1 · · · qn,
where p1 6 · · · pm and q1 6 · · · qm, how do we know p1 = q1, &c.? We need the stronger
property that p | ab⇒ (p | a or p | b).

Again, there is a situation where the stronger property fails for arbitrary irreducibles:

(4 +
√

10)(4 −
√

10) = 6 = 2 · 3,

but 4 ±
√

10, 2, and 3 are irreducible in {x + y
√

10: x, y ∈ Z}, which is denoted by
Z[
√

10]. Let σ : Z[
√

10] → Z[
√

10], where

σ(a + b
√

10) = a− b
√

10.

(Compare this with complex conjugation.) Now define N(x) = x · σ(x), so that

N(a + b
√

10) = a2 − 10b2.

Then one can show N(xy) = N(x) ·N(y). Also, N(c) is always a square modulo 10. We
have

02 = 0,

12 = 1,

22 = 4,

32 = 9 ≡ −1 (mod 10),

42 = 16 ≡ −4 (mod 10),

52 = 25 ≡ 5 (mod 10),

so N(c) is congruent to 0, ±1, ±4 or 5 modulo 10.
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. October ,  (Tuesday)

We have implicitly used that congruence respects arithmetic: If a ≡ b (mod n) and
c ≡ d (mod n), then

a+ c ≡ b+ d (mod n),

a · c ≡ b · d (mod n).

Indeed, we assume n | b− a and n | d− c, so n | b− a+ d− c, that is,

n | b+ d− (a+ c),

which means a+c ≡ b+d (n); likewise, n | (b−a)c+(d−c)b, that is, n | bd−ac, so ac ≡ bd
(n). In short, if set Z/(n) or Zn of congruence-classes modulo n is a commutative ring.

Hence we can solve 3514 ≡ x (43) as follows: First, 35 ≡ −8 (43), so

3514 ≡ (−8)14 ≡ 814 (43).

Also, 14 = 8 + 4 + 2 = 23 + 22 + 21, so 814 = 88 · 84 · 82; and

82 = 64 ≡ 21 (43),

212 = 441 ≡ 11 (43),

112 = 121 ≡ 35 ≡ −8 (43),

so that

3514 ≡ −8 · 11 · 21 (43)

≡ −88 · 21 (43)

≡ −2 · 21 (43)

≡ −44 ≡ 1 (43).

∗ ∗ ∗ ∗ ∗
For another use of congruences, recall Z[

√
10] = {x + y

√
10: x, y ∈ Z}, closed under

addition and multiplication; and

σ : Z[
√

10] −→ Z[
√

10],

x+ y
√

10 7−→ x− y
√

10,

and

N : Z[
√

10] −→ Z,

x 7−→ x · σ(x).

Then N(ab) = N(a) ·N(b). If a is a unit (that is, invertible) of Z[
√

10], then ab = 1 for
some b in Z[

√
10], so N(ab) = N(1), that is, N(a) ·N(b) = 1, so N(a) = ±1. Conversely,

if N(a) = ±1, then a · (±σ(a)) = 1, so a is a unit.
We observed

(4 +
√

10)(4 −
√

10) = 6 = 2 · 3.
All of these factors are irreducible in Z[

√
10]. For example, if 2 = ab, then N(2) = N(ab),

that is, 4 = N(a) · N(b), so N(a) ∈ {±1,±2,±4}. But N(a) is a square modulo 10, so
N(a) ≡ 0,±1,±4, 5 (10). Therefore one of N(a) or N(b) is ±1, so it is a unit.

∗ ∗ ∗ ∗ ∗
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If a ≡ b (n), then ac ≡ bc (n). But do we have the converse? We do if c is invertible
(is a unit) modulo n. In that case, cd ≡ 1 (n) for some d, and then

ac ≡ bc (mod n) =⇒ acd ≡ bcd (mod n)

=⇒ a ≡ b (mod n).

Invertibility of c modulo n is equivalent to solubility of cx ≡ 1 (n), or equivalently

cx + ny = 1.

Thus c is invertible modulo n if and only if c and n are co-prime.
Alternatively, if ac ≡ bc (n), and c and n are co-prime, then we can argue by Euclid’s

Lemma that, since n | bc− ac, that is, n | (b− a)c, we have n | b− a, that is, a ≡ b (n).
Suppose we simply have gcd(c, n) = d. Then gcd(c, n/d) = 1. Hence

ac ≡ bc mod n =⇒ ac ≡ bc mod
n

d

=⇒ a ≡ b mod
n

d
.

Conversely,

a ≡ b mod
n

d
=⇒ n

d
| b− a

=⇒ cn

d
| bc− ac

=⇒ n | bc− ac

=⇒ ac ≡ bc mod n.

In short,

ac ≡ bc mod n ⇐⇒ a ≡ b mod
n

gcd(c, n)
.

For example, 6x ≡ 6 (9) ⇐⇒ x ≡ 1 (3).
A longer problem is to solve

70x ≡ 18 (134). (∗)
This reduces to

35x ≡ 9 (67),

or 35x+67y = 9. So there is a solution if and only if gcd(35, 67) | 9. To find the solutions,
we should solve 35x+ 67y = 1, which we can do with the Euclidean Algorithm:

67 = 35 · 1 + 32,

35 = 32 · 1 + 3,

32 = 3 · 10 + 2,

3 = 2 · 1 + 1,

so gcd(35, 67) = 1. We now have

32 = 67 − 35,

3 = 35 − 32 = 35 − (67 − 35) = 35 · 2 − 67,

2 = 32 − 3 · 10 = 67 − 35 − (35 · 2 − 67) · 10 = 67 · 11 − 35 · 21,

1 = 3 − 2 = 35 · 2 − 67 − 67 · 11 + 35 · 21 = 35 · 23 − 67 · 12.
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In particular, 35 · 23 ≡ 1 (67), so (∗) is equivalent to

x ≡ 23 · 9 (67)

≡ 207 (67)

x ≡ 6 (67),

x ≡ 6, 73 (134).

∗ ∗ ∗ ∗ ∗
A puzzle from a recent newspaper [Guardian Weekly ] is mathematically the same as one

attributed [, Prob. ..–, p. ] to Brahmagupta (th century c.e.): A man dreams
he runs up a flight of stairs. If he takes the stairs , , , , or  at time, then one stair
is left before the top. If he takes them  at a time, then he reaches the top exactly. How
many stairs are there?

If x is that number, then

x ≡ 1 (mod 2, 3, 4, 5, 6),

x ≡ 0 (mod 7).

But lcm(2, 3, 4, 5, 6) = 60, so x = 60n + 1, where 7 | 60n + 1. We have this when n = 5,
hence when n = 12, 19, . . .

The general problem is to solve systems

x ≡ a0 mod n0 & x ≡ a1 mod n1 & · · · & x ≡ ak mod nk. (†)
Let’s start with two congruences:

x ≡ a mod n & x ≡ b mod m. (‡)
A solution will take the form

x = a + nu

= mv + b.

So we should like to make a ≡ mv (n) and nu ≡ b (m). We can do this if gcd(n,m) = 1.
Then we have nr ≡ 1 (m) and ms ≡ 1 (n) for some r and s, so that a solution to (‡) is

x = ams + bnr.

This solution is unique modulo lcm(n,m), which is nm since gcd(n,m) = 1.
We can solve (†) similarly, under the assumption

gcd(ni, nj) = 1

whenever i < j 6 k. We have

x = a0m0n1 · · ·nk + a1n0m1n2 · · ·nk + · · · + akn0 · · ·nk−1mk,

where the mi are chosen so that

m0n1 · · ·nk ≡ 1 (n0),

and so forth; this is possible since

gcd(n0, n1 · · ·nk) = 1.

The solution is unique modulo n0 · · ·nk. This is the Chinese Remainder Theorem.
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. October ,  (Tuesday)

Of the  books of Euclid’s Elements, VII, VIII and IX concern number-theory. The
last proposition in these books is:

Theorem (Euclid, IX.). If 1 + 2 + 4 + · · ·+ 2n is prime, then the product

2n · (1 + 2 + · · ·+ 2n)

is perfect.

A number is perfect if it is the sum of its positive proper divisors:

6 = 1 + 2 + 3,

28 = 1 + 2 + 4 + 7 + 14.

Proof of theorem. Let Mn+1 = 1 + 2 + 4 + · · · + 2n =
∑n

k=0 2k = 2n+1 − 1. If Mn+1 is
prime, then the positive divisors of 2n ·Mn+1 are the divisors of 2n, perhaps multiplied
by Mn+1. So they are

1, 2, 4, . . . , 2n, Mn+1, 2 ·Mn+1, 4 ·Mn+1, . . . , 2n ·Mn+1.

The sum of these is (1 + 2 + 4 + · · ·+ 2n) · (1 +Mn+1), which is Mn+1 · 2n+1. Subtracting
2n ·Mn+1 itself leaves the same. �

The number 2n − 1, denoted by Mn, is called a Mersenne number; if it is prime, it
is a Mersenne prime. (Mersenne was a th-century mathematician.) We do not know
whether there are infinitely many Mersenne primes. However, if Mn is prime, then so is
n, since 2a − 1 | 2ab − 1, because of the identity

xm − ym = (x− y) · (xm−1 + xm−2 · y + xm−3 · y2 + · · ·+ x · ym−2 + ym−1).

∗ ∗ ∗ ∗ ∗
One method of factorizing n is to get a table of primes and test whether p | n when

p 6
√
n.

Fermat’s method is to solve

x2 − y2 = n,

since then n = (x+ y)(x− y). This method always works in principle, since

ab =

(
a + b

2

)2

−
(
a− b

2

)2

.

We may assume n is odd, so if n = ab, then a± b are even.
For example, the first square greater than 2 279 is 2 304, or 482, and 2 304 − 2 279 =

25 = 52, so
2 279 = (48 + 5)(48 − 5) = 53 · 43.

We can generalize the method by solving

x2 ≡ y2 (mod n).

If x2 − y2 = mn, then find gcd(x+ y, n) and gcd(x− y, n).
∗ ∗ ∗ ∗ ∗

Suppose p - a, that is, gcd(p, a) = 1. What is ap−1 modulo p? Consider a, 2a, . . . ,
(p− 1)a. These are all incongruent modulo p, since

ia ≡ ja (mod p) =⇒ i ≡ j (mod p).
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But 1, 2, . . . , p− 1 are also incongruent. There are only p− 1 numbers incongruent with
each other and 0 modulo p; so the numbers a, 2a, . . . , (p− 1)a are congruent respectively
with 1, 2, . . . , p− 1 in some order. Now multiply:

(p− 1)! · ap−1 ≡ (p− 1)! (mod p).

Since (p− 1)! and p are co-prime, we conclude:

gcd(a, p) = 1 =⇒ ap−1 ≡ 1 (mod p).

This is Fermat’s Little Theorem. Equivalently,

ap ≡ a (mod p)

for all a.
Hence m ≡ n (mod p− 1)am ≡ am (mod p). For example,

658 ≡ 648+10 ≡ (616)3 · 610 ≡ 610 (mod 17).

Since 10 = 8+2, we have 610 = 68 · 62; but 62 ≡ 36 ≡ 2 (17), so 68 ≡ 24 ≡ 16 ≡ −1 (17),
and hence

658 ≡ −2 (mod 17).

If an 6≡ a (mod n), then n must not be prime. For example, what is 2133 modulo 133?

We have 133 = 128 + 4 + 1 = 27 + 22 + 1, so 2133 = 227 · 222 · 2. Also,

22 = 4;

222

= 42 = 16;

223

= 162 = 256 ≡ 123 ≡ −10 (mod 133);

224 ≡ (−10)2 = 100 ≡ −33 (mod 133);

225 ≡ (−33)2 = 1089 ≡ 25 (mod 133);

226 ≡ 252 = 625 ≡ −40 (mod 133);

227 ≡ (−40)2 = 1600 ≡ 4 (mod 133).

Therefore

2133 ≡ 4 · 16 · 2 ≡ −5 (mod 133),

so 133 must not be prime. Indeed, 133 = 7 · 19.
The converse of the Fermat Theorem fails: It may be that an ≡ a (mod n) for all a,

although n is not prime. First, n is a pseudo-prime if n is not prime, but

2n ≡ 2 (mod n).

Then 341 is a pseudo-prime. Indeed, 341 = 11 · 31; but

211 = 2048 = 31 · 66 + 2 ≡ 2 (mod 31),

231 = (210)3 · 2 ≡ 2 (mod 11).

Hence 211·31 ≡ 2 (mod 11 · 31) by the following.

Lemma. If ap ≡ a (q) and aq ≡ a (p), then apq ≡ a (pq).
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Proof. Under the hypothesis, we have

apq = (ap)q ≡ aq ≡ a (mod q),

apq = (aq)p ≡ ap ≡ a (mod p),

and hence apq ≡ a (mod lcm(p, q)); but lcm(p, q) = pq. �

Again, we now have 2361 ≡ 2 (mod 361), so 361 is pseudo-prime.

Theorem. If n is a pseudo-prime, then so is 2n − 1.

Proof. Since n factors non-trivially as ab, but 2a − 1 | (2a)b − 1, we have that 2a is a
non-trivial factor of 2n − 1. So 2n − 1 is not prime. We assume also 2n ≡ 2 (mod n); say
2n − 2 = kn. Then

22n−1 − 2 = 2 · (22n−2 − 1) = 2 · (2kn − 1),

which has the factor 2n − 1; so 22n−1 ≡ 2 (mod 2n − 1). �

One can ask whether 3n ≡ 3 (mod n), for example. But a number n is called an
absolute pseudo-prime or a Carmichael number if

an ≡ a (mod n)

for all n. Then 561 is a Carmichael number. Indeed,

561 = 3 · 11 · 17;

and

3 − 1 = 2 | 560 = 561 − 1;

11 − 1 = 10 | 560;

17 − 1 = 16 | 560.

Hence

3 - a =⇒ a2 ≡ 1 (mod 3) =⇒ a560 ≡ 1 (mod 3);

11 - a =⇒ a10 ≡ 1 (mod 11) =⇒ a560 ≡ 1 (mod 11);

17 - a =⇒ a17 ≡ 1 (mod 17) =⇒ a560 ≡ 1 (mod 17).

Hence a561 ≡ a (mod 3, 11, 17) for all a, so

a561 ≡ a (mod 561).

In general, if n = p0 · p1 · · ·pk, where p0 < p1 < · · · < pk, and pi − 1 | n − 1 for each i,
then the same argument shows that n is an absolute pseudo-prime.

It is necessary here that n have no square factor. Indeed, if an ≡ a (mod n) for all a,
but m2 | n, then mn ≡ m (mod n), so

mn ≡ m (mod m2).

But if n > 1, then mn ≡ 0 (mod m2), so m ≡ 0 (mod m2), which is absurd unless
m = ±1.
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. October ,  (Thursday)

Can we solve (p− 1)! ≡ x (mod p)? The answer is certainly not 0.

Theorem. Suppose n > 1. Then (n− 1)! ≡ −1 (mod n) if and only if n is prime.

This is called ‘Wilson’s Theorem,’ though Wilson did not prove it. It was supposedly
[] known to al-Haytham (–). It gives a theoretical test for primality, though not
a practical one.

Proof of theorem. One of the two directions should be easier; which one? Suppose n is
not prime, so that n = ab, where 1 < a < n. Then a 6 n − 1, so a | (n − 1)!, so
a - (n− 1)! + 1, so n - (n− 1)! + 1.

Now suppose n is a prime p. Each number on the list 1, 2, 3, . . . , p− 1 has an inverse
modulo p. Also, x2 ≡ 1 (mod p) has only the solutions ±1, that is, 1 and p − 1, since
it requires p | x ± 1. So the numbers on the list 2, 3, . . . , p − 2 have inverses different
from themselves. Hence we can partition these numbers into pairs {a, b}, where ab ≡ 1
(mod p). Therefore (p− 1)! ≡ p− 1 ≡ −1 (mod p). �

For example,

2 · 4 ≡ 1 (mod 7),

3 · 5 ≡ 1 (mod 7),

4 · 2 ≡ 1 (mod 7),

5 · 3 ≡ 1 (mod 7),

6 · 6 ≡ 1 (mod 7);

so 6! = (2 · 4) · (3 · 5) · 6 ≡ 6 ≡ −1 (mod 7). How can one find the inverses, other than
by trial? Take successive powers:

22 = 4,

23 = 8 ≡ 1 (mod 7);

32 = 9 ≡ 2 (mod 7),

33 ≡ 2 · 3 ≡ 6 (mod 7),

34 ≡ 6 · 3 ≡ 4 (mod 7),

35 ≡ 4 · 3 ≡ 5 (mod 7),

36 ≡ 5 · 3 ≡ 1 (mod 7).

So the invertible numbers modulo 7 compose a multiplicative group generated by 3, and
we have

3 · 35 ≡ 32 · 34 ≡ 1 (mod 7).

An application of Wilson’s Theorem is the following.

Theorem. Let p be an odd prime. Then the congruence x2 ≡ −1 (mod p) has a solution
if and only if p ≡ 1 (mod 4).

Proof. Suppose a2 ≡ −1 (mod p). By the Fermat Theorem,

1 ≡ ap−1 ≡ (a2)(p−1)/2 ≡ (−1)(p−1)/2 (mod p),

so (p− 1)/2 must be even: 4 | p− 1, so p ≡ 1 (mod 4).
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Conversely, by Wilson’s Theorem, we have

−1 ≡ (p− 1)! ≡ 1 · 2 · · · p− 1

2
· p + 1

2
· · · (p− 1)

≡ 1 · (p− 1) · 2 · (p− 2) · · · p− 1

2
· p+ 1

2

≡ 1 · (−1) · 2 · (−2) · · · p− 1

2
· 1 − p

2

≡ (−1)(p−1)/2

((
p− 1

2

)

!

)2

.

So if p ≡ 1 (mod 4), then x2 ≡ −1 (mod p) is solved by ((p− 1)/2)!. �

For example,

−1 ≡ 4! ≡ 1 · (−1) · 2 · (−2) ≡ 22 (mod 5),

while, modulo 13, we have

−1 ≡ 12! ≡ 1 · (−1) · 2 · (−2) · 3 · (−3) · 4 · (−4) · 5 · (−5) · 6 · (−6) ≡ (6!)2 (13).

. October ,  (Thursday)

We work now with positive integers only. If n is one of them, we define

σ(n)

as the sum of the (positive) divisors of n. Hence n is perfect if and only if σ(n) = 2n.
For the number of positive divisors of n, we write

τ(n).

For example,

τ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28,
σ(12) = 1 + 1 + 1 + 1 + 1 + 1 = 6.

Indeed, 12 = 22 · 3, so the divisors of 12 are

20 · 30,

21 · 30,

22 · 30,

20 · 31,

21 · 31,

22 · 31.

So the factors of 12 are determined by a choice from {0, 1, 2} for the exponent of 2, and
from {0, 1} for the exponent of 3. Hence

τ(12) = (2 + 1) · (1 + 1).
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Similarly, each factor of 12 itself has two factors: one from {1, 2, 4}, and the other from
{1, 3}; so

σ(12) = (1 + 2 + 4) · (1 + 3)

= (1 + 2 + 22) · (1 + 3)

=
23 − 1

2 − 1
· 32 − 1

3 − 1
.

These ideas work in general:

Theorem. If n = p1
k(1) · p2

k(2) · · · pn
k(n), where p1 < p2 < . . . pn, then

τ(n) = (k(1) + 1) · (k(2) + 1) · · · (k(n) + 1),

σ(n) = (1 + p1 + p1
2 + · · ·+ p1

k(1)) · (1 + p2 + p2
2 + · · · + p2

k(2)) · · ·

=
p1

k(1)+1 − 1

p1 − 1
· p2

k(2)+1 − 1

p2 − 1
· · · pn

k(n)+1 − 1

pn − 1

We can abbreviate the definitions of σ and τ as follows:

σ(n) =
∑

d|n

d,

τ(n) =
∑

d|n

1.

Implicitly here, d ranges over the positive divisors of n.
Is there a relation between σ(n) and τ(n)? We have

n τ(n) σ(n)
∏

d|n

d

1 1 1 1
2 2 3 2
3 2 4 3
4 3 7 8 = 23 = 43/2

5 2 6 5
6 4 12 36 = 62

7 2 8 7
8 4 15 64 = 82

9 3 13 27 = 33 = 93/2

10 4 18 100 = 102

It appears that
∏

d|n

d = nτ(n)/2.

We can prove it thus:

(∏

d|n

d
)2

=
(∏

d|n

d
)

·
(∏

d|n

d
)

=
(∏

d|n

d
)

·
(∏

d|n

n

d

)

=
∏

d|n

n = nτ(n).
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. October ,  (Tuesday)

Suppose gcd(n,m) = 1. Then n = p1
k(1) · · · pr

k(r), and m = q1
`(1) · · · qs`(s), where the

pi and qj are all distinct primes. Hence the prime factorization of nm is

p1
k(1) · · · pr

k(r) · q1`(1) · · · qs`(s),

so we have

σ(nm) =
p1

k(1)+1 − 1

p1 − 1
· · · pr

k(r)+1 − 1

pr − 1
· q1

`(1)+1 − 1

q1 − 1
· · · qs

k(s)+1 − 1

qs − 1

= σ(n) · σ(m).

Similarly, τ(nm) = τ(n) · τ(m). We say then that σ and τ are multiplicative; in general,
a function f on the positive integers is multiplicative if

f(nm) = f(n) · f(m)

whenever n and m are co-prime. We do not require the identity to hold in general. For
example,

σ(2 · 2) = σ(4) = 1 + 2 + 4 = 7 6= 9 = (1 + 2) · (1 + 2) = σ(2) · σ(2).

The identify function n 7→ n and the constant function n 7→ 1 are multiplicative. Since
σ(n) =

∑

d|n d and τ(n) =
∑

d|n 1, the multiplicativity of σ and τ is a consequence of the
following.

Theorem. If f is multiplicative, and F is given by

F (n) =
∑

d|n

f(d), (∗)

then F is multiplicative.

Before working out a formal proof, we can see why the theorem ought to be true from
an example. Note first that, if f is multiplicative and non-trivial, so that f(n) 6= 0 for
some n, then

0 6= f(n) = f(n · 1) = f(n) · f(1),

so f(1) = 1. If also f and F are related by (∗), then

F (36) = F (22 · 32)

= f(1) + f(2) + f(4) + f(3) + f(6) + f(12) + f(9) + f(18) + f(36)

= f(1) · f(1) + f(2) · f(1) + f(4) · f(1) +

+ f(1) · f(3) + f(2) · f(3) + f(4) · f(3) +

+ f(1) · f(9) + f(2) · f(9) + f(4) · f(9)

= (f(1) + f(2) + f(4)) · (f(1) + f(3) + f(9))

= F (4) · F (9).

Proof of theorem. If gcd(m,n) = 1, then every divisor of mn is uniquely of the form de,
where d | m and e | n. This is because every prime divisor of mn is uniquely a divisor of
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m or n. Hence

F (mn) =
∑

d|mn

f(d)

=
∑

d|m

∑

e|n

f(de)

=
∑

d|m

∑

e|n

f(d) · f(e)

=
∑

d|m

f(d) ·
∑

e|n

f(e)

=
(∑

d|m

f(d)
)

·
∑

e|n

f(e),

which is F (m) · F (n) by (∗). �

If F is defined from f as in (∗), can we recover f from F ? For example, when f is
n 7→ n, so that F is σ, then

σ(12) = 1 + 2 + 3 + 4 + 6 + 12
σ(6) = 1 + 2 + 3 + 6
σ(4) = 1 + 2 + 4
σ(3) = 1 + 3
σ(2) = 1 + 2
σ(1) = 1

so that
12 = σ(12) − σ(6) − σ(4) + σ(2).

Why are some terms added, others subtracted? Why didn’t we need σ(3) or σ(1)? Note
that 12/3 = 4 = 22, a square.

We have also
σ(30) = 1 + 2 + 3 + 5 + 6 + 10 + 15 + 30
σ(15) = 1 + 3 + 5 + 15
σ(10) = 1 + 2 + 5 + 10
σ(6) = 1 + 2 + 3 + 6
σ(5) = 1 + 5
σ(3) = 1 + 3
σ(2) = 1 + 2
σ(1) = 1

so that
30 = σ(30) − σ(15) − σ(10) − σ(6) + σ(5) + σ(3) + σ(2) − σ(1).

Here we have 30/15 = 2, 30/10 = 3, and 30/6 = 5: each of these numbers has one prime
factor. But 30/5 = 2 · 3, 30/3 = 2 · 5, and 30/2 = 3 · 5; each number here has two prime
factors.

The Möbius function, µ, is given by

µ(n) =

{

0, if p2 | n for some prime p;

(−1)r, if n = p1 · · · pr, where p1 < · · · < pr.

In particular, µ(1) = 1.
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Theorem (Möbius Inversion Formula). If f determines F by the rule (∗), then F deter-
mines f by the rule

f(n) =
∑

d|n

µ
(n

d

)

· F (d). (†)

Proof. We just start calculating:
∑

d|n

µ
(n

d

)

· F (d) =
∑

d|n

µ
(n

d

)

·
∑

e|d

f(e)

=
∑

d|n

∑

e|d

µ
(n

d

)

· f(e).

For all factors d and e of n, we have

e | d ⇐⇒ n

d
| n
e
.

Therefore
∑

d|n

µ
(n

d

)

· F (d) =
∑

e|n

∑

c|(n/e)

µ(c) · f(e)

=
∑

e|n

f(e) ·
∑

c|(n/e)

µ(c).

We want to obtain f(n) from this. It will be enough if we can show that
∑

c|(n/e) µ(c) is
0 unless e = n, in which case the sum is 1. So it is enough to show

∑

d|n

µ(d) =

{

1, if n = 1;

0, otherwise.
(‡)

This is easy when n = pr. Indeed, we have
∑

d|pr

µ(d) = µ(1) + µ(p) + µ(p2) + · · ·+ µ(pr)

=

{

1, if r = 0;

1 − 1, if r > 1.

But also, µ is multiplicative. Indeed, suppose gcd(m,n) = 1. If p2 | mn, then we may
assume p2 | m, so µ(mn) = 0 = µ(m) = µ(m)·µ(n). But ifm = p1 · · · pr, and n = q1 · · · qs,
where all factors are distinct primes, then µ(mn) = (−1)r+s = (−1)·(−1)2 = µ(m) ·µ(n).
So µ is multiplicative. But then we have (‡). For, if n 6= 1, then n has a prime factor p,
and n = pr · a for some positive r, where gcd(a, p) = 1. Then µ(n) = µ(pr) · µ(a) = 0.
So (‡) holds. This completes the proof of the theorem. �

∗ ∗ ∗ ∗ ∗
The Chinese Remainder Theorem can be understood with a picture. Since gcd(5, 6) = 1

for example, the Theorem gives us a solution to
{

x ≡ a1 (mod 5),

x ≡ a2 (mod 6),
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—a solution that is unique modulo 30. In theory, we can find this solution by filling out
a table diagonally as follows:

0 1 2 3 4 5
0 0
1 1
2 2
3 3
4 4

, then

0 1 2 3 4 5
0 0 5
1 1
2 2
3 3
4 4

,

then
0 1 2 3 4 5

0 0 5
1 6 1
2 7 2
3 8 3
4 9 4

, then

0 1 2 3 4 5
0 0 10 5
1 6 1 11
2 7 2
3 8 3
4 9 4

,

and ultimately
0 1 2 3 4 5

0 0 25 20 15 10 5
1 6 1 26 21 16 11
2 12 7 2 27 22 17
3 18 13 8 3 28 23
4 24 19 14 9 4 29

.

Hence, for example, a solution to x ≡ 2 (mod 5) & x ≡ 3 (mod 6) is 27 (in row , column
).

Making such a table is not always practical. But the possibility of making such a table
will enable us to establish a generalization of Fermat’s Theorem. Fermat tells that, if
gcd(a, p) = 1, then

ap−1 ≡ 1 (mod p).

Euler’s Theorem will give us a certain function φ such that, if gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n).

. November ,  (Thursday)

We have defined
µ(n) = (−1)r,

if n is the product of r distinct primes; otherwise, µ(n) = 0. In particular, µ(1) =
(−1)0 = 1. We have shown that µ is multiplicative, that is,

µ(mn) = µ(m) · µ(n),

provided gcd(m,n) = 1. We have shown (‡). From, this, we have established the Möbius
Inversion Formula: if (∗), then (†).

Now we define a new multiplicative function, the Euler phi-function: φ(n) is the
number of x such that 0 6 x < n and x is prime to n. Then

(a) φ(1) = 1;
(b) φ(p) = p− 1;
(c) φ(pr) = pr − pr−1 when r > 0.
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Indeed, suppose gcd(a, pr) 6= 1. Then gcd(a, pr) = pk for some positive k. In particular,
p | a. Conversely, if p | a, then p | gcd(a, pr), so gcd(a, pr) 6= 1. Therefore φ(pr) is the
number of integers x such that 0 6 x < pr and p - x; so

φ(pr) = pr − pr

p
= pr ·

(

1 − 1

p

)

.

If we can show φ is multiplicative, and n = p1
k(1) · · ·pr

k(r), then

φ(n) = φ(p1
k(1)) · · ·φ(pr

k(r))

= p1
k(1) ·

(

1 − 1

p1

)

· · · pr
k(r) ·

(

1 − 1

pr

)

= p1
k(1) · · · pr

k(r) ·
(

1 − 1

p1

)

· · ·
(

1 − 1

pr

)

= n ·
(

1 − 1

p1

)

· · ·
(

1 − 1

pr

)

.

But again, we must show φ is multiplicative. We do this with the Chinese Remainder
Theorem.

Let us denote the set {x ∈ Z : 0 6 x < n} by [0, n). Assume gcd(m,n) = 1. If
x ∈ [0, mn), then there is a unique a in [0, m) such that x ≡ a (mod m); likewise, there
is a unique b in [0, n) such that x ≡ b (mod n). Thus we have a function x 7→ (a, b) from
[0, mn) into [0, m) × [0, n). Moreover, if x is prime to mn, then it is prime to m and to
n, so a is prime to m, and b is prime to n.

Convsersely, by the Chinese Remainder Theorem, for every a in [0, m) and b in [0, n),
there is a unique x in [0, mn) such that

{

x ≡ a (mod m),

x ≡ b (mod n).

Moreover, if a is prime to m, and b is prime to n, then x is prime to m and to n, hence
to mn (that is, lcm(m,n)). Therefore we have a bijection between the sets

{x ∈ [0, mn) : gcd(x,mn) = 1}
and

{x ∈ [0, m) : gcd(x,m) = 1} × {x ∈ [0, n) : gcd(x, n) = 1}.
Therefore the sizes of these sets are equal; but by definition of φ, these sizes are φ(mn)
and φ(m) · φ(n).

The idea can be seen in a table, as

0 1 2 3 4 5 6
0 0 8 16 24 4 12 20
1 21 1 9 17 25 5 13
2 14 22 2 10 18 26 6
3 7 15 23 3 11 19 27

This gives the function x 7→ (a, b) from [0, 28) to [0, 4)× [0, 7). For example, 18 is in row
2 and column 4, so the function takes 18 to (2, 4). As 0 and 2 are not prime to 4, we
delete rows 0 and 2; as 0 is not prime to 7, we delete column 0. The numbers remaining



ELEMENTARY NUMBER THEORY 

are prime to 28; and the number of these numbers—by definition, φ(28)—is 2 · 6, which
is φ(4) · φ(7).

0 1 2 3 4 5 6
0
1 1 9 17 25 5 13
2
3 15 23 3 11 19 27

Burton [] also uses a table of numbers, but written in the usual order:

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27

The numbers prime to 7 are all in the first column, so delete it:

1 2 3 4 5 6
8 9 10 11 12 13
15 16 17 18 19 20
22 23 24 25 26 27

Then the number of remaining columns is φ(7). In each of these columns, just two
numbers are prime to 4 (since each column contains a complete set of residues modulo
4). If we delete the numbers not prime to 4, what remains is the following:

1 3 5
9 11 13

15 17 19
23 25 27

Again, there are φ(4) · φ(7) numbers left, or φ(28).

. November ,  (Tuesday)

We have defined

φ(n) = |{x ∈ Z : 0 6 x < n & gcd(x, n) = 1}|.
To find a particular value, we can use a variant of the Sieve of Eratosthenes. For example,
say we want φ(30). As 30 = 2 · 3 · 5, we write down the numbers from 0 to 29 (or 1 to
30) and eliminate the multiples of 2, 3, or 5:

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29

1 3 5 7 9
11 13 15 17 19
21 23 25 27 29
1 5 7

11 13 17 19
23 25 29

1 7
11 13 17 19

23 29
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As 8 numbers remain, we have φ(30) = 8.
Our list of numbers had 10 columns and 3 rows. When we eliminated multiples of 2

and 5, we eliminated the columns headed by 0, 2, 4, 5, 6, and 8. The remaining columns
were headed by 1, 3, 7, and 9: four numbers. Therefore φ(10) = 4. In each of the
remaining columns, the entries are incongruent modulo 3. Indeed, the numbers differ by
10 or 20, and these are not divisible by 3. So, in each column, exactly one entry is a
multiple of 3. When it is eliminated, there are 4 · 2 entries remaining: this is φ(10) ·φ(3).
Thus, multiplicativity of φ is established. Alternatively, as last time, we can tabulate the
numbers from 0 to 29 thus:

0 1 2 3 4 5 6 7 8 9
0 0 21 12 3 24 15 6 27 18 9
1 10 1 22 13 4 25 16 7 28 19
2 20 11 2 23 14 5 26 17 8 29

Eliminating multiples of 2, 3, and 5 means eliminating certain columns and rows:

0 1 2 3 4 5 6 7 8 9
0
1 1 13 7 19
2 11 23 17 29

In general, we have

φ(p) = p− 1;

φ(ps) = ps − ps−1 = p ·
(

1 − 1

p

)

, if s > 0;

φ(mn) = φ(m) · φ(n), if gcd(m,n) = 1.

Hence, if n has the distinct prime divisors p1, . . . , ps, then

φ(n) = n ·
s∏

k=1

(

1 − 1

pi

)

.

We can write this more neatly as

φ(n) = n ·
∏

p|n

(

1 − 1

p

)

.

For example,

φ(30) = 30 ·
(

1 − 1

2

)

·
(

1 − 1

3

)

·
(

1 − 1

5

)

= 30 · 1

2
· 2

3
· 4

5
= 8.

Since 180 has the same prime divisors as 30, we have

φ(180)

φ(30)
=

180

30
= 6,

so φ(180) = 6φ(30) = 48. But 15 and 30 do not have the same prime divisors, and we
cannot expect φ(15)/φ(30) to be 15/30, or 1/2; indeed, φ(15) = φ(3) · φ(5) = 2 · 4 = 8 =
φ(30).

Theorem (Euler). If gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n).
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Fermat’s Theorem is the special case when n = p. But we do not generally have
aφ(n)+1 ≡ a (mod n) for arbitrary a. For example, φ(12) = 4, but 25 = 32 ≡ 8 (mod 12);
so

2φ(12)+1 6≡ 2 (mod 12).

Proof of Euler’s Theorem. Assume gcd(a, n) = 1. We can write {x ∈ Z : 0 6 x < n &
gcd(x, n) = 1} as

{b1, b2, . . . , bφ(n)}.

Then we can obtain aφ(n) from

φ(n)
∏

k=1

(abk) = aφ(n) ·
φ(n)
∏

k=1

bk.

As the two products are invertible modulo n, it is enough now to show that the two
products are congruent modulo n. As a is invertible modulo n, there is a function f from
{0, 1, . . . , φ(n)} to itself such that

abi ≡ bf(i) (mod n)

for each i. Moreover, if f(i) = f(j), then

abi ≡ bf(i) ≡ bf(j) ≡ abj (mod n),

so bi ≡ bj (mod n), hence i = j. So f is a permutation. Therefore

φ(n)
∏

k=1

bk ≡
φ(n)
∏

k=1

bf(k) ≡
φ(n)
∏

k=1

(abk) (mod n).

As noted, the claim now follows. �

For example, to solve

36919587x ≡ 1 (mod 1000),

we compute

φ(1000) = φ(103) = φ(23 · 53) = φ(23) · φ(53) = 4 · 100 = 400.

Now reduce the exponent:

19587

400
= 48 +

387

400
.

So we want to solve

369387x ≡ 1 (mod 1000),

x ≡ 36913 (mod 1000).
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Now proceed, using that 13 = 8+4+1 = 23 +22 +1. Multiplication modulo 1000 requires
only three columns:

3 6 9
3 6 9
3 2 1
1 4
7
1 6 1

so 3692 ≡ 161 (1000); 1 6 1
1 6 1
1 6 1
6 6
1
9 2 1

so 3694 ≡ 1612 ≡ 921 (1000);

9 2 1
9 2 1
9 2 1
4 2
9
2 4 1

so 3698 ≡ 9212 ≡ 241 (1000);

36913 ≡ 3698 · 3694 · 369 ≡ 241 · 921 · 369 (1000);

2 4 1
9 2 1
2 4 1
8 2
9
9 6 1

9 6 1
3 6 9
6 4 9
6 6
3
6 0 9

So the solution is x ≡ 609 (mod 1000).
∗ ∗ ∗ ∗ ∗

Euler’s Theorem gives a neat theoretical solution to Chinese-Remainder-Theorem prob-
lems: Suppose the integers n1, . . . , ns are pairwise co-prime. Say we want to solve the
system







x ≡ a1 (mod n1),

. . .

x ≡ as (mod ns).

Define

n = n1 · · ·ns;

Ni =
n

ni
.

Then the system is solved by

x ≡ a1 ·N1
φ(n1) + · · ·+ as ·Ns

φ(ns)

Indeed, we have

Ni
φ(ni) ≡

{

1 (mod ni);

0 (mod nj), if j 6= i.

∗ ∗ ∗ ∗ ∗
As φ is multiplicative, so is

n 7→
∑

d|n

φ(d).
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What is this function? The function is determined by its values at prime powers; so look
at these. We have

∑

d|ps

φ(d) =
s∑

k=0

φ(pk) = 1 +
s∑

k=1

(pk − pk−1) =

= 1 + (p− 1) + (p2 − p) + · · ·+ (ps − ps−1) = ps.

Thus, the equation
∑

d|n

φ(d) = n

holds when n is prime power. As both sides are multiplicative functions of n, the equation
holds for all n. Thus we have

Theorem (Gauss).
∑

d|n φ(d) = n for all positive integers n.

For an alternative proof, partition the set {0, 1, . . . , n−1} according to greatest common
divisor with n. For example, suppose n = 12. We can construct a table as follows, where
the rows are labelled with the divisors of 12. Each number x from 0 to 11 inclusive is
assigned to row d, if gcd(x, 12) = d.

0 1 2 3 4 5 6 7 8 9 10 11
12 0
6 6
4 4 8
3 3 9
2 2 10
1 1 5 7 11

But we have

0 6 x < 12 & gcd(x, 12) = d ⇐⇒ gcd
(x

d
,
12

d

)

= 1 & 0 6
x

d
<

12

d
.

So the number of entries in row d is just φ(12/d). There are 12 entries in some row, so
12 =

∑

d|12 φ(d).
Is there anything noticeable about the table? Try n = 20:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 0
10 10
5 5 15
4 4 8 12 16
2 2 6 14 18
1 1 3 7 9 11 13 17 19

The entries are symmetric about a vertical axis, except for 0. Is there a theorem here?
Define

Sn = {x ∈ Z : 0 6 x < n & gcd(x, n) = 1},
so |Sn| = φ(n). It appears that, when n > 1, then the average member of Sn is n/2:

∑

x∈Sn
x

φ(n)
=
n

2
.
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Indeed, when n > 1, then Sn has the permutation x 7→ n− x, so

2 ·
∑

x∈Sn

x =
∑

x∈Sn

x +
∑

x∈Sn

(n− x) =
∑

x∈Sn

(x+ (n− x)) =
∑

x∈Sn

x = n · φ(n).

Therefore

n > 1 =⇒
∑

x∈Sn

=
n · φ(n)

2
.

. November ,  (Thursday)

Recall Gauss’s Theorem:
∑

d|n

φ(d) = n. (∗)

We gave two proofs; each one exhibits some useful techniques.
Let us make the tabular proof more precise. If d | n, let

Sn
d = {x : 0 6 x < n & gcd(x, n) = d}.

Then [0, n) =
⋃

d|n S
n
d , and the sets Sn

d are disjoint as d varies over the divisors of n.
Therefore

n = |[0, n)| =
∑

d|n

|Sn
d |. (†)

But we also have

x ∈ Sn
d ⇐⇒ 0 6 x < n & gcd(x, n) = d

⇐⇒ 0 6
x

d
<
n

d
& gcd

(x

d
,
n

d

)

= 1

⇐⇒ x

d
∈ S

n/d
1 .

So we have a bijection x 7→ x/d from Sn
d to S

n/d
1 , which means

|Sn
d | = |Sn/d

1 |.
Also,

|Sn/d
1 | = φ

(n

d

)

.

So (†) now becomes

n =
∑

d|n

φ
(n

d

)

=
∑

d|n

φ(d).

The idea behind the last equation is frequently useful. For any function f (on the
positive integers), we have

∑

d|n

f
(n

d

)

=
∑

d|n

f(d).

This is because the function x 7→ n/x is a permutation of the set of divisors of n.
Our other proof of Gauss’s Theorem used the multiplicativeness of (∗). It was enough

to show that these are equal when n was a prime power. This technique is frequently
useful.

∗ ∗ ∗ ∗ ∗
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To (∗) we can apply the Möbius Inversion Formula to get

φ(n) =
∑

d|n

µ
(n

d

)

· d =
∑

d|n

µ(d) · n
d

= n ·
∑

d|n

µ(d)

d

and therefore
φ(n)

n
=

∑

d|n

µ(d)

d
.

But we also have φ(n) = n ·
∏

p|n(1 − 1/p), so φ(n)/n =
∏

p|n(1 − 1/p). Therefore

∏

p|n

(

1 − 1

p

)

=
∑

d|n

µ(d)

d
.

For example,

∑

d|12

µ(d)

d
=
µ(1)

1
+
µ(2)

2
+
µ(3)

3
+
µ(4)

4
+
µ(6)

6
+
µ(12)

12
=

= 1 − 1

2
− 1

3
+

1

6
=

(

1 − 1

2

)(

1 − 1

3

)

=
∏

p|12

(

1 − 1

p

)

.

∗ ∗ ∗ ∗ ∗
Recall Euler’s Theorem:

gcd(a, n) = 1 =⇒ aφ(n) ≡ 1 (mod n).

This can be improved in some cases. For example, 255 = 3 · 5 · 17, so φ(255) = φ(3) ·
φ(5) · φ(17) = 2 · 4 · 16 = 128, and hence

gcd(a, 255) = 1 =⇒ a128 ≡ 1 (mod 255).

But by Fermat’s Theorem,

3 - a =⇒ a2 ≡ 1 (mod 3) =⇒ a16 ≡ 1 (mod 3);

5 - a =⇒ a4 ≡ 1 (mod 5) =⇒ a16 ≡ 1 (mod 5);

17 - a =⇒ a16 ≡ 1 (mod 17).

Therefore gcd(a, 255) = 1 =⇒ a16 ≡ 1 (mod 3, 5, 17), that is,

gcd(a, 255) = 1 =⇒ a16 ≡ 1 (mod 255).

In general, the order of a modulo n is the least positive k such that

ak ≡ 1 (mod n).

If such k does exist, then ak − 1 = n · ` for some `, so

a · ak−1 − n · ` = 1,

and therefore gcd(a, n) = 1. Conversely, if gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n), so a
has an order modulo n.

Assuming gcd(a, n) = 1, let us denote the order of a modulo n by

ordn(a).

For example, what is ord17(2)? Just compute powers of 2 modulo 17:

2, 4, 8, 16 ≡ −1, −2, −4, −8, −16 ≡ 1.
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Then ord17(2) = 8. We also have

3, 9 ≡ −8, −24 ≡ −7, −21 ≡ −4, −12 ≡ 5, 15 ≡ −2, −6, −18 ≡ −1,

− 3, 8, 7, 4, −5, 2, 6, 1.

Note how, halfway through, we just change signs. So ord17(3) = 16.

. November ,  (Tuesday)

We have computed

k 1 2 3 4 5 6 7 8
3k (mod 17) 3 −8 −7 −4 5 −2 −6 −1

k 9 10 11 12 13 14 15 16
3k (mod 17) −3 8 7 4 −5 2 6 1

Hence 16 is the least positive k such that 3k ≡ 1 (mod 17), so ord17(3) = 16. From the
table we extract

k 1 2 3 4 5 6 7 8
(−8)k (mod 17) −8 −4 −2 −1 8 4 2 1

which means ord17(−8) = 8. Likewise, ord17(−4) = 4, and ord17(−1) = 2. So we have

a 1 2 3 4 5 6 7 8
ord17(a) 1 16

ord17(−a) 2 4 8

How can we complete the table? For example, what is ord17(−7)? Since −7 ≡ 33

(mod 17), and gcd(3, 16) = 1, we have ord17(−7) = 16. Likewise, ord17(5) = 16. But
ord17(−2) = 16/ gcd(6, 16) = 8, since −2 ≡ 36 (mod 17). This is by a general theorem
to be proved presently. We complete the table thus:

a 1 2 3 4 5 6 7 8
ord17(a) 1 8 16 4 16 16 16 8

ord17(−a) 2 8 16 4 16 16 16 8

Theorem. Suppose gcd(a, n) = 1. Then

(a) ak ≡ 1 (mod n) if and only if ordn(a) | k.
(b) ordn(as) = ordn(a)/ gcd(s, ordn(a)).
(c) ak ≡ a` if and only if k ≡ ` (mod ordn(a)).

Proof. For (a), the reverse direction is easy. For the forward direction, suppose ak ≡ 1
(mod n). Now use division:

k = ordn(a) · s+ r

for some s and r, where 0 6 r < ordn(a). Then

1 ≡ ak ≡ aordn(a)·s+r ≡ (aordn(a))s · ar ≡ ar (mod n).

By minimality of ordn(a) as an integer k such that ak ≡ 1 (mod n), we conclude r = 0.
This means ordn(a) | k.

To prove (b), by (a) we have, modulo n,

(as)k ≡ 1 ⇐⇒ ask ≡ 1 ⇐⇒ ordn(a) | sk ⇐⇒ ordn(a)

gcd(s, ordn(a))
| k,
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but also

(as)k ≡ 1 ⇐⇒ ordn(as) | k
Hence

ordn(a)

gcd(s, ordn(a))
| k ⇐⇒ ordn(as) | k.

This is true for all k. Since orders are positive, we conclude

ordn(a)

gcd(s, ordn(a))
= ordn(as).

Finally, (c) follows from (a), since

ak ≡ a` (mod n) ⇐⇒ ak−` ≡ 1 (mod n)

⇐⇒ ordn(a) | k − `

⇐⇒ k ≡ ` (mod ordn(a)).

(We have used that gcd(a, n) = 1, so that a−` exists.) �

Hence, from

k 1 2 3 4 5 6 7 8 9
2k (mod 19) 2 4 8 −3 −6 7 −5 9 −1

2k+9 (mod 19) −2 −4 −8 3 6 −7 5 −9 1

we obtain
a 1 2 3 4 5 6 7 8 9

ord19(a) 1 18 18 9 9 9 3 6 9
ord19(−a) 2 9 9 18 18 18 6 3 18

since

ord19(2
k) = 18 ⇐⇒ gcd(k, 18) = 1

⇐⇒ k ≡ 1, 5, 7, 11, 13, 17 (mod 18)

⇐⇒ 2k ≡ 2,−6,−5,−4, 3,−9 (mod 19);

ord19(2
k) = 9 ⇐⇒ gcd(k, 18) = 2

⇐⇒ k ≡ 2, 4, 8, 10, 14, 16 (mod 18)

⇐⇒ 2k ≡ 4,−3, 9,−2, 6, 5 (mod 19),

ord19(2
k) = 6 ⇐⇒ gcd(k, 18) = 3

⇐⇒ k ≡ 3, 15 (mod 18)

⇐⇒ 2k ≡ 8,−7 (mod 19),

ord19(2
k) = 3 ⇐⇒ gcd(k, 18) = 6

⇐⇒ k ≡ 6, 12 (mod 18)

⇐⇒ 2k ≡ 7,−8 (mod 19),

ord19(2
k) = 2 ⇐⇒ gcd(k, 18) = 9

⇐⇒ k ≡ 9 (mod 18)

⇐⇒ 2k ≡ −1 (mod 19).
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If d | 19, let ψ(d) be the number of incongruent residues modulo 19 that have order d.
Then we have

d ψ(d)
18 6
9 6
6 2
3 2
2 1
1 1

Note that ψ(d) = φ(d) here.
∗ ∗ ∗ ∗ ∗

We can understand what we are doing algebraically as follows. The set of congruence-
classes modulo n is denoted by

Z/(n)

or Z/nZ. On this set, addition and multiplication are well-defined: the set is a ring.
The set of multiplicatively invertible elements of the ring is denoted by

(Z/(n))×.

This set is closed under multiplication and inversion: it is a (multiplicative) group.
Suppose k ∈ (Z/(n))×. (More precisely one might write the element as k + (n) or k̄.)
Then we have the function

x 7→ kx

from Z to (Z/(n))×. Since kx+y = kx · ky, this function is a homomorphism from the
additive group Z to the multiplicative group (Z/(n))×.

We have shown that the function x 7→ 2x is surjective onto (Z/(19))×, and its kernel
is (18). Hence (by the First Isomorphism Theorem for Groups), this function is an
isomorphism from Z/(18) onto (Z/(19))×:

Z/(18) ∼= (Z/(19))×,

({0, 1, 2, . . . , 17},+) ∼= ({1, 2, 3, . . . , 18}, · ).

∗ ∗ ∗ ∗ ∗
If gcd(a, n) = 1, and ordn(a) = φ(n), then a is called a primitive root of n. So we

have shown that 3, but not 2, is a primitive root of 17, and 2 is a primitive root of 19.
There is no formula for determining primitive roots: we just have to look for them. But
once we know that 2 is a primitive root of 19, then we know that 25, 27, 211, 213, and 217

are primitive roots—or rather, −6, −5, −4, 3, and −9 are primitive roots.

Theorem. Every prime number has a primitive root.

Proof. If d | p − 1, let ψ(d) be the number of incongruent residues modulo p that have
order d. We shall show ψ(p− 1) 6= 0. In fact, we shall show ψ(d) = φ(d).

Every number prime to p has an order modulo p, and this order divides φ(p), which is
p− 1; so

∑

d|p−1

ψ(d) = p− 1.
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By Gauss’s Theorem we have
∑

d|p−1 φ(d) = p− 1; therefore
∑

d|p−1

ψ(d) =
∑

d|p−1

φ(d). (∗)

Hence, to establish ψ(d) = φ(d), it is enough to show that ψ(d) 6 φ(d) whenever d | p−1.
Indeed, if we show this, but ψ(e) < φ(e) for some divisor e of p− 1, then

∑

d|p−1

ψ(d) =
∑

d|p−1
d6=e

ψ(d) + ψ(e) <
∑

d|p−1
d6=e

φ(d) + φ(e) =
∑

d|p−1

φ(d),

contradicting (∗).
If ψ(d) = 0, then certainly ψ(d) 6 φ(d). So suppose ψ(d) 6= 0. Then ordp(a) = d for

some a. In particular, a is a solution of the congruence

xn − 1 ≡ 0 (mod p). (†)
But then every power of a is a solution, since (ak)n = (an)k. Moreover, if 0 < k < ` 6 n,
then

ak 6≡ a` (mod p)

by the earlier theorem. Hence the numbers a, a2, . . . , an are incongruent solutions to the
congruence (†). Among these solutions, those that have order n modulo p are just those
powers ak such that gcd(k, n) = 1. The number of such powers is just φ(n).

Every number that has order n modulo p is a solution to (†). So we have that ψ(d) =
φ(d) (under the assumption ψ(d) > 0), provided we can show that every solution to (†)
is on the list a, a2, . . . , an. But this is a consequence of the following theorem. �

. November ,  (Thursday)

Theorem (Lagrange). Every congruence of the form

xn + a1x
n−1 + · · ·+ an−1x+ an ≡ 0 (mod p)

has n solutions or fewer (modulo p).

Proof. Use induction. The claim is trivially true when n = 0. Suppose it is true when
n = k. Say the congruence

xk+1 + a1x
k + · · ·+ akx + ak+1 ≡ 0 (mod p) (∗)

has a solution b. Then we can factorize the left member, and rewrite the congruence as

(x− a) · (xk + c1x
k−1 + · · ·+ ck−1x + ck) ≡ 0 (mod p).

Any solution to this that is different from a is a solution of

xk + c1x
k−1 + · · ·+ ck−1x + ck ≡ 0 (mod p).

But by inductive hypothesis, there are at most k such solutions. Therefore (∗) has at
most k + 1 solutions. This completes the induction and the proof. �

How did we use that p is prime? We needed to know that, if f(x) and g(x) are
polynomials, and f(a) · g(a) ≡ 0 (mod p), then either f(a) ≡ 0 (mod p), or else g(a) ≡ 0
(mod p). That is, if mn ≡ 0 (mod p), then either m ≡ 0 (mod p) or n ≡ 0 (mod p).
That is, if p | mn, then p | m or p | n. This fails if p is replaced by a composite number.

From analysis, we have
exp : R → R×.
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Here, R× = R r {0} (the multiplicatively invertible real numbers), and exp(x + y) =
exp(x) · exp(y). The range of exp is (0,∞), which is closed under multiplication and
inversion. So exp is an isomorphism from (R,+) onto ((0,∞), · ). We have been looking
at a similar isomorphism in discrete mathematics.

We have |(Z/(n))×| = φ(n). A primitive root of n, if it exists, is a generator of the
multiplicative group (Z/(n))×. In particular:

(a) (Z/(2))× = {1}, so 1 is a primitive root of 2.
(b) (Z/(3))× = {1, 2}, and 22 ≡ 1 (mod 3), so 2 is a primitive root of 3.
(c) (Z/(4))× = {1, 3}, and 32 ≡ 1 (mod 4), so 3 is a primitive root of 4.
(d) (Z/(5))× = {1, 2, 3, 4}, and 22 ≡ 4, 23 ≡ 3, and 24 ≡ 1 (mod 5), so 2 is a primitive

root of 5.
(e) (Z/(6))× = {1, 5}, and 52 ≡ 1 (mod 6), so 5 is a primitive root of 6.
(f) (Z/(7))× = {1, 2, 3, 4, 5, 6}, and we have

k 1 2 3 4 5 6
2k 2 4 1
3k 3 2 6 4 5 1

so 3 (but not 2) is a primitive root of 7.
(g) (Z/(8))× = {1, 3, 5, 7}, but 32 ≡ 1, 52 ≡ 1, and 72 ≡ 1 (mod 8), so 8 has no

primitive root.

We have shown that primes have primitive roots, but the converse fails: not every
number with a primitive root is prime. In fact, the following numbers have primitive
roots:

(a) powers of odd primes;
(b) 2 and 4;
(c) doubles of powers of odd primes.

. November ,  (Thursday)

Modulo 17, we have

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3k 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6

Reordering, we have

3k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k 0 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

If 3k = `, then we can denote k by log3 `. But we can think of these numbers as
congruence-classes:

3k ≡ ` (mod 17) ⇐⇒ k ≡ log3 ` (mod 16).

The usual properties hold:

log3(xy) ≡ log3 x + log3 y (mod 16); log3 x
n ≡ n log3 x (mod 16).

For example,

log3(11 · 14) ≡ log3 11 + log3 14 ≡ 7 + 9 ≡ 16 ≡ 0 (mod 16),

and therefore 11 · 17 ≡ 30 ≡ 1 (mod 17).
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In general, the base of logarithms will be a primitive root. If b is a primitive root of n,
and gcd(a, n) = 1, then there is some s such that

bs ≡ a (mod n).

Then s is unique modulo φ(n). Indeed, recall that

bx ≡ by (mod n) ⇐⇒ x ≡ y (mod φ(n)).

The least non-negative such s is defined to be logb a, modulo n.
Another application of logarithms, besides multiplication problems, is congruences of

the form

xd ≡ a (mod n).

This is equivalent to

logb x
d ≡ logb a (mod φ(n)),

d logb x ≡ logb a (mod φ(n)).

If this is to have a solution, then we must have

gcd(d, φ(n)) | logb a.

For example, let’s work modulo 7:

k 0 1 2 3 4 5
3k 1 3 2 6 4 5

` 1 2 3 4 5 6
log3 ` 0 2 1 4 5 3

Then we have, for example,

x3 ≡ 2 (mod 7) ⇐⇒ 3 log3 x ≡ 2 (mod 6),

so there is no solution, since gcd(3, 6) = 3, and 3 - 2. But we also have

x3 ≡ 6 (mod 7) ⇐⇒ 3 log3 x ≡ 3 (mod 6)

⇐⇒ log3 x ≡ 1 (mod 2)

⇐⇒ log3 x ≡ 1, 3, 5 (mod 6)

⇐⇒ x ≡ 31, 33, 35 (mod 7)

⇐⇒ x ≡ 3, 6, 5 (mod 7).

We expect no more than 3 solutions, by the Lagrange’s Theorem. Is there an alternative
to using logarithms? As 6 ≡ 33 (mod 7), we have

x3 ≡ 6 (mod 7) ⇐⇒ x3 ≡ 33 (mod 7);

but we cannot conclude from this x ≡ 3 (mod 7).

. December ,  (Tuesday)

For congruences modulo 11, we can use the following table:

k 1 2 3 4 5 6 7 8 9 10 log2 ` (mod 10)
2k (mod 11) 2 4 −3 5 −1 −2 −4 3 −5 1 `
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We have then

4x15 ≡ 7 (mod 11) ⇐⇒ 4x5 ≡ 7 (mod 11)

⇐⇒ log2(4x
5) ≡ log2 7 (mod 10)

⇐⇒ log2 4 + 5 log2 x ≡ log2 7 (mod 10)

⇐⇒ 2 + 5 log2 x ≡ 7 (mod 10)

⇐⇒ 5 log2 x ≡ 5 (mod 10)

⇐⇒ log2 x ≡ 1 (mod 2)

⇐⇒ log2 x ≡ 1, 3, 5, 7, 9 (mod 10)

⇐⇒ x ≡ 21, 23, 25, 27, 29 (mod 11)

⇐⇒ x ≡ 2, 8, 10, 7, 6 (mod 11).

Why are there five solutions?

Theorem. Suppose n has a primitive root r, so that logarithms with base r are defined.
(So a ≡ rb (mod n) if and only if logr a ≡ b (mod φ(n)), when gcd(a, n) = 1.) Assume
gcd(a, n) = 1. Let d = gcd(k, φ(n)). Then the following are equivalent:

(a) The congruence xk ≡ a (mod n) is soluble.
(b) The congruence has d solutions.
(c) aφ(n)/d ≡ 1 (mod n).

Proof. The following are equivalent:

xk ≡ a (mod n) is soluble;

k log x ≡ a (mod φ(n)) if soluble;

d | log a;

φ(n) | φ(n)

d
· log a;

φ(n)

d
· log a ≡ 0 (mod φ(n));

log aφ(n)/d ≡ 0 (mod φ(n));

aφ(n)/d ≡ 1 (mod n).

Thus (a) ⇐⇒ (c). Trivially, (b) =⇒ (a). Finally, assume (a), so that d | log a, as above.
Then

xk ≡ a (mod n) ⇐⇒ k log x ≡ log a (mod φ(n))

⇐⇒ k

d
· log x ≡ log a

d
(mod

φ(n)

d
)

⇐⇒ log x ≡ log a

k
(mod

φ(n)

d
)

⇐⇒ log x ≡ log a

k
+
φ(n)

d
· j (mod φ(n)),

where j ∈ {0, 1, . . . , d− 1}
⇐⇒ x ≡ r(log a)/k · (rφ(n)/d)j (mod n),

where j ∈ {0, 1, . . . , d− 1}.
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These d solutions are incongruent, as ordn(r) = φ(n). �

∗ ∗ ∗ ∗ ∗
We know that all primes have primitive roots. Now we show that the numbers with

primitive roots are precisely:
2, 4, ps, 2 · ps,

where p is an odd prime, and s > 1. We shall first show that the numbers not on this
list do not have primitive roots:

Lemma. If k > 2, then 2 | φ(k).

Proof. Suppose k > 2. Then either k = 2s, where s > 1, or else k = ps ·m for some odd
prime p, where s > 0 and gcd(p,m) = 1. In the first case, φ(k) = 2s − 2s−1 = 2s−1, which
is even. In the second case, φ(k) = φ(ps) · φ(m), which is even, since φ(ps) = ps − ps−1,
the difference of two odd numbers. �

Theorem. If m and n are co-prime, both greater than 2, then mn has no primitive root.

Proof. Suppose gcd(a,mn) = 1. (This is the only possibility for a primitive root.) Then
a is prime to m and n, so

aφ(m) ≡ 1 (mod m); aφ(n) ≡ 1 (mod n);

alcm(φ(m),φ(n)) ≡ 1 (mod m,n),

alcm(φ(m),φ(n)) ≡ 1 (mod lcm(m,n)),

alcm(φ(m),φ(n)) ≡ 1 (mod mn).

By the lemma, 2 divides both φ(m) and φ(n), so

lcm(φ(m), φ(n)) | φ(m)φ(n)

2
,

that is, lcm(φ(m), φ(n)) | φ(mn)/2. Therefore

ordmn(a) 6
φ(mn)

2
,

so a is not a primitive root of mn. �

Theorem. If k > 0, then 23+k has no primitive root.

Proof. Any primitive root of 23+k must be odd. Let a be odd. We shall show by induction
that

aφ(23+k)/2 ≡ 1 (mod 23+k).

This means, since φ(23+k) = 23+k − 22+k = 22+k, that we shall show

a21+k ≡ 1 (mod 23+k).

The claim is true when k = 0, since a2 ≡ 1 (mod 8) for all odd numbers a. Suppose the
claim is true when k = `: that is,

a21+` ≡ 1 (mod 23+`).

This means
a21+`

= 1 + 23+` ·m
for some m. Now square:

a22+`

= (a21+`

)2 = (1 + 23+` ·m)2 = 1 + 24+` ·m + 26+2` ·m2.
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Hence a22+` ≡ 1 (mod 24+`), that is,

a21+(`+1) ≡ 1 (mod 23+(`+1));

so our claim is true when k = `+ 1. This completes the induction and the proof. �

Now for the positive results. These will use the following.

Lemma. Let r be a primitive root of p, and k > 0. Then

ordpk(r) = (p− 1)p`

for some `, where 0 6 ` < k.

Proof. Let ordpk(r) = n. Then n | φ(pk). But φ(pk) = pk − pk−1 = (p− 1) · pk−1. Thus,

n | (p− 1) · pk−1.

Also, rn ≡ 1 (mod pk), so rn ≡ 1 (mod p), which means ordp(r) | n. But r is a primitive
root of p, so ordp(r) = φ(p) = p− 1. Therefore

p− 1 | n.
The claim now follows. �

Lemma. p2 has a primitive root. In fact, if r is a primitive root of p, then either r or
r + p is a primitive root of p2.

Proof. Let r be a primitive root of p. If r is a primitive root of p2, then we are done.
Suppose r is not a primitive root of p2. Then ordp2(r) = p−1, by the last lemma. Hence,
modulo p2, we have

(r + p)p−1 ≡ rp−1 + (p− 1) · rp−2 · p +

(
p− 1

2

)

· rp−3 · p2 + · · ·

≡ rp−1 + (p− 1) · rp−2 · p
≡ 1 + (p− 1) · rp−2 · p
≡ 1 − rp−2 · p
6≡ 1,

since p - r. (Note that this argument holds even if p = 2.) Hence ordp2(r+ p) 6= p− 1, so
by the lemma, the order must be (p− 1) · p, that is, φ(p2). This means r is a primitive
root of p2. �

Theorem. All odd prime powers (that is, all powers of odd primes) have primitive roots.
In fact, a primitive root of p2 is a primitive root of every power p2+k.

Proof. Assume p is an odd prime. We know p and p2 have primitive roots. Let r be a
primitive root of p2. We prove by induction that r is a primitive root of p2+k. The claim
is trivially true when k = 0. Suppose it is true when k = `. This means

ordp2+`(r) = (p− 1) · p1+`.

In particular,

r(p−1)·p` 6≡ 1 (mod p2+`).

However, since φ(p1+`) = (p− 1) · p`, we have

r(p−1)·p` ≡ 1 (mod p1+`).
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These two congruences imply that

r(p−1)·p`

= 1 + p1+` ·m
for some m that is indivisible by p. Now raise both sides of this equation to the power p:

r(p−1)·p`+1

= (r(p−1)·p`

)p

= (1 + p1+` ·m)p

= 1 + p · p1+` ·m+

(
p

2

)

· (p1+` ·m)2 +

(
p

3

)

· (p1+` ·m)3 + · · ·

= 1 + p1+(`+1) ·m+

(
p

2

)

· p2+2` ·m2 +

(
p

3

)

· p3+3` ·m3 + · · · .

Since p > 2, so that p |
(

p
2

)
, we have

r(p−1)·p`+1 ≡ 1 + p1+(`+1) ·m (mod p2+(`+1))

6≡ 1 (mod p2+(`+1)).

Therefore we must have

ordp2+(`+1)(r) = (p− 1) · p1+(`+1) = φ(p2+(`+1)),

which means r is a primitive root of p2+(`+1). �

It remains to show that 2 · ps also has a primitive root.

. December ,  (Thursday)

If gcd(r, n) = 1, then the following are equivalent:

(a) r is a primitive root of n;
(b) ordn(r) = φ(n);
(c) if gcd(a, n) = 1, then a ≡ rb (mod n) for some b.

We have shown:

(a) Every prime p has a primitive root, r;
(b) either r or r + p is a primitive root of p2;
(c) if p is odd, then every primitive root of p2 is a primitive root of p2+k.

For example, 3 has the primitive root 2, since 2 6≡ 1 (mod 3), but 22 ≡ 1 (mod 3). Hence,
either 2 or 5 is a primitive root of 9. In fact, both are. Using 5 ≡ −4 (mod 9), we have:

k 1 2 3 6 = φ(9)
2k (mod 9) 2 4 −1 1

(−4)k (mod 9) −4 −2 −1 1

Therefore 2 and −4 must be primitive roots of 27, and indeed

k 1 2 3 4 5 6 7 8 9 18 = φ(27)
2k (mod 27) 2 4 8 −11 5 10 −7 13 −1 1

(−4)k (mod 27) −4 −11 −10 13 2 −8 5 7 −1 1

But does 18 have a primitive root? We have

k 1 2 3 4 5 6 7
(−4)k −4 −2 8 4 2 −8 −4

5k 5 7 −1 −5 −7 1 5
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The powers of −4 and 5 cycle through six numbers in each case. Corresponding powers
differ by 9: Since −4 ≡ 5 (mod 9), we have (−4)k ≡ 5k (mod 9). But the powers of −4
are not prime to 18, so −4 is not a primitive root of 18. However, 5 is.

Theorem. If p is an odd prime, and r is a primitive root of ps, then either r or r + ps

is a primitive root of 2ps—whichever one is odd.

Proof. Let r be an odd primitive root of ps, so that gcd(r, 2ps) = 1. Let n = ord2ps(r).
We want to show n = φ(2ps). We have

n | φ(2ps).

Also rn ≡ 1 (mod 2ps), so rn ≡ 1 (mod ps), and therefore

ordps(r) | n.
But ordps(r) = φ(ps) = φ(2ps). Hence

φ(2ps) | n.
So n = φ(2ps). �

∗ ∗ ∗ ∗ ∗
Now we return to high-school-like problems. For example, how can we solve

x2 − 4x− 1 ≡ 0 (mod 11)?

Modulo 11, we have x2 − 4x− 1 ≡ x2 − 4x− 12 ≡ (x − 6)(x + 2), so the solutions are 6
and −2, or rather 6 and 9. Alternatively, x2 − 4x − 1 ≡ x2 + 7x + 10 ≡ (x + 5)(x + 2),
so x is −5 or −2, that is, 6 or 9 again.

To solve

3x2 − 4x− 6 ≡ 0 (mod 13),

we can search for a factorization as before; but we can also complete the square:

3x2 − 4x− 6 ≡ 0 ⇐⇒ x2 − 4

3
x− 2 ≡ 0

⇐⇒ x2 − 4

3
x +

4

9
≡ 2 +

4

9

⇐⇒
(

x− 2

3

)2

≡ 22

9
≡ 1

⇐⇒ x− 2

3
≡ ±1

⇐⇒ x ≡ 2

3
± 1

⇐⇒ x ≡ 5

3
or

−1

3
⇐⇒ x ≡ 6 or 4.

Here we can divide by 3 because it is invertible modulo 13; indeed, 3 · 9 ≡ 1 (mod 13),
so 1/3 ≡ 9 (mod 13).

If we take this approach with the first problem, we have, modulo 11,

x2 − 4x− 1 ≡ 0 ⇐⇒ x2 − 4x + 4 ≡ 5

⇐⇒ (x− 2)2 ≡ 5.
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If 5 is a square modulo 11, then there is a solution; if not, not. But 5 ≡ 16 ≡ 42, so we
have

x2 − 4x− 1 ≡ 0 ⇐⇒ (x− 2)2 ≡ 42

⇐⇒ x− 2 ≡ ±4

⇐⇒ x ≡ 2 ± 4

⇐⇒ x ≡ 6 or 9,

as before. But the congruence

x2 ≡ 5 (mod 13)

has no solution. How do we know? One way is by trial. As 2 is a primitive root of 13,
and 0 is not a solution of the congruence, every solution would be a power of 2. But we
have, modulo 13,

k 1 2 3 4 5 6 7 8 9 10 11 12
2k 2 4 −5 3 6 −1 −2 −4 5 −3 −6 1

22k 4 3 −1 −4 −3 1 4 3 −1 −4 −3 1

and 5 does not appear on the bottom row.
In general, if p - a, we say a is a quadratic residue of p if the congruence

x2 ≡ a (mod p)

is soluble; otherwise, a is a quadratic non-residue of p. So we have just seen that the
quadratic residues of 13 are ±1, ±3, and ±4, or rather 1, 3, 4, 9, 10, and 12; the quadratic
non-residues are 2, 5, 6, 7, 8, and 11. So there are six residues, and six non-residues.

Theorem (Euler’s Criterion). Let p be an odd prime, and gcd(a, p) = 1. Then a is a
quadratic residue of p if and only if

a(p−1)/2 ≡ 1 (mod p).

Proof. Let r be a primitive root of p. If x2 ≡ a (mod p) has a solution, then that solution
is rk for some k. Then

a(p−1)/2 ≡ ((rk)2)(p−1)/2 ≡ (rk)p−1 ≡ 1 (mod p)

by Euler’s Theorem.
In any case, a ≡ r` (mod p) for some `. Suppose a(p−1)/2 ≡ 1 (mod p). Then

1 ≡ (r`)(p−1)/2 ≡ r`·(p−1)/2 (mod p),

so ordp(r) | ` · (p− 1)/2, that is,

p− 1 | ` · p− 1

2
.

Therefore `/2 is an integer, that is, ` is even. Say ` = 2m. Then a ≡ r2m ≡ (rm)2

(mod p). �
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. December ,  (Tuesday)

Henceforth p is an odd prime, and gcd(a, p) = 1. We have defined quadratic residues
and non-residues of p, and we have established Euler’s Criterion: a is a quadratic residue
of p if and only if a(p−1)/2 ≡ 1 (mod p). What other congruence-class can a(p−1)/2 belong
to, besides 1? Only −1, since ap−1 ≡ 1 (mod p), by Euler’s Theorem. So a(p−1)/2 ≡ −1
(mod p) if and only if a is a quadratic non-residue of p.

Another way to prove this is the following: Suppose a is a quadratic non-residue of p.
If b ∈ {1, . . . , p− 1}, then the congruence

bx ≡ a (mod p)

has a unique solution in {1, . . . , p − 1}, and we may denote the solution by a/b. Then
b 6= a/b, since a is not a quadratic residue of p. Now we define a sequence (b1, . . . , bp−1)
recursively. If bk has been chosen when k < ` < p− 1, then let b` be the least element of
{1, . . . , p− 1} r {b1, a/b1, . . . , b`−1, a/b`−1}. We now have

{1, . . . , p− 1} =
{

b1,
a

b1
, . . . , bp−1,

a

bp−1

}

.

Now multiply everything together:

(p− 1)! ≡ a(p−1)/2 (mod p).

But we know (p− 1)! ≡ −1 (mod p) by Wilson’s Theorem. Thus

a(p−1)/2 ≡ −1 (mod p)

when a is a quadratic non-residue of p.
Now suppose a is a quadratic residue of p. We choose the bk as before, except this time

let b1 be the least positive solution of x2 ≡ a (mod p), and replace a/b1 with the next
least positive solution, which is p− b1. Multiplication now gives us

(p− 1)! ≡ b1 · (p− b1) · b2 · a/b2 · · · b(p−1)/2 · a/b(p−1)/2

≡ −a · a(p−1)/2−1

≡ −a(p−1)/2 (mod p).

By Wilson’s Theorem again, we have

a(p−1)/2 ≡ 1 (mod p)

when a is a quadratic residue of p.
∗ ∗ ∗ ∗ ∗

Recall how division works in congruences (see p. : We have

ax ≡ ay (mod n) =⇒ x ≡ y (mod
n

gcd(a, n)
).

Indeed, let d = gcd(a, n). Then

ax ≡ ay (mod n) =⇒ n | a(x− y)

=⇒ n

d
| a
d
(x− y)

=⇒ n

d
| x− y

=⇒ x ≡ y (mod
n

d
).
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∗ ∗ ∗ ∗ ∗
Again, p is an odd prime, and p - a. We define the Legendre symbol, (a/p), by

(a

p

)

=

{

1, if a is a quadratic residue of p;

−1, if a is a quadratic non-residue of p.

Then by Euler’s Criterion we have immediately
(a

p

)

≡ a(p−1)/2 (mod p).

We can now list the following properties of the Legendre symbol:

(a) a ≡ b (mod p) =⇒ (a/p) = (b/p);
(b) (a2/p) = 1;
(c) (1/p) = 1;

(d) (−1/p) = (−1)(p−1)/2 =

{

1, if p ≡ 1 (mod 4);

−1, if p ≡ 3 (mod 4).

(We proved this equation, in effect, on p. .) Finally, we have

(e)
(ab

p

)

=
(a

p

)( b

p

)

,

since (ab/p) ≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡ (a/p)(b/p) (mod p), and equality of (ab/p)
and (a/p)(b/p) follows since each is ±1 and p > 2. With these properties, we can calculate
many Legendre symbols. For example,

(50

19

)

=
(12

19

)

=
( 2

19

)2( 3

19

)

=
( 3

19

)

,

3(19−1)/2 ≡ 39 ≡ 38 · 3 ≡ 94 · 3 ≡ 812 · 3 ≡ 52 · 3 ≡ 6 · 3 ≡ 18 ≡ −1 (mod 19),

so (50/19) = −1, which means the congruence x2 ≡ 50 (mod 19) has no solution.
∗ ∗ ∗ ∗ ∗

Theorem. There are infinitely many primes p such that p ≡ 3 (mod 4).

Proof. Suppose (q1, q2, . . . , qn) is a list of primes. We shall prove that there is a prime p,
not on this list, such that p ≡ 3 (mod 4). Let

s = 4q1 · q2 · · · qn − 1.

Then s ≡ 3 (mod 4). Then s must have a prime factor p such that p ≡ 3 (mod 4).
Indeed, if all prime factors of s are congruent to 1, then so must s be. But p is not any
of the qk. �

This argument fails when 3 is replaced by 1, since 32 ≡ 1 (mod 4). Nonetheless, we
still have:

Theorem. There are infinitely many primes p such that p ≡ 1 (mod 4).

Proof. Suppose (q1, q2, . . . , qn) is a list of primes. We shall prove that there is a prime p,
not on this list, such that p ≡ 1 (mod 4). Let

s = 2q1 · q2 · · · qn.
Then s2 + 1 is odd, so it is divisible by some odd prime p. Consequently, s is a solution
of the congruence x2 ≡ −1 (mod p). This means (−1/p) = 1, so p ≡ 1 (mod 4), by (d)
above. �
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∗ ∗ ∗ ∗ ∗

Theorem.

p−1
∑

k=1

(k

p

)

= 0.

Proof. Let r be a primitive root of p. Then

p−1
∑

k=1

(k

p

)

=

p−1
∑

k=1

(rk

p

)

=

p−1
∑

k=1

(r

p

)k

=

p−1
∑

k=1

(−1)k = 0,

since r(p−1)/2 ≡ −1 (mod p), since r is a primitive root. �

∗ ∗ ∗ ∗ ∗
Lemma (Gauss). Let p be an odd prime, and gcd(a, p) = 1. Then

(a

p

)

= (−1)n,

where n is the number of elements of the set
{
a, 2a, 3a, . . . ,

p− 1

2
a
}

whose remainders after division by p are greater than p/2.

For example, to find (3/19), we can look at

3, 6, 9, 12, 15, 18, 21, 24, 27,

whose remainders on division by 19 are, respectively,

3, 6, 9, 12, 15, 18, 2, 5, 8.

Of those, 12, 15, and 18 exceed 19/2, and these are three; so
( 3

19

)

= (−1)3 = −1.

Proof of Gauss’s Lemma. If 1 6 k 6 p− 1, let bk be such that

1 6 bk 6 p− 1,

ka ≡ bk (mod p).

Then {1, 2, . . . , p− 1} = {b1, b2, . . . , bp−1}, because the bk are distinct:

bk = b` ⇐⇒ ka ≡ `a ⇐⇒ k ≡ `.

In the set {b1, b2, . . . , b(p−1)/2}, let n be the number of elements that are greater than p/2.
We want to show

(−1)n =
(a

p

)

.

There is some permutation σ of {1, 2, . . . , (p− 1)/2} such that

bσ(1) > bσ(2) > · · · > bσ(n) >
p

2
> bσ(n+1) > · · · > bσ((p−1)/2) .

Observe now that
bp−k = p− bk;

indeed, both numbers are in {1, 2, . . . , p− 1}, and

bp−k ≡ (p− k)a ≡ −ka ≡ −bk ≡ p− bk (mod p).
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In particular, if 1 6 k 6 (p− 1)/2, then p− bk /∈ {b1, b2, . . . , b(p−1)/2}. Therefore

{p− bσ(1), p− bσ(2), . . . , p− bσ(n), bσ(n+1), . . . bσ((p−1)/2)} =
{

1, 2, . . . ,
p− 1

2

}

.

Now take products:

p− 1

2
! ≡ (p− bσ(1))(p− bσ(2)) · · · (p− bσ(n))bσ(n+1) · · · bσ((p−1)/2)

≡ (−1)n · bσ(1) · · · bσ((p−1)/2)

≡ (−1)n · b1 · · · b(p−1)/2

≡ (−1)n · a · 2a · 3a · · · p− 1

2
a

≡ (−1)n · p− 1

2
! · a(p−1)/2 (mod p).

Therefore, since p - ((p− 1)/2)!, we have

1 ≡ (−1)n · a(p−1)/2 ≡ (−1)n · (a/p) (mod p).

As both (−1)n and (a/p) are ±1, the claim follows. �

We shall use Gauss’s Lemma to prove the Law of Quadratic Reciprocity, by which we
shall be able to relate (p/q) and (q/p) when both p and q are odd primes. Meanwhile,
besides the direct application of Gauss’s Lemma to computing Legendre symbols, we
have:

Theorem. If p is an odd prime, then

(2

p

)

=

{

1, if p ≡ ±1 (mod 8);

−1, if p ≡ ±3 (mod 8).

Proof. To apply Gauss’s Lemma, we look at the numbers

2 · 1, 2 · 2, . . . , 2 · p− 1

2
.

Each is its own remainder on division by p. Hence (2/p) = (−1)n, where n is the number
of integers k such that

p

2
< 2k 6 p− 1,

or rather p/4 < k 6 (p− 1)/2. This means

n =
p− 1

2
−

[p

4

]

,

where x 7→ [x] is the greatest-integer function. Now consider the possibilities:

(a) p = 8k + 1 =⇒ n = 4k − [2k + 1/4] = 2k, even;
(b) p = 8k + 3 =⇒ n = 4k + 1 − [2k + 3/4] = 2k + 1, odd;
(c) p = 8k + 5 =⇒ n = 4k + 2 − [2k + 5/4] = 4k + 1, odd;
(d) p = 8k + 7 =⇒ n = 4k + 3 − [2k + 7/4] = 4k + 2, even.

In each case then, (2/p) is as claimed. �
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. December ,  (Thursday)

As usual now, we assume p is an odd prime, and p - a. Then the Legendre symbol
(a/p) is in {1,−1}, and (a/p) = 1 if and only if ∃x ∈ Z : x2 ≡ a (mod p). Rules that we
have established include:

a ≡ b (mod p) =⇒
(a

p

)

=
( b

p

)

;

(a2

p

)

= 1;
(ab

p

)

=
(a

p

)

·
( b

p

)

;

(−1

p

)

= (−1)(p−1)/2 =

{

1, if p ≡ 1 (mod 4);

−1, if p ≡ 3 (mod 4).

From these, we obtain the following table:

a 1 2 3 4 5 6 7 8 9 10 11 12
(a/13) 1 1 1 1 1 1

Indeed, under the squares 1, 4, and 9, we put 1. Also 42 = 16 ≡ 3, so (3/13) = 1.
Finally, (−1)(13−1)/2 = (−1)6 = 1, so (−1/13) = 1, hence (13 − a/13) = (−a/13) =
(−1/13) · (a/13) = (a/13); in particular, (10/13) = 1 and (12/13) = 1. So half of the
slots have been filled with 1; the other half must get −1: In general, if r is a primitive
root of p, then (r/p) = −1, and so (rk/p) = −1 if and only if k is odd. So now we have

a 1 2 3 4 5 6 7 8 9 10 11 12
(a/13) 1 −1 1 1 −1 −1 −1 −1 1 1 1− 1

We proved Gauss’s Lemma, and used it to show

(2

p

)

=

{

1, if p ≡ ±1 (mod 8);

−1, if p ≡ ±3 (mod 8).

As 13 ≡ −3 (mod 8), we have (2/13) = −1, as we saw. We can also use this result about
(2/p) to find some primitive roots:

Theorem. If p and 2p + 1 are both odd primes, then 2p + 1 has the primitive root
(−1)(p−1)/2 · 2, which is 2 if p ≡ 1 (mod 4), and is otherwise −2.

Hence, for example, we have

p 3 5 11 23 29 41 53 83 89 113 131 173 179 191 233
2p+ 1 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467

p.r. of 2p+ 1 −2 2 −2 −2 2 2 2 −2 2 2 −2 2 −2 −2 2

Proof of theorem. Denote 2p + 1 by q. Then φ(q) = 2p, whose divisors are 1, 2, p, and
2p. Let r = (−1)(p−1)/2 · 2. We want to show ordq(r) /∈ {1, 2, p}. But p > 3, so q > 7,
and hence r1, r2 6≡ 1 (mod q). Hence ordq(r) /∈ {1, 2}. It remains to show ordq(r) 6= p.
But we know, from Euler’s Criterion,

rp ≡ r(q−1)/2 ≡
(r

q

)

(mod q).

So it is enough to show (r/q) = −1. We consider two cases. If p ≡ 1 (mod 4), then
r = 2, but also q ≡ 3 (mod 8), so (r/q) = (2/q) = −1. If p ≡ 3 (mod 4), then r = −2,
but also q ≡ 7 (mod 8), and (−1/q) = (−1)(q−1)/2 = (−1)p = −1, so (r/q) = (−2/q) =
(−1/q)(2/q) = −1. �
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We now aim to establish the Law of Quadratic Reciprocity: If p and q are distinct odd
primes, then

(p

q

)

·
(q

p

)

= (−1)n, where n =
p− 1

2
· q − 1

2
.

Equivalently,
(q

p

)

=

{

(p/q), if p ≡ 1 or q ≡ 1 (mod 4);

−(p/q), if q ≡ 3 ≡ p (mod 4).

Then we shall be able to compute as follows:
(365

941

)

=
( 5

941

)( 73

941

)

[factorizing]

=
(941

5

)(941

73

)

[5, 73 ≡ 1 (4)]

=
(1

5

)(65

73

)

[dividing]

=
( 5

73

)(13

73

)

[factorizing]

=
(73

5

)(73

13

)

[5, 13 ≡ 1 (4)]

=
(3

5

)( 8

13

)

[dividing]

=
(5

3

)( 2

13

)3

[5 ≡ 1 (4); factorizing]

=
(2

3

)( 2

13

)

[(p/q)2 = 1]

= (−1)(−1) = 1 [3 ≡ 3 (8); 13 ≡ −3 (8)].

To prove the Law, we shall use the following consequence of Gauss’s Lemma:

Lemma. If p is an odd prime, p - a, and a is odd, then

(a

p

)

= (−1)n, where n =

(p−1)/2
∑

k=1

[
ka

p

]

.

Proof. As in the proof of Gauss’s Lemma, if 1 6 k 6 p− 1, we define bk by

1 6 bk 6 p− 1 & ka ≡ bk (mod p).

Then

ka = p ·
[
ka

p

]

+ bk,

so
(p−1)/2
∑

k=1

ka = p ·
(p−1)/2
∑

k=1

[
ka

p

]

+

(p−1)/2
∑

k=1

bk. (∗)

For Gauss’s Lemma, we introduced a permutation σ of {1, . . . , (p− 1)/2} such that, for
some n,

bσ(1) > · · · > bσ(n) >
p

2
> bσ(n+1) > · · · bσ((p−1)/2),
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and we showed (a/p) = (−1)n after first showing
{

1, 2, . . . ,
p− 1

2

}

= {p− bσ(1), . . . , p− bσ(n), bσ(n+1), . . . bσ((p−1)/2)}.

Now take sums:
(p−1)/2
∑

k=1

k =

n∑

k=1

(p− bσ(k)) +

(p−1)/2
∑

`=n+1

bσ(`).

Subtracting this from (∗) (and using that
∑(p−1)/2

k=1 bσ(k) =
∑(p−1)/2

k=1 bk) gives

(a− 1) ·
(p−1)/2
∑

k=1

k = p ·
( n∑

k=1

[
ka

p

]

− n
)

+ 2 ·
n∑

k=1

bσ(k).

Since a− 1 is even, but p is odd, we conclude
n∑

k=1

[
ka

p

]

≡ n (mod 2),

which yields the claim. �

. December ,  (Tuesday)

A Germain prime (named for Sophie Germain, –) is an odd prime p such
that 2p+ 1 is also prime. We showed that, if p is a Germain prime, then 2p+ 1 has the
primitive root (−1)(p−1)/2 · 2. (However, it is not known whether there infinitely many
Germain primes.) We used that

(2

p

)

=

{

1, if p ≡ ±1 (mod 8);

−1, if p ≡ ±3 (mod 8).

Another consequence of this formula is:

Theorem. There are infinitely many primes congruent to −1 modulo 8.

Proof. Let q1, . . . , qn be a finite list of primes. We show that there is p not on the list
such that p ≡ −1 (mod 8). Let

M = (4q1 · · · qn)2 − 2.

Then M ≡ −2 (mod 16), so M is not a power of 2; in particular, M has odd prime
divisors. Also, for every odd prime divisor p of M , we have

(4q1 · · · qn)2 ≡ 2 (mod p),

so (2/p) = 1, and therefore p ≡ ±1 (mod 8). Since M/2 ≡ −1 (mod 8), we conclude
that not every odd prime divisor of M can be congruent to 1 modulo 8. �

Finally, for the proof of Quadratic Reciprocity, we showed that, if p is an odd prime,
p - a, and a is odd, then

(a

p

)

= (−1)n, where n =

(p−1)/2
∑

k=1

[
ka

p

]

.

Now we can establish:



ELEMENTARY NUMBER THEORY 

Theorem (Law of Quadratic Reciprocity). If p and q are distinct odd primes, then
(p

q

)(q

p

)

= (−1)n, where n =
p− 1

2
· q − 1

2
.

This Law was:

• conjectured by Euler, ;
• imperfectly proved by Legendre, , ;
• discovered and proved independently by Gauss, , at age .

Proof of Quadratic Reciprocity (due to Gauss’s student Eisenstein). By the lemma just
mentioned,

(p

q

)(q

p

)

= (−1)n, where n =

(q−1)/2
∑

k=1

[
kp

q

]

+

(p−1)/2
∑

`=1

[
`q

p

]

.

So it is enough to show

p− 1

2
· q − 1

2
=

(q−1)/2
∑

k=1

[
kp

q

]

+

(p−1)/2
∑

`=1

[
`q

p

]

.

First consider the example where p = 5 and q = 7. Then

p− 1

2
· q − 1

2
= 2 · 3 = 6;

(q−1)/2
∑

k=1

[
kp

q

]

+

(p−1)/2
∑

`=1

[
`q

p

]

=

[
5

7

]

+

[
10

7

]

+

[
15

7

]

+

[
7

5

]

+

[
14

5

]

= 0 + 1 + 2 + 1 + 2 = 6.

Here 6 is the number of certain points in a lattice:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(0, 0) (0, 7)

(5, 0) (5, 7)

�

�

�

�

�

�

[
5

7

] [
10

7

][
15

7

]

[
7

5

]

[
14

5

]

In general, ((p− 1)/2) · ((q − 1)/2) is the number of ordered pairs (`, k) of integers such
that

1 6 ` 6
p− 1

2
, & 1 6 k 6

q − 1

2
.
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Then `/k 6= p/q, since p and q are co-prime. Hence the set of these pairs (`, k) is a disjoint
union A ∪ B, where

(`, k) ∈ A ⇐⇒ `

k
<
p

q
;

(`, k) ∈ B ⇐⇒ `

k
>
p

q
⇐⇒ k

`
<
q

p
.

Hence

A =
{

(`, k) ∈ Z × Z : 1 6 k 6
q − 1

2
& 1 6 ` 6

[
kp

q

]}

,

B =
{

(`, k) ∈ Z × Z : 1 6 ` 6
p− 1

2
& 1 6 k 6

[
`q

p

]}

,

so

p− 1

2
· q − 1

2
= |A ∪B| = |A| + |B| =

(q−1)/2
∑

k=1

[
kp

q

]

+

(p−1)/2
∑

`=1

[
`q

p

]

,

which is what we wanted to show. �

Again, the more useful form of the theorem is

(q

p

)

=

{

(p/q), if p ≡ 1 or q ≡ 1 (mod 4);

−(p/q), if q ≡ 3 ≡ p (mod 4).

Hence, for example,
( 47

199

)

= −
(199

47

)

= −
(11

47

)

=
(47

11

)

=
( 3

11

)

= −
(11

3

)

= −
(2

3

)

= −(−1) = 1.

We have used here the formula for (2/p). What about (3/p)? We can compute:

(3

p

)

=







(p

3

)

, if p ≡ 1 (mod 4)

−
(p

3

)

, if p ≡ 3 (mod 4)







,
(p

3

)

=

{

1, if p ≡ 1 (mod 3)

−1, if p ≡ 2 (mod 3).

By the Chinese Remainder Theorem, we have
{
p ≡ 1 (4)

p ≡ 1 (3)

}

⇐⇒ p ≡ 1 (12),

{
p ≡ 1 (4)

p ≡ 2 (3)

}

⇐⇒ p ≡ 5 (12),

{
p ≡ 3 (4)

p ≡ 1 (3)

}

⇐⇒ p ≡ 7 (12),

{
p ≡ 3 (4)

p ≡ 2 (3)

}

⇐⇒ p ≡ 11 (12).

Therefore
(3

p

)

=

{

1, if p ≡ ±1 (mod p),

−1, if p ≡ ±5 (mod p).

∗ ∗ ∗ ∗ ∗
Assuming gcd(a, n) = 1, we know when the congruence x2 ≡ a (mod n) has solutions,

provided n is an odd prime; but what about the other cases? When n = 2, then the
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congruence always has the solution 1. If gcd(m,n) = 1, and gcd(a,mn) = 1, then the
congruence x2 ≡ a (mod mn) is soluble if and only if the system

{

x2 ≡ a (mod m),

x2 ≡ a (mod n)

is soluble. By the Chinese Remainder Theorem, the system is soluble if and only if the
individual congruences are separately soluble. Indeed, suppose b2 ≡ a (mod m), and
c2 ≡ a (mod n). By the Chinese Remainder Theorem, there is some d such that d ≡ b
(mod m) and d ≡ c (mod n). Then d2 ≡ b2 ≡ a (mod m), and d2 ≡ c2 ≡ a (mod n), so
d2 ≡ a (mod mn).

For example, suppose we want to solve

x2 ≡ 365 (mod 667).

Factorize 667 as 23 · 29. Then we first want to solve

x2 ≡ 365 (mod 23) & x2 ≡ 365 (mod 29).

But we have (365/23) = (20/23) = (5/23) = (23/5) = (3/5) = −1 by the formula for
(3/p), so the first of the two congruences is insoluble, and therefore the original congruence
is insoluble. It doesn’t matter whether the second of the two congruences is insoluble.

Contrast with the following: (2/11) = −1, and (7/11) = −(11/7) = −(4/7) = −1; so
the congruences

x2 ≡ 2 (mod 11), x2 ≡ 7 (mod 11)

are insoluble; but x2 ≡ 14 (mod 11) is soluble.
Now consider

x2 ≡ 361 (mod 667).

One may notice that this has the solutions x ≡ ±19; but there are others, and we can
find them as follows. We first solve

x2 ≡ 16 (mod 23), x2 ≡ 13 (mod 29).

The first of these is solved by x ≡ ±4 (mod 23) (and nothing else, since 23 is prime. For
the second, note 13 ≡ 42, 71, 100 (mod 29), so x ≡ ±10 (mod 29). So the solutions of
the original congruence are the solutions of one of the following systems:

{
x ≡ 4 (mod 23),

x ≡ 10 (mod 29)

}

,

{
x ≡ 4 (mod 23),

x ≡ −10 (mod 29)

}

,

{
x ≡ −4 (mod 23),

x ≡ 10 (mod 29)

}

,

{
x ≡ −4 (mod 23),

x ≡ −10 (mod 29)

}

.

One finds x ≡ 19, 648, 280, 387 (mod 667).
So now x2 ≡ a (mod n) is soluble if and only if the congruences

x2 ≡ a (mod pk(p))

are soluble, where n =
∏

p|n p
k(p). Assuming p is odd, and (a/p) = 1, we can show by

induction that x2 ≡ a (mod pk) is soluble for all positive k. Indeed, suppose b2 ≡ a
(mod p`), where ` > 1. This means

b2 = a+ c · p`
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for some c. Then

(b + p` · y)2 = b2 + 2bp` · y + p2` · y2

= a+ (c+ 2by)p` + p2` · y2

Therefore (b + p` · y)2 ≡ a (mod p`+1) ⇐⇒ c + 2by ≡ 0 (mod p). But the latter
congruence is soluble, since p is odd.

. December ,  (Tuesday)

Assuming gcd(a, n) = 1, we have shown that x2 ≡ a (mod n) is soluble if and only if
x2 ≡ a (mod pk(p)) is soluble whenever p | n, where n =

∏

p|n p
k(p). We also have that, if

p is an odd prime, and p - a, then the following are equivalent:

(a) (a/p) = 1;
(b) x2 ≡ a (mod p) is soluble;
(c) x2 ≡ a (mod pk) is soluble for some positive k;
(d) x2 ≡ a (mod pk) is soluble for all positive k.

We must finally consider powers of 2.

Theorem. Suppose a is odd. Then:

(a) x2 ≡ a (mod 2) is soluble;
(b) x2 ≡ a (mod 4) is soluble if and only if a ≡ 1 (mod 4);
(c) the following are equivalent:

(i) x2 ≡ a (mod 8) is soluble;
(ii) x2 ≡ a (mod 22+k) is soluble for some positive k;
(iii) x2 ≡ a (mod 22+k) is soluble for all positive k;
(iv) a ≡ 1 (mod 8).

Proof. The first two parts are easy. So, are (ci)⇔(civ) and (ciii)⇒(cii)⇒(ci). We shall
show (ci)⇒(ciii) by induction. Suppose b2 ≡ a (mod 22+`) for some positive `. Then
b2 = a+ 22+` · c for some c. Hence

(b+ 21+` · y)2 = b2 + 22+` · by + 22+2` · y2

= a+ 22+` · c+ 22+` · by + 22+2` · y2

= a+ 22+` · (c+ by) + 22+2` · y2,

and this is congruent to a modulo p3+` if and only if c + by ≡ 0 (mod 2). But this
congruence is soluble, since b is odd (since a is odd). �

∗ ∗ ∗ ∗ ∗
A Diophantine equation is an equation for which the solutions sought are integers. We

have considered such equations, as for example ax + by = c. Now we shall show that, if
n is a natural number, then the Diophantine equation

x2 + y2 + z2 + w2 = n

is soluble.
If p is an odd prime, we know that the congruence x2 ≡ −1 (mod p) is soluble if and

only if (−1/p) = 1, that is, (−1)(p−1)/2 = 1, that is, p ≡ 1 (mod 4).
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Lemma. For every prime p, the congruence

x2 + y2 ≡ −1 (mod p)

is soluble.

Proof. The claim is easy when p = 2. So assume now p is odd. We define two sets:

A =
{

x2 : 0 6 x 6
p− 1

2

}

,

B =
{

−y2 − 1: 0 6 x 6
p− 1

2

}

.

We shall show that A and B have elements representing the same congruence-class modulo
p; that is, A contains some a, and B contains some b, such that a ≡ b (mod p). To prove
this, note first that distinct elements of A are incongruent, and likewise of B. Indeed, if
a0 and a1 are between 0 and (p− 1)/2 inclusive, and a0

2 ≡ a1
2 (mod p), then a0 ≡ ±a1

(mod p). If a0 ≡ −a1, then a0 = p − a1, which is absurd. Hence a0 ≡ a1 (mod p), so
a0 = a1.

Hence the elements of A represent (p− 1)/2 + 1 distinct congruence-classes modulo p,
and so do the elements of B. Since 2((p− 1)/2+1) = p+1, and there are only p distinct
congruence-classes modulo p, there must be a class represented both in A and in B, by
the Pigeonhole Principle. �

Another way to express the lemma is that, for all primes p, there are a, b, and m such
that

a2 + b2 + 1 = mp.

Hence there are a, b, c, d, and m such that

a2 + b2 + c2 + d2 = mp.

We shall show that we can require m = 1. We can combine this with the following:

Theorem (Euler). The product of two sums of four squares is the sum of four squares.

Proof. One can confirm that

(a2 + b2 + c2 + d2)(q2 + r2 + s2 + t2) = (aq + br + cs+ dt)2 +

(ar − bq + ct− ds)2 +

(as− bt− cq + dr)2 +

(at+ bs− cr − dq)2

by expanding each side. �

Theorem (Lagrange). Every positive integer is the sum of four squares.

Proof. By the lemma Euler’s theorem, it is now enough to show the following. Let p be
a prime. Suppose m is a positive integer such that

a2 + b2 + c2 + d2 = mp (∗)
for some a, b, c, and d. We shall show that the same is true for some smaller positive m,
unless m is already 1.

First we show that, if m is even, then we can replace it with m/2. Indeed, if a2+b2 = n,
then

(a + b

2

)2

+
(a− b

2

)2

=
n

2
,
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and if n is even, then so are (a ± b)/2. In (∗) then, if m is even, then we may assume
that a2 + b2 and c2 + d2 are both even, so

(a + b

2

)2

+
(a− b

2

)2

+
(c+ d

2

)2

+
(c− d

2

)2

=
m

2
· p.

Henceforth we may assume m is odd. Then there are q, r, s and t strictly between −m/2
and m/2 such that

q ≡ a, r ≡ b, s ≡ c, t ≡ d (mod m).

Then
q2 + r2 + s2 + t2 ≡ 0 (mod m),

but also q2 + r2 + s2 + t2 < m2, so

q2 + r2 + s2 + t2 = km

for some positive k less than m. We now have

(a2 + b2 + c2 + d2)(q2 + r2 + s2 + t2) = km2p.

By Euler’s theorem, we know the left-hand side as a sum of four squares. Moreover, each
of the squared numbers in that sum is divisible by m. Therefore we obtain kp as a sum
of four squares. �
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