Introduction to Model-theory
and Mathematical Logic

David Pierce

2005.01.03



Contents

1 Introduction

1.1 Building-blocks . . . . . .. ...
1.2 Structures . . . . . . ...
1.3 Propositional logic . . . . . . ... ... o L.

2 Propositional model-theory

2.1 Formal proofs . . . . . . . . . ... . ... o
2.2 Logical consequence . . . . . ... ... ...
2.3 Soundness and Completeness . . . . . ... ... ... ......
2.4 Additional exercises . . . . . .. ..o

3 First-order logic

3.1 Terms . . . .. e
3.2 Formulas . ... ... .. e
3.3 Logical consequence . . . .. ... ... ... ... L
3.4 Additional exercises . . . . . ... .o

4 Quantifier-elimination

5 Relations between structures

5.1 Fundamental definitions . . . . ... ... ... ... ... ...
5.2 Additional definitions . . . . ... ... oL
5.3 Implications . . . . . . . .. ... L
5.4 CQategoricity . . . . . . ... oL

6 Compactness

6.1 Additional exercises . . . . . . . ...



CONTENTS

7 Completeness

7.1 Logicingeneral . . . . . . . .. . ...
7.2 Propositional logic . . . . . ... ... oo oo
7.3 First-orderlogic. . . . . . . .. .. L oo o
7.4 Tautological completeness . . . . . . . . . ... ... ...
7.5 Deductive completeness . . . . . .. .. ... L.
7.6 Completeness . . . . . . . . .. Lo

8 Numbers of countable models

81 Threemodels . . . . . .. .. ... ..
8.2 Omitting types . . . . . . . .
8.3 Prime structures . . . . . . ... L Lo e
8.4 Saturated structures . . . .. ... ..o
85 Omnemodel. . . . . . . . ...

86 Nottwomodels . . . . . . . .. .. ... ... ... ...



Chapter 1

Introduction

These notes are based on lectures given for Math 406, ‘Introduction to Mathe-
matical Logic and Model-theory’, at METU in 2004. I have expanded on a few
points and rearranged some topics.

Background reading includes [7]. Exercises appear here and there, emphasized
with bold type; and there are some sections comprising exercises, as you can see
from the table of contents.

1.1 Building-blocks
An ordered pair (a,b) is the set {{a},{a,b}}. Then the Cartesian product
A x B of the sets A and B is the set
{(a,b) :a € A & b€ B}.
To express that f is a function from A to B, we can just write
f:A— B.

This means f is a subset of A X B with a certain property (namely, for every
a in A, there is a unique b in B such that (a,b) € f; then we write f(a) = b).
The set of all functions from A to B can be denoted

B4, (1.1)
(Some people write 4 B.) Let w be the set of natural numbers:

w=140,1,2,3,...}
={0,0',0",0",...}.

It is notationally convenient to treat 0 as @, and z’ as « U {z}. Then
n=1{0,...,n—1}

for all n in w. Under this understanding of the natural numbers, the nth
Cartesian power of A is precisely

A",
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in the notation introduced on line (1.1) above: the nth Cartesian power of A is
the set of functions from n to A. An element of A" can be written as

((lo, ey G/nfl)
or a or d@; the function is then, in any case,
i—ra;:n — A,

and it can be called an (ordered) n-tuple from A.
Note well that A° = {@} = {0} = 1; this is true even if 4 is empty. Also, every
element of A' is {(0,a)} for some a in A. So we have a bijection

a— {(0,a)}: A — A'. (1.2)
We may sometimes treat this bijection as an identification; that is, we may
decide not to distinguish between @ and {(0,a)}.

For any m and n in w, we have a bijection
(@,0) — @b : A™ x A" —y AT (1.3)
where @b is the (m + n)-tuple (ag,...,@m—1,bo,...,by—1); this is the (m +n)-

tuple & such that
{ak, if kK < m;
C =

bp—m, ifm<k<m+n.

We always treat the bijection in (1.3) as an identification.

An n-ary operation on A is a function from A™ to A. The set of these can
be denoted

AN
In particular, a 0-ary or nullary operation on A is an element of A'; by the

bijection in (1.2) then, we may identify a nullary operation on A with an element
of A.

An n-ary relation on A is a subset of A™; the set of these is P(A").

An n-ary operation on A is then a (certain kind of) subset of A™ x A, and
this product can be identified with A® x A' and hence with A”™': so an n-ary
operation on A can be thought of as an (n + 1)-ary relation on A.

1.2 Structures

Our fundamental object of study will be structures. The notion of a structure
provides a way to unify the treatment of many mathematical ideas. By our
official definition, a structure is an ordered pair (4,7J), also referred to as 2,
where:

(*) A is a non-empty set, called the universe of the structure;
(t) Jis a function, written also
s 8%,

whose domain £ is called the signature of the structure;
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(1) s® is either an element of A or an n-ary operation or relation on A for
some positive n, for each s in L.

If £ ={s0,51,...}, then 2 can be written
(A7S§l’s?l7"')'

Examples 1.1. The following are structures:
(1) (w,",0)
(2) a group (G,-, 71, 1);
(3) an abelian group (G, +, —,0);
(4) aring (R,+,—,-,0,1);
(5) the ring Z or (Z,+,—,-,0,1);
(6) the field R or (R, +, —,-,0,1);
(7) a partial order (X, <);
(8)

8) a vector-space V over a field K; here the signature of V is {+,—,0} U
{a- :a € K}, where a - is the unary operation of multiplying by a;

(9) the power-set structure on a non-empty set €2, namely

(T(Q)’ m’ U7C7 g? Q’ g);

(10) the truth-structure
(]B7 /\7 \/’ _|7 07 1’ t:)’

where B = {0,1}, and F is the binary relation {(0,0), (0,1),(1,1)}. (The
name ‘truth-structure’ is my invention.)

The last two examples are the same if (2 = 1. Propositional logic studies the
truth-structure; model-theory studies all structures.

With J as above in the structure (A,J):
(¥) s¥ is the interpretation in 2 of s;
(1) s is a symbol for s¥.
So s is one of the following:
(%) a constant;
(f) an n-ary function-symbol for some positive n in w;
(1) an n-ary predicate (or relation-symbol) for some positive n in w.

Since nullary operations on A can be considered as elements of A, a constant
can be considered as a nullary function-symbol.

Here are some observations about our definition of structure:

(¥) I am following the old convention (used for example in [1]) of denoting the
universe of a structure by a Roman letter, and the structure itself by the
corresponding Fraktur or Gothic letter. Recent writers (as in [6] or [9])
use ‘calligraphic’ letters, not Fraktur:
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For a structure with universe: | A | B |C | ... | M | N
Twrite: | A | B || ... | M| N
Others may write: | A | B | C | ... | M | N

Another option (taken in [5]) is to use an ordinary letter like A for a struc-
ture, and then dom(A) for its universe. (Here ‘dom’ stands for domain.)
Finally, one might not bother to make a typographical distinction between
a structure and its universe. Indeed, as suggested in the examples, the
distinction is not easy to make with standard structures like Z or R.

(f) Similarly, it is not always easy or convenient to distinguish between a
symbol and its interpretation. A homomorphism from a group G to a
group H is usually described as a function f from G to H such that

f(g0-g1) = f(g0) - f(g1)

for all g, in G. If we are trying to be precise, we should call the groups &
(or (G,-®)) and § (or (H,-?)), and we should say that f is such that

£(g0-® g1) = f(g0) -® flgn)

for all g, in G. But writing this way soon becomes tedious.

(1) In a structure (4,7), the interpretation-function J could be considered
to carry, within itself, the identity of the universe A. This is certainly
true if the signature £ of the structure contains a unary function-symbol
f, since then J determines the function f* and hence its domain, 4. In
any case, A and J work together to provide interpretations of the symbols
in £ as elements of, or operations or relations on, a certain set, namely A
itself. That’s all a structure is: something that provides a mathematical
interpretation for certain symbols. We shall develop this idea later. What
makes model-theory interesting is that the same symbols can have dif-
ferent interpretions. Here begins the distinction between syntax (formal
symbolism) and semantics (mathematical meaning).

1.3 Propositional logic

Of the so-called truth-structure given in the Examples 1.1, the signature is
{A,V,—,0,1,E}. Besides the binary predicate F (which could also be written
<), the symbols are Boolean connectives. Other Boolean connectives are
also used. Each Boolean connective is an n-ary function-symbol for some n in
w, and each has a standard interpretation as an operation on B. For example:

(0) 0 and 1 are nullary connectives;

(1) —is a singulary or unary connective;

(2) A, V, = and ¢ are binary connectives.

To give the interpretations of the connectives, we can understand B as a two-
element abelian group with the addition-table

— o+
i) Nl
O ==
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Then one way to give the standard interpretations is:
(0) the nullary connectives 0 and 1 are interpreted as themselves;
(1) — is interpreted as the singulary operation z — x + 1 on B

(2) A,V, = and <> are interpreted as the binary operations on B taking (x,y)
tozy, zy+x +y, xy +« + 1 and = + y + 1 respectively.

These interpretations can be given in other (but equivalent) ways: For example,
we can define — by
(z—=y)=1<<= zkFy.

In general, a signature for propositional logic is a set of Boolean connectives.
Let £ be such. The formulas of £ are certain strings of:

(%) symbols from L;

(f) propositional variables Py, Py, Py, ....
In particular:

(%) P is a formula, if P is a variable.

(f) =Fy -+ Fp—1 is a formula, if * is an n-ary connective from £, and the F;
are formulas. (If n = 0, then * by itself is a formula.)

Commonly, if * is binary, then, instead of *xFyF}, one writes
(FO * Fl)

A formula is n-ary if its variables belong to the set {Fp,..., P,—1}. (Alterna-
tively, one may want to refer to a formula as n-ary if it contains no more than
n distinct variables.)

Since each Boolean connective * has a standard interpretation, also denoted *,
every n-ary formula F' represents an n-ary operation

i F(Z):B" — B
as follows:
(¥) If k < n, then Py is an n-ary formula and, as such, represents the operation
Fr—x,:B" — B

(which can be denoted ﬁk)

(1) If % is n-ary, and Fy, ..., F,_; are k-ary, then xFj - - - F},_y represents
Z— « (Fo(Z),...,Foe1()) : B¥ — B.

The notion that a propositional formula represents an operation will be devel-
oped further in the next chapter in case £ is {—, —}. We shall be able to restrict
ourselves to this signature, because it is adequate. In general, a signature for
propositional logic is adequate if, for each n-ary operation f on B, there is an
(n + k)-ary formula F of £ (for some k) such that

f(&)=F(@,7)
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for all # in B™ and ¥ in B*: that is, every operation f on B is represented
in £ by some formula F. We allow the arity of F' to be larger than that of f,
since we want it to be possible for signatures without nullary connectives to be
adequate. (If something is n-ary, then its arity is n.) The following is proved
in [8]:

Theorem 1.2. A signature of propositional logic is adequate, provided that in
it are represented:
(%) the constant functions 0 and 1;

() the ternary function f given by

@
<
®
S
®
[V}
~
—~
®y
—

= O O O O

—_ O = O = O =O
-0 O = OO
———0 O M= O =O

Proof. By induction. The nullary operations are represented by assumption.
Suppose all n-ary operations are represented, and g is (n + 1)-ary. Let h, be
the n-ary operation Z — g(Z,e), if e € B. Then g is

(Z,y) — f(ho(Z), ha(Z),y).

Since the h, are represented by inductive hypothesis, and f is represented by
assumption, g is also represented. By induction, the operations of all arities are
represented. O

Example 1.3. The propositional signature {—, -} is adequate, because:
(x) Py — Py represents 1;
(f) —~(Po — Py) represents 0;
() the operation f as in the theorem is represented by the formula

_|((_|P2 —)Po) —)_I(PQ —)Pl)),

since its truth-table is:

- ((_| P2 — Po) — - (Pz — Pl))
0 1 0 0 0 110 0 1 0
1 1 0 1 1 010 0 1 0
0 1 0 0 0 110 0 1 1
1 1 0 1 1 010 0 1 1
0 0 1 1 0 1|1 1 0 0
0 0 1 1 1 1|1 1 0 0
1 0 1 1 0 010 1 1 1
1 0 1 1 1 010 1 1 1

(See also [7, § 2.2-3]. This formula is logically equivalent—or truth-
equivalent in the sense of 7, § 2.4]—to (=P = Py) A (P, = Py).)



Chapter 2

Propositional model-theory

This chapter is inspired in part by [1, § 1.2]. Generally, the term model-theory
refers to first-order model-theory, because the logic it uses is first-order logic.
The notion of structure defined in ch. 1 is the notion as used in first-order
model-theory. However, some model-theoretic ideas can be worked out in the
simpler context of propositional logic. This is what is done here. In particular,
a simpler notion of structure will be introduced, albeit one that retains the
fundamental idea of providing an interpretation for symbols.

Our official signature for propositional logic will be

{_>7 _'}'

Let V be our set {P;, : k € w} of propositional variables. For the sake of a
precise definition of formula, let S be the set of all finite strings (or sequences)

of symbols from the set
Vu{=,-}u{()}

Now let U be the subset of P(S) comprising the subsets N of S such that:
(¥) V C N, that is, N contains all elements of V (when these are considered
as sequences of length 1);
(1) for all Fin S, if FF € N, then —=F € N;
(1) for all F and G in S, if F and G are in N, then (F — G) € N.

Let Fm = (. This is just the set of propositional formulas in the signature
{—,}. Throughout this chapter, all formulas are elements of Fm.

In particular, by construction, Fm is the smallest subset N of S with the prop-
erties above. We may say that the definition of Fm is inductive, because it
makes proof by induction on formulas possible: If N C Fm, then, to prove
N = Fm, it is enough to show that N has the properties (x, {, 1) above.

As a first example of proof by induction on formulas, we have the next lemma
below. We first make some (obvious) definitions:

If sg, s1, ..., and s,,_1 are symbols, then the length of the string sgsy - -+ $p_1
is n; and the string begins with sy. An initial segment of the string is one of
the strings sgsi - - - S;_1, where k < n. The initial segment is proper if k£ < n.

10
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Lemma 2.1.

(x) Ewvery formula has positive length.

1)
1) Every formula of length greater than 1 begins with — or (.
)

§
€) Every formula beginning with ( is (F — G) for some formulas F' and G.

Every formula of length 1 is a variable.

Every formula beginning with — is =F for some formula F.

(
(
(
(

Proof. By induction on formulas. Let N be the set of formulas F' such that:
(¥) F has positive length;
() if F has length 1, then F' is a variable;
(1) if F has length greater than 1, then F' begins with — or (;
(§) if F is -F for some string E, then E is a formula;
() if F begins with (, then F'is (G — H) for some formulas G and H.

Then N contains the variables, and N contains —F and (F — @) if it contains
F and G. Hence N = Fm. O

Definition of functions on Fm by recursion is possible, because of the next the-
orem below. This will use another lemma. Now, because formulas have lengths,
this lemma—and other facts about formulas—can be proved by induction (usu-
ally strong induction) on these lengths:

Lemma 2.2. No proper initial segment of a formula is a formula.

Proof. Let N be the set of formulas of which no proper initial segment is a
formula. We shall prove by strong induction on the lengths of formulas that
N = Fm. Suppose N contains all formulas shorter than a formula F. By
Lemma 2.1, we know that F' is a variable P or a formula =G or (G — H), where
G and H are formulas. The only proper initial segment of P is the empty string,
which is not a formula. Any proper initial segment of =G is =G’ for some initial
segment G’ of G; so G’ is not a formula, by strong inductive hypothesis; hence
=G is not a formula. Finally, and similarly, any initial segment of (G — H) is
(G" — H') for some formulas G’ and H'. Then one of G and G' is an initial
segment of the other. But each one is shorter than F'; so by strong inductive
hypothesis, G and G’ are the same formula. Then H' is a proper initial segment
of H; so these formulas must be the same. Thus, in all cases, F' € N. By strong
induction, N = Fm. [

We need not use induction again to prove the following:
Theorem 2.3 (Unique Readability). If F is a formula, then F satisfies
ezactly one of the following conditions:

(x) FeV;

(1) F is =G for some formula G;

() F is (G — H) for some unique formulas G and H.
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Proof. Every formula is a variable or is =F or (F — G) for some formulas F'
and G. Suppose (F — G) is also (F' — G'), where F' and G’ are also formulas.
Then (as in the previous proof) one of F' and F’ is an initial segment of the
other. By the last lemma, this means F’ and F’ are the same, so G and G' must
be the same. O

Corollary 2.4 (Recursion). Let f_ be a unary, and f_, a binary, operation
on some set. Let g be a function from V into that set. Then g extends uniquely
to the domain Fm so that

() g(=F) = f-(g(F)),
(1) 9((F = @) = f~(9(F), 9(G))
for all F and G in Fm.

Proof. Not important. The idea is to let G be the set of all relations with the
desired properties of g (except the property of being a function), and then to
show that ()G is in G and is in fact a function. See [7, Theorem 5.2.1]. O

Notationally, we suppose:
(x) P,Q, R, ...are in V;
() F,G, H, ...are in Fm;
These symbols can be called syntactical variables, since their possible values

are symbols and strings of symbols in the formal logic that we are studying.
(There is some discussion of this terminology in [2, §08].)

We also let € = (eg, . ..,e,—1) € B” for an appropriate n in w, where B = {0, 1}.

The formula F' is n-ary if its variables come from {P; : k < n}. Under this
definition, the n-ary formulas are also (n + 1)-ary. The set of n-ary formulas
can be denoted

Fm".
Note that this set has an inductive definition, and definition by recursion of

functions on Fm" is possible. (Exercise: how can the inductive definition of
Fm be adapted to an inductive definition of Fm"?)

We can understand — to be the unary operation on B given by

e | —e
0| 1,
110

and — to be the binary operation on B given by

€p ‘ el ‘ €y — €1
010 1
110 0
0 1 1
1 1 1

These agree with the definitions given on p. 8. Then we have a unique function
F s F from Fm" into B®" such that:
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(%) P ise — eg, if £ <n;
(1) F(€) =~(G(@)), i F is G;
(1) F(&)=G(@) = H(e),if Fis (G — H).

A truth-assignment for an n-ary formula F is an element € of B”; the element

~

F (&) of B is the value of F' at €. The computation of this value is a finite
procedure, and depends only on those ey such that Py actually appears in F.

Example 2.5. Let F be (PO — (_'Pl — PQ)) Let G be (_'Pl — Pz) Then

F@)=1 < Py(@)<G@)
= ey < G(@)
<< e =0
< e =0

We write
FF

if ﬁ(é’) = 1 for all truth-assignments € for F; in this case, F' is a tautology.

Otherwise, we write
¥ F.

The question of whether F' is a tautology can be answered by computing its
truth-table, namely:

Po|...|Pu| F

€p €n—1 ﬁ(g) )

(See also [7, § 2.3].)

2.1 Formal proofs

Let us use ¥ as a syntactical variable for sets of formulas. For us, a formal
proof or a deduction of F' from ¥ will be a finite sequence

Go,...,Gn

of formulas, where:
(%) Gy is F;
(t) for each k less than n + 1, G}, is a tautology, or Gy, is in X, or there are i
and j less than k such that G; is (G; = Gy).
In terms of 7, § 2.9], we are using the proof-system whose only axioms are the

tautologies, and whose only rule of inference is modus ponens. If there is such

a deduction, we write
Y+ F,
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and we can say that F' is deducible from X; we can also say that the elements
of ¥ are hypotheses in the deduction.

We may write deductions vertically, so as to justify each step; but the deduction
itself is just a finite sequence of formulas:
Examples 2.6.

(x) {F,(F — G)} F G, by the deduction

F [hypothesis]
(F = Q) [hypothesis]
G [modus ponens)

(t) If - (F = G), then {F'} F G by the deduction

F [hypothesis]
(F - @G) [axiom]
G [modus ponens)

(The formal proof is the same, but the justifications are not.)

1) {(P—=>(Q — R)),(P— Q)}F (P — R); finding the deduction is an
exercise.

Something to think about is whether there are procedures:
(%) for determining whether ¥ F F;
() for finding the proof, if it exists.
Lemma 2.7. If Gy,...,G, is a formal proof, and k < n, then Gy,...,Gy is a

formal proof.

Proof. Immediate from the definition. O

Lemma 2.8. X F F just in case g b F for some finite subset X of X.

Proof. (=) Say there is a formal proof Gy, ...,G, of F from X. Let
Yo =2Xn{Go,...,G,}.

Then Gy, ...,G, is a formal proof of F' from ¥, and Xq is a finite subset of X.

(<) A formal proof from ¥ is a formal proof from any set that includes £y. O

Lemma 2.9. - F <— o+ F.

Proof. (=) If - F, then F is a one-step derivation of itself from &, so @ + F.

(<) We argue by strong induction on the lengths of deductions. Suppose that
F' is a tautology whenever F' has a deduction from & of length less than n + 1.
Now suppose that

GO:' . ';anlaF

is a deduction (which has length n + 1) of F'. Then either F' is a tautology, or
there are ¢ and j less than n such that G; is (G; = F). In the latter case, by
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inductive hypothesis, both G; and (G; — F) are tautologies. But the value of
(G; = F) at € is just F(€), if G;(€) = 1. Hence F is a tautology. By induction,
all formulas deducible from & are tautologies. O

We are sometimes more interested in knowing whether a deduction exists than
in what it is. Towards developing this knowledge, we have:

Lemma 2.10. Suppose {F : ¥+ F} + G. Then ¥ + G, that is, G is already
in the set {F : L F}.

Proof. Let ¥* = {F : ¥ F F}. In a deduction of G from ¥*, if an element of
¥* appears, then replace it with its deduction from Y. The result is then itself
a deduction from X. O

A useful application of the lemma, is:

Theorem 2.11 (Modus Ponens). If X+ F and ¥+ (F — @), then ¥ F G.

Proof. Let ¥* = {H : ¥+ H}. If F and (F — @) are in ¥*, then G has a
three-line proof from ¥* as in one of the Examples 2.6 above. Hence X - G, by
the last lemma. O

A set ¥ of formulas is inconsistent if ¥ - —F for some F' in X; otherwise, X is
consistent. A formula F' is a contradiction if —=F is a tautology. There are
various ways to express inconsistency:
Lemma 2.12. The following are equivalent:

(*) X is inconsistent;

(f) ¥+ F and £+ —F for some F;

(1) X+ F for all F;

(8)

a contradiction is deducible from X.

Proof. (x) = (1). If X is inconsistent, then ¥  —F for some F' in ¥; but then
Y - F also.

()= (f). Say X+ F and ¥ F =F. But - (F — (=F — @)) for all G (by an
exercise). By two applications of Modus Ponens, ¥ + G.

(1) = (§). Immediate.

(§) = (%). Suppose F' is a contradiction, and ¥  F. Then ¥ # &, since only
tautologies are derivable from @. Hence there is G in X. But F (F — =G) (by
an exercise), so ¥ - =G by Modus Ponens. O

Lemma 2.13.
(*) X is inconsistent just in case some finite subset of ¥ is inconsistent.

(1) X is consistent just in case {F : ¥ F F'} is consistent.

Proof. Exercise. O

Theorem 2.14 (Deduction). L+ (F — G) if and only if U {F} I G.
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Proof. (=) Exercise.
(<) We use strong induction on the lengths of deductions. Suppose the claim
holds when G has a formal proof of length less than n 4+ 1. Suppose also that
Hy,...,H, 1,G is a formal proof of G from ¥ U {F'}. Now,
F(G—(F—Q)
(by an exercise). Hence, if G € ¥ or G is a tautology, then
YH((F =G

by Modus Ponens. The other possibility is that H; is (H; = G) for some i and
jinn. Then ¥+ (F — H;) and ¥ F (F — (H; — G)) by inductive hypothesis.
But also

F(F—-H;)—=(F->(H; —-G)—>(F->Q))

(exercise). By two applications of Modus Ponens, ¥ + (F — G). O

The Deduction Theorem gives a condition under which certain proofs exist. In
particular, we have:

Corollary 2.15.
(%) If LU {F} is inconsistent, then ¥ - —F.
(t) If ¥ G, then S U {—~G} is consistent.

Proof. Suppose ¥ U {F'} is inconsistent. Then ¥ U {F} F =F by Lemma 2.12.
Hence X + (F — —F). But also

F((F——F) = -F)
(exercise). Hence ¥ - —F by Modus Ponens.

The remainder is an exercise. I

Recall the distinction on p. 7 between syntax and semantics. The notion of
formal proof can be called syntactic because it involves formal manipulation
of symbols. A good proof-system will capture the notion of logical consequence,
a notion that can be called semantic. We now develop this notion:

2.2 Logical consequence

A structure for propositional logic is a function a (or P — «(P)) from V
to B. (Alternatively, the structure is not the function «, but the set {P €
V : a(P) = 1}; but such a definition can cause confusion. In any case, the
set and the function determine each other.) Suppose F' is n-ary, and € is the
truth-assignment

(a(PO)J tey a(Pnfl))'

If F(¢) = 1, then we say that F is true in o, and we write

akE F.

So far we have only introduced some new notation. Whether F' is true in « can
be determined by finite computation. In particular:
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(*) aF P <= «o(P)=1;
(f) aF —-F < aF F;
(1) aB(F>G) < aEF & aF-G.
So truth can be computed as in the following (which can be compared with
Example 2.5):
Example 2.16. The following are equivalent:
(*) aE P — (-Q — R);
(f) aE=Porak (-Q — R);
(1) a(P)=0orakF Q or aF R;
(§) a(P)=0o0r a(Q) =1o0r a(R) =1.
The notion of structures allows us to make the following definition. If ¥ is a
(possibly infinite) set of formulas, and if « F F for every F in X, then « is a

model of ¥, and we can write
akFX.

Finally, F' is a logical consequence of ¥, or ¥ entails F', if F' is true in every
model of ¥. In this case, we can write

YEF.
Here, if ¥ is a finite set {Gy,...,Gxr_1}, then we can also write
Go,...,G, 1 FF

(without braces). We consider logical consequence or entailment as a semantic
notion, because, from its definition, it seems not to be determined by simple
computation. Indeed, there are infinitely many (in fact, uncountably many)
structures, and anyway a formula might be a logical consequence of an infinite
set of formulas.

It is important to note that F is used in two completely different ways:

(¥) to express truth, which is a relation between a structure and a formula
(or set of formulas);

(f) to express entailment, which is a relation between a set of formulas and
a formula.

The following is a semantic version of the Deduction Theorem; it is easier to
prove:

Lemma 2.17. Y U{F} E G just in case £ F (F = G).
Proof. Exercise. O

Repeated application of the lemma gives
F,....F,EG < FFy— - ---—= F, > G. (2.1)

The notational convention here is that FF — G — H at the end of a formula
means (F — (G — H)); that is, grouping is from the right. Towards an
alternative expression of this equivalence, let us note:
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Lemma 2.18. Suppose F' and G are both n-ary. The following are equivalent:
(x) FEG;

~

(1) F(&) < G(@) for all &.
Proof. Exercise. 0

We can now define F' and G to be (logically) equivalent if they have the same
truth-table, that is, F/(€) = G(€) for all €, equivalently, F E G and G E F; we
can express this by

F~ Q.
Note the truth-table
(P2 ][~]Q
0] O 1 /1] 0
0| 1 1 /1] 0
0| O 1 ]0] 1
1 1 0|01 1

As an abbreviation of —(F — —H), let us write
F A H;
this is the conjunction of F' and H.

Lemma 2.19. Show that:
(x) FNG~GANF;
(t) (FAG)ANH ~FA(GAH);
(1) FNG— H~F — G — H (here A\ has priority over — ).

Proof. Exercise. O

Now we can write the equivalence (2.1) as
Fy,...,.F,EG <= E(FoAN...NF, = G).
Alternatively, if {Fy, ..., F,} = X, then instead of Fy A ... A F,,, we can write
A=
this is the conjunction of X. Then
SEG = F(A\Z-G),

provided ¥ is finite. So we have a procedure to determine whether ¥ F G,
provided also that ¥ is finite: just check whether A ¥ — @ is a tautology.
What if ¥ is infinite?
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2.3 Soundness and Completeness

We aim to reduce the semantic notion of entailment to the syntactic notion of
deducibility, by proving that our proof-system has the properties of:

(¥) soundness: if ¥ F F, then ¥ F F;
(t) completeness: if ¥ F F, then ¥ - F.

Let us write
EF

if a F F for all structures «; in this case, F' can be called a validity.

In the finitary case, soundness and completeness are now easy to prove:

Lemma 2.20. The tautologies are precisely the validities:

FF < EF.

Proof. The following are equivalent:
(*

(f

(1

(§) F

This completes the proof. O

) F
) ( )—1f0rallé'
)

a F F for all structures «;

The reverse direction of the following can be called weak completeness:

Theorem 2.21. If ¥ is finite, then

YFF < YEFL

Proof. Suppose {Gy,...,Gp_1} E F. Then

YFF <= FGy—---—Gp1—F [by the Deduction Theorem]
<~ FGy—---—>Gp1 »F [by the last lemmal]
<< XFF

by Lemma 2.17. O

Another connexion between deducibility and entailment is now the following:

Corollary 2.22. X is consistent if and only if every finite subset of ¥ has a
model.

Proof. If ¥ is not consistent, then, by Lemma 2.13, some finite subset ¥y of X
is inconsistent. Then ¥y F -(P — P) by Lemma 2.12, so £y F ~(P — P). But
—=(P — P) has no model, so Xy has no model.

Conversely, if ¥g is a finite subset of ¥ with no model, then ¥y F =(P — P),
50 Xo F —(P — P), whence ¥, is inconsistent by Lemma 2.12. O
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Both implications in Theorem 2.21 are true generally:

Theorem 2.23 (Soundness). If X+ F, then X F F.

Proof. Proof by strong induction on the length of deductions. Suppose the
claim is true when F' has a deduction of length less than n + 1 from X. Suppose
Go,...,G,_1, F is a formal proof of F' from X.

(¥) If - F, then E F by Lemma 2.20, so ¥ F F.
(t) If F € ¥, then ¥ F F trivially.

(1) If G; is (G; — F) for some i and j less than n, then ¥ F G; and
¥ E (G; — F) by inductive hypothesis, whence also X F F.

This completes the induction. O

Theorem 2.24 (Completeness). If ¥ F F, then ¥ - F.

Proof. Suppose ¥ ¥ F'; we shall show ¥ ¥ F. By Corollary 2.15, ¥ U {—F} is
consistent. Our proof, in outline, has three parts:

(0) There is a set X* of formulas such that:
e SU{-F}CX¥
e Y* is consistent;
o if G ¢ ¥*, then -G € ¥*.

(1) Let the structure « be given by

a(P)=1 < PecX".

Then
aFG <= Gek” (2.2)

for all formulas G.

(2) Hence a F ¥*, so a F =F. Therefore a ¥ F. This shows X ¥ F.
Details of (0) and (1) are as follows:

(0) The infinite set Fm of formulas is countable, that is, it can be written

as {Gp : n € w} (exercise). We now recursively define a sequence (2, :
n € w) of sets of formulas:

(x) To =T U {~F}.
¥, U{G,}, if this is consistent;
(1) Sur = { {Gn}

hI otherwise.
Then ¥ =%, C % C---. Let ¥* =
desired points:

e Obviously XU {-F} C ¥*.

e Suppose if possible that ¥* is inconsistent. Then some finite sub-
set {Hy,...,Hy} is inconsistent, by Lemma 2.8. Each formula H;
is in some set ¥,,¢;. Let n = max{m(0),...,m(k)}. Then %, is
inconsistent.

¥n. We can now establish the

new

However, by induction, each of the sets X, is consistent.
Therefore ¥* is consistent.
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e Finally, suppose G ¢ ¥*. Now, G is G,, for some n. Then ¥, U {G}
is inconsistent, by definition of 3,1 and ¥*. Hence:
(¥*) X, F =G, by Corollary 2.15;
(1) Tk =G;
(f) ¥* U {~G} is consistent, by Lemmas 2.10 and 2.12, since X* is
consistent;
(§) X, U{~G} is consistent for all m.
But -G is G, for some m. Hence -G € G,,11 C X*.

By the consistency of ¥*, we now have
G¢Y <— -GeX"

(1) We prove the equivalence (2.2) by induction on Fm. It is trivially true
if G is a variable, by definition of a. Suppose it is true if G is H or K.
Then

aF-H < aFH < H¢Y <— -HeX",

and also

aF(H—K) < aFH & aE-K
= He¥X & ~Ke¥
— (H - K)¢x".
(Exercise: why does the last equivalence hold?)

This completes the proof. O

Note well the method of the proof: Given a consistent set of formulas, we
extended it to a larger consistent set, ¥*, that determined the structure, «,
that we wanted.

A set ¥ of formulas can be called maximally consistent if:
(%) X is consistent; and

(t) if £ C T and T is consistent, then ¥ =T.

Lemma 2.25. Suppose ¥ is consistent. The following are equivalent:

(*) X is maximally consistent.
(t) If G ¢ X, then -G € X.

Proof. Exercise. O

Our proof of the Completeness Theorem established and used the following
result:

Porism 2.26. Every consistent set of formulas is included in a mazimally con-
sistent set.

The following can be proved as a corollary of Completeness:

Theorem 2.27 (Compactness). If every finite subset of ¥ has a model, then
Y has a model.
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Proof. Suppose every finite subset of ¥ has a model. Then ¥ is consistent by
Lemma 2.22. Let F be a contradiction. Then ¥ ¥ F. Hence ¥ ¥ F. In
particular, there is a model of ¥ in which F is false. O

Conversely, Completeness can be proved as a corollary of the Compactness
Theorem (exercise).

2.4 Additional exercises

(1) Give a formal proof of H from F, G and (—~(F — -G) — H).

(2) On Fm, let F — F' be the operation of ‘reversing the arrows,’ so that,
for example,

(P e —|(—|Q — R))' is (—|(R — ﬂQ) — P).

What is the precise recursive definition of the function F — F'?
(3) Prove or disprove: Either ¥ E F, or £ E -F.
(4) Prove or disprove: If ¥ F (F — G), then either X E =F or X F G.

We have introduced A so that (F' A G) is an abbreviation of ~(F — =G).

(5) Show that

(F = G) ~—(F A —G). (2.3)
Let (=F — G) be abbreviated
(FVG).

We can develop propositional logic in the signature {A,V,—}. Let Fm' be the
set of formulas in this signature.

(6) Give a precise definition of Fm'.

(7) Define A F F for structures A and F in Fm'.
The definition of ¥ E F is exactly as before, when ¥ is a set of formulas in Fm’.

(8) Prove or disprove: If X E F or ¥ E G, then ¥ F (F V G).

(9) Prove or disprove: If X F (FV G), then X E F or X EG.
(10) Show that {A,—} is an adequate signature.

Informally, we can define a unary operation F — F* on Fm' so that F* is the
result of interchanging A and V in F' and of replacing every variable P with = P.

(11) Give a precise recursive definition of F' — F*.
(12) Show that F* ~ —F for all F in Fm'.



Chapter 3

First-order logic

Recall from § 1.2 the definitions and examples involving structures; these are
the kinds of structures that we shall now be dealing with.

Let 2 be a structure with signature £. So 2l has universe A. We use ¢, R and f
as syntactical variables for the constants, n-ary predicates and m-ary relations
of L, respectively.

3.1 Terms

If £ < n, then there is an n-ary operation
adr—ap: A" — A (3.1)

on A. This operation is projection onto the kth coordinate, and it can be
defined regardless of the operations symbolized in £. Also, each element b in A
determines, for each positive n, the constant n-ary operation

ar—b: A" — A (3.2)

If b is the interpretation of a constant in £, then that constant can be understood
to symbolize the constant operation. All of the operations that are symbolized
in £ can be composed with one another, and with projections, to give other
operations on A. The terms of £ symbolize these possibilities. The symbols
used in terms of L are:

() the function-symbols f of £;
(t) the constants c of L;

(1) (individual) variables, say from the set {zj; : k € w}; these will sym-
bolize the projections.

Then the terms of £ are defined inductively thus:
(*) Each individual variable is a term of L.

(t) Each constant in £ is a term of L.

23
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() If f is an n-ary function-symbol of £, and ¢, ..., t,—1 are terms of L,
then the string

fto--- fn

is a term of £. (This is not generally a string of length n + 1; it is a string
whose length is 1 more than the sum of the lengths of the strings ¢. If f
is binary, then we may unofficially write the term as (to f ¢1) instead of

ftoti.)
Let the set of terms of £ be denoted

TmL.

As in propositional logic, so here, definition by recursion is possible, because of
the following;:

Theorem 3.1 (Unique Readability). Every term of L is uniquely
sto tn_1

for some n in w, some terms t, of L (if n #0), and some s in L. If n # 0,
then s is an n-ary function-symbol of L; if n = 0, then s is a constant of L or
a variable.

Proof. Exercise. (The proof can be developed as for Theorem 2.3.) O

Note well that, by our definition, none of the symbols used in terms is a bracket.
If the variables in a term ¢ come from {zj : k < n}, then ¢ is n-ary; the set of
n-ary terms of £ can be denoted
Tm} .
Note then
Tm% nglﬁ ngzﬁ C---.

An n-ary term t of £ determines an n-ary operation t* on A. The formal
definition is recursive:

(¥) zx®is @ = ay, if k <n (asin (3.1)).

(1) ™ is @ + c* (as in (3.2); here c is understood respectively as term and
constant).

(1) (fto---tn1)¥ is
i — At @),. .., i1 2(@)),

that is, f% o (to™,... , tx_12).

We have just extended the interpretation-function J of 2 so as to include a
function
t— t*: Tm} — A4, (3.3)

If t € Tm%, then t* = {(0,a)} for some a in A; but (as in ch. 1) we can then
identify t* with a, and we can call t a constant term.
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Suppose £ C L. An expansion of 2 to £’ is a structure 21’ whose signature is
L', and whose universe is A, such that

for all s in £. Then 2 is the reduct of 2’ to L.

Example 3.2. The ring (Z,+,—,-,0,1) is an expansion of the abelian group
(Z,+,—,0); the latter is a reduct of the former.

We can treat the elements of A as new constants (not belonging to £); adding
these to L gives the signature £(A). Then A has a natural expansion 24 to this

signature, so that

Aa

a =a

for all a in A. (Some writers prefer to define £(A4) as LU{c, : @ € A}, and then

to define ¢, %4 = a.)

In fact, when it comes to interpreting terms (and, later, formulas), we always
treat 2 as if it were 4. This means that every n-ary term ¢ of £(A) has an

interpretation #* in 2 according to the definition above, provided we understand

a® as a itself when a € A. In other contexts, however, it will be important to

distinguish clearly between 2 and 2 4. We shall also want to speak of expansions
Ax of A, where X is an arbitrary subset of A.

If ¢ is an n-ary term of £ (or £(A)), and @ € A", then the result of replacing
each z; in t with ag, for each k in n, can be written
4Ha@);
this is a constant term of £(A). For a recursive definition, we have that (@) is:
(%) ag, if t is xy;
() ¢ if tis ¢
(1) fto(@)---tp—r(@), if tis fto--- fr—1-

Thus we have defined a function
t— t(@) : Tm} — Tmy 4. (3.4)
The tuple @ also determines the function
gr— g(@): A" — A (3.5)

We now have several functions, in (3.3), (3.4) and (3.5), fitting together into a
square:

]| K

AT A

a

It doesn’t matter which way you go around:

Lemma 3.3. t%(@) = t(@)%4 for all n-ary terms of L, all L-structures A, and
all n-tuples @ from A.
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Proof. The claim is perhaps obvious; but there is a proof by induction:
If t is xy, then t%(a@) = ai, and (@)% = a;,*4 = a.
If t is ¢, then t%(a@) = c¥, while #(@)%4 = ¥4 = ¥,

Finally, if the claim holds when ¢ is any of terms ¢;, and now t is ftg--- fx_1,
then we have

et (@)

This completes the induction. O

As an exercise, you can give a recursive definition of

t(UO, . ,un_l),

where ¢ is an m-ary term, and the uy are terms. What is the arity of the
resulting term? Show that

t(UOa N aunfl)g[(a:) = tm(uom(a)v s 7un71%(6))'
Note then that, if ¢ is n-ary, then ¢ is precisely the term denoted
t(iI,'(), e ;xn—l)-

Example 3.4. Let £ be the signature of rings (with identity), and let 2 be Z
(or Q or R or C or some other infinite integral domain or field). If ¢ is a term of
L(A), then t* is a polynomial over A. What if 2 is finite, say the 2-element
field F,? In that case, if ¢ is zg - (xo + 1) or 0, then t*(a) = 0 for all a in A.
However, xg - (xo + 1) and 0 do not represent the same polynomial, since they
have different interpretations in fields (like F4) that properly include Fs. (Here,
F4 can be defined as Fo[X]/(X? +1).)

3.2 Formulas

As terms symbolize operations, so formulas will symbolize relations. Each for-
mula ¢ of £ will have an interpretation ¢ that is a relation on A. When this
relation is nullary and is in fact {@}, that is, 1, then ¢ will be called true in 2,
and we shall write

2AFE .

Conversely, it is possible to define truth in structures first, and then interpreta-
tions. We shall look at both approaches.

So-called polynomial equations are examples of atomic formulas, which are the
first kinds of formulas to be defined. From these, we shall define open formulas,
and then arbitrary formulas.
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Atomic formulas and their interpretations

The atomic formulas of £ are of two kinds:

(%) If to and t; are terms of £, then ¢ty = ¢ is an atomic formula of £. (Some
writers prefer to use a symbol like = instead of =.)

(f) If R is an n-ary predicate of £, and to, ..., t,—1 are terms of £, then
Rty tp—1 is an atomic formula of £. (If R is binary, then we may
unofficially write (¢ R t;) instead of Rigt;.)

An atomic formula « can be called k-ary if the terms it is made from are k-ary.

A polynomial equation in two variables over R has a solution-set, which can
be considered as the interpretation of the equation. Likewise, arbitrary atomic
formulas have solution-sets, which are their interpretations: If « is a k-ary
atomic formula of £, then the interpretation in 2 of « is the k-ary relation
a® on A defined as follows. (Strictly, the validity of the definition depends on
Theorem 3.5 below.)
(to = tl)m = {(_i S Ak : tom((_i) = tlm((_l’)}, (36)
(Rtg--- R, 1)* ={d € A*: (tc,®(@),...,t, 1%(@)) € R*}. (3.7)
As a special case, if £ = 0, we have
(to = tl)Q[ =1 <= tom = tlm;
(Rto . 'tn_l)m =1 << (tom, - ,tn_lm) S R,
Note that the atomic formula ¢t = ¢; can be considered as the special case
of Rty---t,—1 when n = 2 and R is =. We treat the special case separately

because we consider the equals-sign to be always available for use in formulas,
and we always interpret it as true equality.

Open formulas and their interpretations

We can treat atomic formulas as propositional variables, combining them to get
open (or quantifier-free) formulas:

(*) atomic formulas are open formulas;
(1) if p and x are open formulas, then so are —¢ and (¢ — Xx)-

As with atomic formulas, so with arbitrary open formulas: they are k-ary if
the terms they are built up from are k-ary. Hence, if ¢ and x are k-ary open
formulas, then so are =y and (¢ — x). We can now define interpretations of
k-ary open formulas by adding to (3.6) and (3.7) the following rules (again,
Theorem 3.5 is required):

(mp)® = A% o™ = (™) (3.10)
(0= 0% = A (@ X)) = (@ X (3.11)

In particular, if £ = 0, then:
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Formulas in general

Formulas in general may contain the existential quantifier 3. The inductive
definition of formula is:

(%) atomic formulas are formulas;
(1) if ¢ and x are formulas, then so are —p and (¢ — x);
(1) if ¢ is a formula, and z is a variable, then Jx ¢ is a formula.

The possibility of defining the foregoing interpretations of open formulas de-
pends on the following:

Theorem 3.5 (Unique Readability). Every formula of £ is uniquely one of
the following:

(%) an equation ty = t1, for some terms t. of L;

() a relational formula Rtg - - -t,—1 for some terms ty and n-ary predicate
R of L, for some positive n;

(1) a negation —p for some formula ¢;
(8) an implication (p — x) for some formulas ¢ and x;

() an ezistential formula 3z ¢ for some formula ¢ and some variable x.

Proof. Exercise. O

Towards interpretations in general

In order to define interpretations of arbitrary formulas, we can still use (3.10)
and (3.11) above to define (=p)% and (¢ — x)® in terms of p* and }*.
However, we also must define (3z ¢)* in terms of ¢¥; and we must first define
the arity 3z ¢ in terms of the arity of ¢. This is not quite so easy. We shall do
it presently. When we are done, then, for every n-ary formula ¢ of £, there will
be an n-ary relation % on A; this relation is defined by ¢, and the relation
can be called a 0-definable relation of 2. The definable relations are those
defined by formulas of £(A); more generally, if X C A, then the X-definable
relations are those defined by formulas of £(X). (Singulary definable relations
can just be called definable sets.)

If X and Y are k-ary definable relations of 2, then so are X¢, X NY, X UY,
&c. In short, all Boolean combinations of definable relations are definable,
since {—, —} is an adequate signature for propositional logic.

Now, if ¢ is an n-ary formula, defining as such the n-ary relation X, then we
can also treat ¢ as (n + 1)-ary, defining the relation X x A on A. This relation
is the set
{(@,b) € A" @ € X}.
This set is also 7~ 1(X), where 7 is the function
(@,b) — @ : A"t — A" (3.12)

this map is projection onto the first n coordinates. In short then, inverse
images of definable sets under projections are definable. Using the quantifier 3
in formulas will allow images under projections to be definable.
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Indeed, suppose ¢ is an (n + 1)-ary formula. Then we can define (3z,, ¢)% to
consist of those @ in A" such that there ezists b in A such that (@,b) € ¢¥.
Hence (3z,, )% is 1" (p¥), the image of ¥, where 7 is the projection in (3.12).

But what is (Jz; ¢)* here, if i < n? Defining this takes a bit more work;
see Remark 3.8 below. Meanwhile, we can give an alternative approach to
interpreting formulas:

Truth

Let Fm, be the set of formulas of £. We recursively define a function
pr—fv(p) :Fm, — P({zy : k € w})

as follows:

(¥) fv(a) is the set of variables in «, if « is atomic (for an exercise, this can
be given a recursive definition);

(1) fv(p = x) = tv(p) Utv(x);
() tv(3z @) = tv(p) ~ {z}.
Then fv(yp) is the set of free variables of ¢.

If fv(y) = @, then ¢ is a sentence. So an atomic sentence « is a nullary atomic
formula; in this case, we can define

AFa < o® =1; (3.13)

in either case, « is true in 2. Otherwise, a is false in 2, and we can write

A K a.
We can also define
AF -0 < AKo; (3.14)
AE (0> 71) < AFo & AFE —; (3.15)

provided o and 7 are sentences for which truth and falsity in 2 have been
defined. To define 2 F Jv ¢, we should assume that we have been working with
formulas of £(A) all along, and we should define a kind of substitution:

For formulas ¢, if x is a variable and ¢ is a term, we define the formula

T

Pt

recursively:

(¥) If o is atomic, then af is the result of replacing each occurrence of x in «
with ¢ (as an exercise, you can define this recursively);

(—)f is (¢}

(o = X)f 1s (9§ = X{);

(Fz )7 is Jz ¢ (no change);
(

(f
(1
(8

)
)
)
(1)

Ju p)F is Ju f, if u is not z.
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Then ¢f is the result of replacing each free instance of z in ¢ with ¢. Now we
can define

AFJz ¢ < AF ¢ for some a in A. (3.16)

We have now completed the definition of truth; it is expressed by lines (3.8),
(3.9), (3.13), (3.14), (3.15) and (3.16).

Interpretations
If fv(p) C {z : k < n}, then ¢ can be called n-ary, and we can write ¢ as

@(To, .y Tp_1)-

n—1

. T Ty — .
Then, instead of g0 -- 4.7, we can write

wlag,...,an-1)

or ¢(@). (Here, @ is a tuple of constants. We could let it be a tuple (tg,...,tn—1)
of arbitrary terms; but then we should have to ensure that ¢(to,...,tn—1) is
the result of simultaneously substituting each t; for the free instances of the
corresponding variable xy.)

Lemma 3.6. Let ¢ be an n-ary formula of L.
(¥) If ¢ is atomic, then @™ = {@ € A" : AF @(@)}.
(t) If pis x, then {@ € A" : AE p(@)} ={ad € A" : A F x(@)}°.
(1) I ¢ is (x > ), then

(@ €A" UAE (@) ={d € A" : AE x(@)}°U{d € A" : A F (@)}

(8) If ¢ is Iy, X, then
(@ € A" AF p(@)} = 7"({(@,b) € A" 5 AE (@, b)),
where m (as in (3.12)) is projection onto the first n coordinates.
Proof. Exercise. O
Now we can define
P ={d € A" AF @)}
for all formulas .

In a formula of £(A), any constants from A can be called parameters. So the
definable relations of 2 are, more fully, the relations definable with parameters.

Example 3.7. Algebraic geometry studies the definable relations of C and
of other algebraically closed fields. It can be shown that, on C, all definable
relations are definable by open formulas. The model-theoretic expression for
this fact is that the theory of algebraically closed fields admits elimination of
quantifiers.

As an exercise, you can think about what are the definable sets of
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You probably will not be able to prove your answers at this point.

Remark 3.8. To complete our first approach to definable sets, let us ignore the
ordering of w. If I is a finite subset of w, and if {i : z; € fv(¢)} C I, let us
say that ¢ is I-ary. Let A’ be the set of functions from I to A, a typical such
function being denoted

(ai 11 € I)

The definition of p* as a subset of A starts out as before. To define (3z; )%,
let 7] be the function

(zii € 1) — (m; i € IN{j}) : AT — ADNUD,

Now we can define

(Fz; ) = (1))" ().
But this doesn’t allow Jv ¢ to be treated as J-ary when J contains j. So we
should say in addition that if ¢ is I-ary, and J is any finite subset of w, then
the set

(le X AJ\I

is the interpretation of ¢ when considered as (I U J)-ary. Also, suppose {i : x; €
ftv(3z; ¢)} € J. Then ¢ is (J U {j})-ary, and we can define

(3r; @) = (w7 (%) x AV,

This formulation of definable relations is rather complicated to be useful; the
main point is that a geometric characterization of definable relations is possible:

Theorem 3.9. The family of 0-definable relations of a structure A of L is the
smallest family of relations on A that is closed under Boolean operations, Carte-
sian products, projections and permutations of coordinates; that contains the di-
agonal {(a,a) : a € A}; and that contains the sets {c*}, R* and {(ag,-.-,a,) :
ao,-- - an_1) = ay}.

3.3 Logical consequence

Having defined truth, we can define logical consequence. Let Sn, be the set
of sentences of £. The L-structure 2 is a model of a subset ¥ of Sn, if each
sentence in X is true in 2A; then we can write

AEX.

If a sentence o is true in every model of ¥, then o is a (logical) consequence
of ¥, and we can write
Y Fo.
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If @ E o, then we can write just
Fo;

in this case, o is a validity.

Two sentences are (logically) equivalent if each is a logical consequence of
the other.

Lemma 3.10. Let 0 and 7 be sentences of L.
(x) o BT if and only if E (o0 — 1), for all 0 and T in Sng.
(1) o and T are equivalent if and only if E (0 = 7) A (T — o).

(1) Logical equivalence is an equivalence-relation on Sng.
Proof. Exercise. O
Instead of the formula (¢ — x) A (x = ¢), let us write

P X

By the lemma, o and 7 are logically equivalent if and only if (o < 7) is a
validity. We may blur the distinction between logically equivalent sentences,
identifying o with =—¢ for example.

Instead of =3v —p, we may write
Yo .
Then —Vv ¢ is (equivalent to) Jv —.
Example 3.11. The sentence
(Vz (Pz — Qz) = (Vz Pz — Vz Qz))

is a validity, where P and () are unary predicates. To prove this, note that,
by (3.15), it is enough to show that 2 F (Vz Px — Vz Qz) whenever 2 E
Vz (Pz — Q). So suppose

AFE Vo (Pr — Qux). (3.17)
It is now enough to show that, if also 2l F Vz Pz, then 2 F Vz Qx. So suppose
AE Ve Pr. (3.18)

Let a € A. Then 2 F Pa, by (3.18). But 2 F (Pa — Qa), by (3.17). Hence
A E Qa. Since a was arbitrary, we have A F Vz Q.

If ftv(p) = {ug, ..., up_1}, and A E Yuy ---Vu, 1 p, we may write just
2AFE .

Here, the sentence Yug ---Vun_1 @ is the (universal) generalization of .
Now we can define ¥ F ¢ for arbitrary formulas ¢ (although ¥ should still
be a set of sentences); we can also say that arbitrary formulas ¢ and x are
(logically) equivalent if

F (e < X)-
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For the formula ¢ with free variables zg, ..., x,_1, if we have
AFE Jug - Fup—1 @,

then we can say that ¢ is satisfied in 2.

It can happen then that 2 ¥ ¢ and A ¥ —p. However, if o is a sentence, then
either o or —o is true in .

Example 3.12. Each of the following formulas is true in every group:
z-(y-2)=(z-y) 2,

-1
r-1=ux, -z =1,

1. z=ux, z ez =1.

If ¥ C Sng, let
Cong(X)={oc€Sn;: X Fo}.
Lemma 3.13. Cong(Cong (X)) = Cong(X).

Proof. Since ¥ C Cong(X), we have Cong(X) C Cong(Cong(X)). Suppose
o € Cong(Cong(X)). Then Cong(X) Fo. But if A F X, then A F Cong(X), so
in this case A F o. Thus o € Cong(X). O

A subset T of Sn. is a theory of £ if Cong(T) =T. A subset ¥ of a theory T'
is a set of axioms for T if
T = Cong(X);

we may also say then that Y. axiomatizes 7.
Example 3.14. The theory of groups is axiomatized by

VeVyVzax-(y-z)=(z-y)-z,

Vex- 1=z, Voo -zt =1,

1

Vel -z =z, Vez -z =1.

If 2 is an L-structure, let
Th(A) = {o € Sn, : AF o}
Lemma 3.15. Th(2) is a theory.

Proof. Say Th(2l) E o. Since 20 £ Th(2(), we have 2l F o, so 0 € Th(). O

We can now call Th(2() the theory of 2. Note that, if 7' is Th(2), then
TEo < TF-o

for all sentences o. An arbitrary theory 7" need not have this property; if it
does, then T is complete. So, the theory of a structure is always complete.
The converse holds, by the next lemma; also, the set Sn, is a theory, but it is
not complete:
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Lemma 3.16. Let T be a theory of L.
(%) If T has no model, then T is Suy itself.

(t) If T is complete, then T is Th() for some structure A, which is a
model of T'.

(1) If T has a model A, then T is included in Th(2A), which is a complete
theory: in particular

TFo = TF-o
for all o in Sng.

(8) Hence, to prove that T' is complete, it is enough to show that T has
models and

THFEo — TE-o

for all o in Sng.

Proof. Consider the points in order:

(%) If T is a theory with no models, and o is a sentence, then o is true in
every model of T', so T F o, whence o € T

(t) If T is complete, then by definition it cannot contain all sentences, so
it must have a model 2. Then T' C Th(2). By this and completeness of
T, we have

TFo — aFo = a0 = TE-06 = TFEo

for all o in Sng . In short, TF o <= 2AF 0, s0T = Th(2).
(1) The set {o,—~0} has no models.
(§) Obvious.

This completes the proof. O

We can also speak of the theory of a class of L-structures. If K is such a class,
then Th(K) is the set of sentences of £ that are true in every structure in K.

In particular, if ¥ C Sn., then we can define
Mod(X)
to be the class of all models of . Then
Th(Mod(X)) = Cong(X).
Example 3.17. By definition, a group is just a model of the theory of groups,

as axiomatized in Example 3.14. Hence this theory is Th(K), where K is the
class of all groups.
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3.4 Additional exercises

(1) Letting P and @ be unary predicates, determine, from the definition of F,
whether the following hold. (A method is shown in Example 3.11.)
(¥*) (3z Pz — 3z Qz) F Vz (Pz — Qu);
(Vz Px — Jz Q) F Jz (Pz — Qux);
Jz (Pz — Qz) F (Vo Pz — 3z Q);
{3z Pz, 3z Qx} E 3z (Px A Qz);
) 3z Px — Jy Qy E Vz Jy (Pz — Qy).

(
(2) Let £ = {R}, where R is a binary predicate, and let 2 be the £-structure
(Z,<). Determine ¢¥ if ¢ is:

(f
(1
(8

~— — — —

(¥) Va1 (Rz120 = RIoT1);
(1) Yao (Rrazo V Rryzs).
(3) Let £ be {S,P}, where S and P are binary function-symbols. Then

(R,+,-) is an L-structure. Show that the following sets and relations are
definable in this structure:

(%) {0}
(1) {1}
(1) {aeR:0<a};
(8) {(a,b) € R? :a < b}.
(4) Show that the following sets are definable in (w, +,-,<,0,1):
(%) the set of even numbers;

(f) the set of prime numbers.
(5) Let R be the binary relation

{(z,z+1):2€Z}

on Z. Show that R is 0-definable in the structure (Z, <); that is, find a
binary formula ¢ in the signature {<} such that ¢(*<) = R.
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Quantifier-elimination

In general, if we have some sentences, how might we show that the theory that
they axiomatize is complete? If the theory is not complete, this is easy to show:

Example 4.1. The theory of groups is not complete, since the sentence
Vo Yy zy = yz

is true (by definition) only in abelian groups, but there are non-abelian groups
(such as the group of permutations of three objects). The theory of abelian
groups is not complete either, since (in the signature {4, —,0}) the sentence

Ve (z4+2=0—2=0)
is true in (Z, +, —,0), but false in (Z/2Z,+, —,0).

Let TO be the theory of strict total orders; this is axiomatized by the universal
generalizations of:

—(z < z),
r<y—-(y <z,
r<yNy<z—-rr<z,
r<yVy<axzVz=y.
This theory is not complete, since (w,<) and (Z, <) are models of TO with
different complete theories (exercise).

Let TO™ be the theory of dense total orders without endpoints, namely,
TO™ has the axioms of TO, along with the universal generalizations of:

(x<zAz<y),
Jyy < x,
Jyx <y.
The theory TO* has a model, namely (Q,<). We shall show that TO* is

complete. In order to do this, we shall first show that the theory admits (full)
elimination of quantifiers.

36
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An arbitrary theory T' admits (full) elimination of quantifiers if, for every
formula ¢ of £, there is an open formula y of £ such that

TE(p X
—in words, ¢ is equivalent to x modulo T.

Lemma 4.2. An L-theory T admits quantifier-elimination, provided that, if ¢
is an open formula, and v is a variable, then Jv ¢ is equivalent modulo T to
an open formula.

Proof. Use induction on formulas. Specifically:
Every atomic formula is equivalent modulo T to an open formula, namely itself.

Suppose @ is equivalent modulo T to an open formula c. Then T F (—p < —a);
but —a is open.

Suppose also x is equivalent modulo T to an open formula 3. Then

TE((p—=x) e (a=0);

but (a« — ) is open.

Finally, T F (3v ¢ < Jv a) (exercise); but by assumption, Jv « is equivalent
to an open formula v; so T' E (Jv ¢ < ) (exercise). This completes the
induction. O

The lemma can be improved slightly. Every open formula is logically equivalent
to a formula in disjunctive normal form:

VA,

i<m j<n
where each ozl(-j ) is either an atomic or a negated atomic formula. (See § 2.6 of
this year’s notes for Math 111.) This formula in disjunctive normal form can

also be written
VAS
i<m
where ¥; = {az(-j) :j <n}. Note that
F@E VV ASie V30 A (4.1)
<m i<m

(exercise). The formulas Jv A X; are said to be primitive. In general, a
primitive formula is a formula

Jug -+ Jup_1 /\ Y,

where X is a finite non-empty set of atomic and negated atomic formulas. (Re-
member that A X is just an abbreviation for ¢g A ... A ¢,_1, where the formulas
p; compose X; so ¥ must be finite since formulas must have finite length. Also,
formulas have positive length, so ¥ must be non-empty. However, the notation
/\ @ could be understood to stand for a validity.)
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Using (4.1), we can adjust the induction above to show that 7' admits quantifier-
elimination, provided that every primitive formula with one (existential) quan-
tifier is equivalent modulo T to an open formula.

Henceforth suppose £ is {<}, and TO C T; so T is a theory of total orders.
Then we can improve Lemma 4.2 even more. Indeed, the atomic formulas of £
now are x = y and x < y, where x and y are variables. Moreover,

TOEF (-(z<y) < (z=yVy<z)),

TOF (n(z=y) < (r<yVy<u)).
Hence, in £, any formula is equivalent, modulo TO, to the result of replacing
each negated atomic sub-formula with the appropriate disjunction of atomic
formulas. If this replacement is done to a formula in disjunctive normal form,

then the new formula will have a disjunctive normal form that involves no
negations. So 7' admits quantifier-elimination, provided that every formula

EIv/\E

is equivalent, modulo T', to an open formula, where now X is a set of atomic
formulas.

Using this criterion, we shall show that TO* admits quantifier-elimination:

Theorem 4.3. TO* admits (full) elimination of quantifiers.

Proof. Let ¥ be a finite, non-empty set of atomic formulas (in the signature
{<}). Let X be the set of variables appearing in formulas in ¥; that is,

X = U fv(a).

aEx

Then X is a finite non-empty set; say
X ={zo,...,zn}.

Suppose U is an L-structure, and @ € AT, If  is an atomic formula of £
with variables from X, we can let a(a@) be the result of replacing each z; in «
with a;. Then we can let

S(@) = {a(@) :a € ).

Suppose in fact
AETOU{/\ (@)}

Let us define ¥ g 7) as the set of atomic formulas o such that fv(a) C X and
A E a(d@). Then
% C Saa)-

Moreover, once X has been chosen, there are only finitely many possibilities for
the set Y(qz). Let us list these possibilities as

Y0, St
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Now, possibly m = 0 here. In this case,
TOE (3 AT« v #v),
so we are done. Henceforth we may assume m > 0. If B £ TOU{A %(b)}, then
BE i)
for some ¢ in m. Therefore
TOE (AT« V A,
i<m

and hence
TOF (I AT« \/ v A\Z)).
i<m
Therefore, for our proof of quantifier-elimination, we may assume that X is one
of the sets ¥ (g 5) (so that, in particular, m = 1).

Now partition ¥ as T' U A, where no formula in T, but every formula in A,
contains v. There are two extreme possibilities:

(%) Suppose' = @. Then X = {v} (sinceif x € X~ {v}, then (z =z) € T).
Also, ¥ = A ={v=wv}, so

E (v /\E(—)v:v),

and we are done in this case.
(f) Suppose A = @. Then v ¢ X, and

F@Ev AT e A\D),

so we are done in this case.

Henceforth, suppose neither I nor A is empty. Then

F@Ev Ao ATAde AA).

TO* k(v AT & A\TD), (4.2)

which will complete the proof. To show (4.2), it is enough to show

We shall show that

TO* E (AT - 3v A A).
But this follows from the definition of TO™*:
Indeed, remember that ¥ is ¥ g 7). Hence, for all i and j in n + 1, we have
a; < a; <= (x; <z;)€L;

a; = a; <~ (:z:,-:a:j)eE.

We have v € X. We can relabel the elements of X as necessary so that v is x,
and
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(Here, a; < a;y1 means a; < a;41 Or a; = a;;1 as usual.) Suppose B F TO*,
and B™ contains b such that B £ A (5). We have to show that there is ¢ in B
such that B E A\ A(l_;, ¢). Now, for all 4 and j in n, we have

b <b; <= a; <ay;
bizbj <~ a; = aj.

Because B is a model of TO* (and not just TO), we can find ¢ as needed
according to the relation of a,, with the other a;:

() If a,, = a; for some ¢ in n, then let ¢ = b;.

(t) If ap—1 < ay, then let ¢ be greater than b,_;.

(1) If ay < ag, then let ¢ be less than by.

(8) If ar, < ay, < ag41, then we can let ¢ be such that by < ¢ < bg41.

This completes the proof that TO™ admits quantifier-elimination. O

We have proved more than quantifier-elimination: we have shown that, modulo
TO”, the formula Jv A X is equivalent to v # v or v = v or an open formula with
the same free variables as Jv A X. In the proof, we introduced v # v simply as a
formula ¢ such that 2 ¥ ¢ for every structure 2. Such a formula corresponds to
a nullary Boolean connective, namely an absurdity (the negation of a validity).
We used 0 as such a connective; but let us now use L.

Likewise, instead of v = v, we can use, as a validity, the nullary Boolean con-
nective T. From the last proof, therefore, we have:

Porism 4.4. In the signature {<}, with the nullary connectives L and T al-
lowed, every formula is equivalent modulo TO™ to an open formula with the
same free variables.

In a signature of first-order logic without constants, an open sentence consists
entirely of Boolean connectives, with no propositional variables; so it is either
an absurdity or a validity. As a consequence, we have:

Theorem 4.5. TO" is a complete theory.

Proof. By the porism, every sentence is equivalent to an open sentence; as just
noted, such a sentence is an absurdity or a validity. Suppose TO" F (o « 1).
But E (0 < 1) < —o; so TO* E —¢. Similarly, if TO® E (¢ « T), then
TO* E 0. Hence, for all sentences o, if TO* ¥ o, then TO* E —o. Therefore
TO* is complete by Lemma, 3.16. O



Chapter 5

Relations between
structures

There are several binary relations on the class of structures in a signature L.
Some relations involve universes of structures; others do not.

Let & and B be L-structures.

5.1 Fundamental definitions

The structure 2 is a substructure of B, or 8 is an extension of 2, if A C B
and

(x) ¢* = c® for all constants ¢ of £;
() R* = A" N R™® for all n-ary predicates R of £, for all positive n in w;

(1) f* = f® oidy~ for all n-ary function-symbols f of £, for all positive n
in w.

In this case, we write
2 C*B.

Immediately, 2l C 9B if and only if A C B and
AFo <= BFo (5.1)
for all atomic sentences o of L(A) of one of the forms

ag = C,
Rag - an_1,

fao"'anfl = Qp-

The two structures 2 and B are called elementarily equivalent if (5.1) holds
for all sentences o of £ (not £L(A)). In this case, we write

A = B.

41
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Then the relation = of elementary equivalence is in fact the equivalence-
relation induced on the class of L£-structures by the function 9t — Th(90); that
is,

A=9B < Th(A) = Th(B).
All models of a complete theory are elementarily equivalent, and first-order logic
provides no means to distinguish between elementarily equivalent structures.
We shall see other possible ways to distinguish between them.

5.2 Additional definitions

The structure 2 is an elementary substructure of 8, and B is an elemen-
tary extension of 2, if A C B and A4 = B 4. Then we write

A B,

(Some people prefer just to write 20 < B.) Note here that A4 = B 4 if and only
if (5.1) holds for all sentences o of L(A). In particular, elementary substructures
are substructures.

Various functions between (universes of) structures are possible. To describe
them, it is convenient to use the following convention. If h is a function from A
to B, we also understand h as the function from A™ to B™ given by

h((_i) = h(ao, . (lnfl) = (h((lo), ceey h(an,l)), (52)
for each n in w. In particular, as a function from A° to BY, his {(0,0)}.
The structure 2( embeds in B if there is an injection h from A to B such that:
() h(c*) = c® for all constants ¢ in £;
(1) B"(R®) = W' (A™) N R® for all n-ary predicates R in £, for all positive n
in w;
(1) ho f* = f® o h for all n-ary function-symbols f in £, for all positive n
in w.
Then h is an embedding of 2 in B; to express this, we can write
h: A — B.
Immediately, h : 2 — B if and only if h : A - B and
AFp(d) <= BFeh(@)), foralld from A, (5.3)
for all atomic formulas ¢ of £ of one of the forms
To = o1,
g = C,
Rxo -y 1,
fxO"'xn—l = Tn.

If (5.3) holds for all formulas ¢ of £, then h is an elementary embedding of
2 in B, and we can write 3
h:2 = B.
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Example 5.1. The map z — z/1 is an embedding of the ring Z in the field Q,
but not an elementary embedding, since Z F ¢(1), but Q ¥ ¢(1/1), where ¢ is
~yy+y=ua

If h: A — B and h is a surjection onto B, then h is called an isomorphism
from 2 to B, and we can write

B9l = 9B.

If an isomorphism from 2 to 9B exists, then 2 is isomorphic to B, and we can
write
A = 9B,

the relation = can be called isomorphism.

5.3 Implications

Lemma 5.2. Isomorphism is an equivalence-relation. If h : A 5 B, then
RS =
Proof. Exercise. O

Isomorphic structures are practically the same. One way to make this precise
is by means of the following:

Lemma 5.3. Suppose h : A — B. Then (5.3) holds for all atomic formulas ¢
of L. If also h is onto B, then (5.3) holds for all formulas ¢ of L.

Proof. Note that (5.3) can be re-formulated in other ways, according to taste:
a €™ < h(@) € ¢®, for all n-tuples @ from A, (5.4)

or more simply
h'(p™) = B"(A™) Ng®.
To prove it, assuming h : A — B, we first establish by induction that
hot*=tBoh (5.5)

for all terms ¢ of L:
(*) (5.5) is true by definition if ¢ is a constant or variable;

(1) if (5.5) is true when ¢ € {ug,...,u,_1}, and now tis fug - - u,_1, then

hot®* =ho f%o (u™, ..., up 1) [by defn of t*]
=fPoho(u¥ ..., un1%) [by defn of C]
=fPo(hou™, ..., hou,_1%) [by (5.2)]
=fPo(u®ohy... Up_1> oh) [by inductive hyp.]
=fPo(u®,...,up_12)oh

=tBoh. [by defn of t*]
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Therefore (5.5) holds for all ¢. Now we turn to (5.4). To prove it for open
formulas, we observe:

(%) If p is to = t; for some terms ¢;, then

adept = @) =1"a) [by definition of ¢*]
= h(t®(@)) = h(t:*(@)) [since h is injective]
= 1P (h(@)) =t P (h(@))  [by (5.5)]

[by definition of ¢™®]

(f) If p is Rtg - - - t,—1 for some terms ¢; and predicate R, then:

yeeost Q[( )) € R® by def'n of ¢?]

by def’n of isom.]

by (5.5)]
by def’n of ¢™]

i€y = ( @),
(og[(fi
= ( ®(n@ ), tn— 1%(’1( ))) € R®
< h(a@d) € p~.

[
[
[
[

(1) If (5.4) holds when ¢ is x, and now ¢ is =y, then:

ace gom = a¢x* [by defn of ©?]
h(@) ¢ x® [by inductive hypothesis]
= h((i) € ¢®. [by def'n of ©™]

(§) Similarly, if (5.4) holds when ¢ is x or @, and now ¢ is (x — %), then:

¢t = acx* &ag¢y™ [by def’n of ©¥]
< h(@)ex® & W@) ¢¢® [by inductive hypothesis]
< h(d) ¢ ®. [by def’n of ©™]

Finally, to establish (5.4) in case h is surjective, suppose (5.4) holds when ¢ is
an (m + 1)-ary formula x, and now ¢ is the m-ary Jz,, x. We have

@ €p® < (@,b) € x* for some bin A
< (h(@),h(b)) € x® for some bin A

< (h(@),c) € x® for some c in A

< h(@) € p®
(Note how the surjectivity of h was used.) This completes the proof. O

As an immediate consequence, we have:

Theorem 5.4. If A 2B, then A =‘B.

For other consequences, we first observe:
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Lemma 5.5. If h : A — B, then h(A) is the universe of a structure h(2() such
that h: A S h(A) and h(A) C B.

Proof. Exercise. O

Theorem 5.6. Suppose h: A — B. Then A —» B if and only if h(2A) < B.

Let the diagram of 2 be the set of open sentences of Th(2(4); this set can be
denoted
diag .

Then we can give the following characterization of the relations C and <:

Theorem 5.7. Suppose h : A — B, and B* is the expansion of B to L(A)
such that

a® = h(a) (5.6)

for all a in A. Then
B* Ediag2l <= h: A — B; (5.7)
B* E Th(A4) < h:A>S B. (5.8)

In particular, if A C B, then

B E diagd < A C B;
BETh(RA,) — A= B.

Proof. Note that B* F p(d) <= B F ¢(h(@)). The points about elementary
embeddings and substructures follow from the definitions; about embeddings
and substructures, from Lemma 5.3. O

Corollary 5.8. If T is a theory admitting quantifier-elimination, then all em-
beddings of models of T are elementary embeddings.

Proof. If T admits quantifier-elimination and 2 E T', then diagA E Th(4). O

Model-theory is interesting because not all elementarily equivalent structures
are isomorphic:

Example 5.9. We know that Th(Q, <) = TO*. Since also (R, <) F TO*, we
have (R, <) = (Q, <); however, (Q, <) # (R, <), simply because R is uncount-
able, so there is no bijection at all between Q and R.

5.4 Categoricity

The cardinality of a structure 2 is the cardinality |A| of its universe A. Let x
be an infinite cardinality. A theory T is called k-categorical if

(*) T has a model of cardinality k;

(t) all models of T of cardinality  are isomorphic (to each other).
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Example 5.10. We shall prove later, in Theorem 8.2, that TO* is w-categorical.

A theory is totally categorical if it is k-categorical for each k.

Example 5.11. In the empty signature, structures are pure sets, and isomor-
phisms are just bijections. Hence, if £ = &, then Con, (&) is totally categorical.

There are sentences o,, (where n > 0) in the empty signature such that, for all
theories T" and structures 2l of some common signature,

AETU{o,:n>0} <= AET & |A| > w.

Indeed, let o, be
3270 ---El:z:n_l /\ T; 75.1’]‘.
i<j<n
Moreover, for any formula ¢ with at most one free variable, z, if n > 1, we can
form the sentence

= /\ Ty T A /\ o(wi));

i<j<n i<n
this sentence can be abbreviated
R

Then
AE Pz o <= % >n.

Example 5.12. Suppose £ = {E}, where F is a binary predicate, and let T be
the theory of equivalence-relations with exactly two classes, both infinite. So T’
has the axioms:

Ve z E z;

VeVy (t Ey — y E z);
VeVyVz(x EyANy E z— ¢ E 2);
dz JyVz (~(x Ey)A(z EzVyE?2))
Ve3P yx Ey

for each n greater than 1. Then T is w-categorical. However, if k is an un-
countable cardinal, then 7' is not k-categorical. For example, there is a model
in which both E-classes have size w; (that is, 81), and a model in which one
class has size wy, the other w.

In a countable signature, there are at most |2¥|—that is, continuum-many—
structures with a given countable universe A, because each symbol in the signa-
ture will be interpreted as a subset of some A™, and there are at most continuum-
many of these.

The spectrum-function is

(T, k) — I(T, 5),
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where T is a theory,x is an infinite cardinal, and I(7), k) is the number of non-
isomorphic models of T' of size k. A theory in a countable signature is also
called countable. If T is countable, then we have

1< I(T,w) < [29]. (5.9)

We’ve seen in Examples 5.10 and 5.11 that the lower bound cannot be improved.
Vaught’s conjecture is that

I(T,w) <2 = I(T,w) < w.

If the Continuum Hypothesis is accepted, than this implication is trivial; the
Conjecture is that the implication holds even if the Continuum Hypothesis is
rejected.

The upper bound of (5.9) cannot be improved:

Example 5.13. Let £ be {P, : n € w}, where each P, is a unary predicate.
Let T have the following axioms, where I and J are finite disjoint subsets of w:

dz (/\ Pz A /\ -P;z).

el jeJ

In the same way that we proved TO* admitted quantifier-elimination and was
complete, we can prove that 7" admits QE and is complete. But T has continu-
um-many countably infinite models. Indeed, T has a model 2, where A = 2¥,
and

P ={ocecA:sn)=1}.

We could replace A with the set Ag of o in 2% such that, for some k, if n > k,
then o(n) = 0. This Ag is countable. In fact there is an injection from Aq into
2<% where
2= = [ J2m.
new

This set is partially ordered by C and is a tree. A branch of this tree is a
maximal totally ordered subset; the union of a branch is an element of 2¢. If o
and 7 are distinct elements of 2¢, then o(n) # 7(n) for some n in w, and then

c€P? = 1¢P*

Hence, if also 0 and 7 are not in Ag, then 4g U {0} and 7 U {7} determine
non-isomorphic models of 7. Hence T has at least (and therefore exactly)
continuum-many countable models, since |2 N Ag| = |2¢].

For those who know some algebra:

Examples 5.14. As examples of complete T' where I(T,w) = w, we have:
() the theory of torsion-free divisible abelian groups;
(f) ACFy, the theory of algebraically closed fields of characteristic 0.
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Compactness

We now aim to prove compactness for first-order logic. A subset X of Sn, is
(x) satisfiable if it has a model;
() finitely satisfiable if every finite subset of ¥ has a model.

Compactness is that every finitely satisfiable set is satisfiable.

Lemma 6.1. If ¥ is finitely satisfiable, but ¥ U {o} is not, then X U {—o} is.

Proof. Say X is a finite subset of ¥ such that ¥¢ U {o} has no model. Then
Yo F —o. Say X; is another finite subset of ¥. Then Xy U ¥; has a model in
which —¢ is true. O

In proving the Completeness Theorem for propositional logic, we start from
a set X of propositional formulas from which a formula F' cannot be derived.
Then LU{-F} is consistent. We find a mazimal consistent set ¥* that includes
YU {=F}. From ¥* we define a structure A that is a model of ¥ in which F' is
false.

We can try to do something similar to prove compactness for first-order logic.
Suppose ¥ is a maximal finitely satisfiable set of first-order formulas in some
signature £. (In particular then, 0 € ¥ <= -0 ¢ ¥.) We can try to define an
L-structure A by letting:

(*) A be the set of constants in £;
(1) ¢® = ¢ for every constant ¢ in £;
(1) f*(co,...,cno1) =d = (fco -cpoy =d) €3
(8) (coy-.-scn_1) ER® < Rcg---ch_1 €.

We want 2 to be a model of X.. There are three problems:
(*) The signature £ might not contain any constants.

() Suppose L does contain constants ¢ and d. We have A F (¢ = d) <=
* =d* <= c¢=d. So can’t be a model of ¥ unless either ¥ does not
contain (¢ = d), or ¢ and d are the same symbol.

(1) If AE —p® for every constant ¢ in £, then A F -3z ¢. However, possibly
Y contains all of the formulas —¢?, but also 3z .

48
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The solution to these problems is as follows:

(*) We expand £ to a signature £’ that contains infinitely many constants.
Then we enlarge ¥ to a maximal finitely satisfiable subset ¥/ of Sny.

(1) Letting C be the set of constants of L', we define an equivalence-relation
E on C by
cEd < (c=d)eX.

Then we let A be, not C, but C/E.

(1) In enlarging ¥ to X', we ensure that, if 3z ¢ € ¥, then ¢? € ¥’ for some
cin C.

Theorem 6.2 (Compactness for first-order logic). Every finitely satisfiable
set of formulas (in some signature) is satisfiable.

Proof. Suppose X is a finitely satisfiable subset of Snz. Let C' be a set of new
constants (so £LNC = @). For any L-structure 2, there is some a in A; so we
can expand 2 to an £ U C-structure 2’ by defining

C =a

for all ¢ in C. In particular, ¥ is still finitely satisfiable as a set of sentences of
L

We’ll assume that £ is countable (although the general case would proceed
similarly). So we can enumerate Snzuc as {o, : n € w}, and C as {c, : n € w}.
We shall define a chain

YoCY CYC---

)

where each X is finitely satisfiable, and only finitely many constants in C
appear in formulas in ¥j. The recursive definition is the following;:

(x) o = X. (By assumption, ¥ is finitely satisfiable, and it contains no
constants of C.)

(f) Assume X, has been defined as required. Then define

o ) X2, U{oy}, if this is finitely satisfiable;
T Yon, if not.

Then ¥y, is as required.

(1) Suppose Xo,+1 has been defined as required. Suppose also o, € Xo,11,
and o, is 3z ¢ for some . The set of m such that ¢,, does not appear
in a formula in 5,1 has a least element, k. Then the set Xo,1 U {o? }
is finitely satisfiable. For, if I' is a finite subset of X5, 1, then it has a
model . Then 2 F ¢* for some a in A; so we can expand 2 to a model
of ¥o,41 U {@?, } by interpreting ci as a. In this case we define

Yont2 = Bons1 U{wl, |

otherwise, let Xy, 1o = Yo, 41. In either case, Yo, 42 is as desired.
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Now we define

= U Y,

new

This is finitely satisfiable, since each finite subset is a subset of some X,,. Sup-
pose £* U {o} is finitely satisfiable. But o is o, for some n, and X5, U {0}
is finitely satisfiable, so ¢ € ¥s,,41, and ¢ € ¥*. So ¥* is a maximal finitely
satisfiable set.

We now define a structure 2 of £ U C that will turn out to be a model of X:

We first define
E={(c,d) € C?:(c=d) € T*}.

Then E is an equivalence-relation on C (exercise). So, we can let
A=C/E.

Let the E-class of ¢ be denoted [¢]. We can define

If R is an n-ary predicate in £, we define
R* = {([co],---,[en_1]) € A" : (Reg---cp1) € *}.
This means
(Reg---cn1) € 5* = ([co],. -+, [cno1]) € R™.
In fact the converse holds too; that is,
cEdy & ... &1 Edyyy & (Reg---cp1) €X" = (Rdy---dy—1) € X"

(exercise). If f is an n-ary function-symbol in £, then (3z fcq---¢p—1 =) €
¥* (since the sentence is true in every structure), so (fcg---cp—1 = d) € ¥* for
some d in C. Moreover,

coEcy & ... &epn 1 Ec)_| & (feo--cno1=d)€X &
(feg 1 =d)eX = dEd

(exercise). Hence we can define
12 = {(col, - [ena]. [d)) € A (feo -~ camr = d) € 57,
Note then
Peol - leam] =[] <= (feo--eqmr = d) € 57

(exercise). Finally, if ¢ is a constant of £, we can consider it as a nullary
function-symbol, obtaining the interpretation

A=[d < (c=d)eX".
So we have . It remains to show 2 F X*. We shall do this by showing

AFo < oce¥” (6.1)



o1

for all sentences o of £ U C, by induction on the length of o.

We need a preliminary observation: If ¢ is a term with no variables, and ¢ € C,
then

=[] < (t=c)e¥x*
(exercise). Now suppose o is the atomic sentence Rty ---t, 1, and ;% = [¢;]
for each ¢ in n. Then

AF o <— (tom,...,tnflm) ERQl

<= ([col,-- -, [cn1]) € R®
< (Reg---cp_1) EX"
< oeX".

If instead o is the equation ty = ¢, then

AE o <= ¥ =12
— o] = [c1]
< (cg=c) €Y
<= oeX".

Now suppose that (6.1) holds when o has the length of 7, 8 or :
(¥) If o is =7, then

AFEo <= A¥T <—= 7¢¥X <= ocecX"

by maximality of X.
(f) If o is (r — 0), then

Ao <= AET & AEP
= TEX & ¢ X
= o€l

by maximality of X*.
(1) If o is Jz ¢, then

AF o <= AF ¢? for some ¢ in C
<= ¢¥ € X" for some cin C
< drpelX”

by definition of X*.
By induction, (6.1) holds for all o, so 2 E ¥*. O

In the proof, we introduced a set C' of new constants such that |C| = |Snz|. We
can denote |Snz| by |£|. For the model 2 of ¥ produced, we have |A| < |C| =
L]

Theorem 6.3. If T is a theory such that, for all n in w, there is a model of T
of size greater than n, then T has an infinite model.
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Proof. For each n in w, introduce a new constant ¢,. Every model of the
theory T'U {¢; # ¢; 1 i < j < w} is infinite. Also this theory has models, by
Compactness, since the theory is finitely satisfiable. Indeed, every finite subset
of the theory is a subset of T U {c; < ¢; : i < j < n} for some n. We can
expand a model of T of size greater than n to a model of the larger theory by
interpreting each ¢; by a different element of the universe. O

Example 6.4. Let K be the class of finite fields (considered as structures in
the signature {+,—,-,0,1}). Then Th(K) has infinite models; these are called
pseudo-finite fields. Every field F' has a characteristic: If
Frl1+---+1=0
—_———

p

for some prime number p, then p is the characteristic of F, or char F' = p; if
there is no such p, then char F' = 0. The field F is perfect if either:

() char F' = 0; or
(t) char F = p and every element of F' has a p-th root.
Then perfect fields are precisely the fields that satisfy the axioms

Vedy (1+---+1=0—-y? =2x).
y ( Yy’ =z)
P
Now, if F'is finite, then char F' = p for some prime p, and the function z — z? is
an automorphism of F', that is, an isomorphism from F' to itself. This shows

F is perfect. Therefore the pseudo-finite fields are also perfect. In fact, axioms
can be written for the theory of pseudo-finite fields (James Ax, 1968).

Another field-theoretic application of Compactness is:

Example 6.5. An ordered field is a structure § or (F,+,—,-,0,1,<) such
that:

(*) (F,+,—,-,0,1) is a field;

() (£, <

1) FEVeVy (0<azAN0O<y—=0<z+yA0<z-y);
(§) SEVz (2 <0—=0< —2x).

An ordered field must have characteristic 0 (why?); hence Q can be treated as a
sub-field of it. In an ordered field, the formula 0 < x defines the set of positive
elements. The ordered field § is Archimedean if, for all positive a and b in F,
there is a natural number n such that

) is a total order;

SEa<b+---+b.
————

n

Then R is an Archimedean ordered field. However, there is an ordered field §
such that § = R, but § is not Archimedean. Indeed, let ¢ be a new constant.
Then the theory

Th(R)U{n <c:n cw}
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is finitely satisfiable, since for every finite subset X of this theory, R itself expands
to a model of ¥. So the theory has a model §, by Compactness; but

FE1+--+1<e
—_————

n

for all n in w.

Theorem 6.6 (Lowenheim—Skolem—Tarski). Suppose 2 is an infinite L-
structure, and £ is an infinite cardinal such that |L| < k. Then there is an
L-structure B such that |B| = k and A = B.

Proof. Introduce k-many new constants ¢, (where a < k). In the Compactness
Theorem, let ¥ be Th(A)U{cs # c3 : o < B < k}. This set is finitely satisfiable.
Indeed, any finite subset is included in a subset Th(A) U {ca; # cqo; 14 < j < n}
for some finite subset {ag,...,an—1} of k. Then A expands to a model of this
set of sentences, once we interpret each constant c¢,, as a different element of
A. (Since A is infinite, we can do this.) Therefore ¥ is finitely satisfiable. The
proof of Compactness now produces a model of ¥ of size . O

Theorem 6.7 (Vaught). Suppose T is a finitely satisfiable theory of L, and
|£| < k. Then T is complete, provided:

(%) T has no finite models;

(1) T is k-categorical.

Proof. Suppose T is finitely satisfiable, but has no finite models, but is not
complete. By Compactness, T' does have models. Then for some sentence o,
neither o nor —o is a consequence of T'. Hence, both T'U {-c} and T U {0}
have models. By Lowenheim—Skolem—Tarski, they have models of size k. These
models are not elementarily equivalent, so they are not isomorphic; this means
T is not k-categorical. O

Examples 6.8.

(*) To prove that TO* is complete, it is enough to show that every model
is infinite, and that every countable model is isomorphic to (Q, <).

() If a real vector-space V has positive dimension &, then
V] = k- [2°] = max(s, [2°).

A space of dimension 0 is the the trivial space, namely the space con-
taining only the O-vector; this space has size 1. Real vector-spaces of the
same dimension are isomorphic Hence the theory of real vector-spaces is
k-categorical if k > |2¥|. Therefore the theory of non-trivial real vector-
spaces is complete.

6.1 Additional exercises

(1) Show that every Archimedean ordered field is elementarily equivalent to
some countable, non-Archimedean ordered field.
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(2)
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Show that every non-Archimedean ordered field contains infinitesimal
elements, that is, positive elements a that are less than every positive
rational number.

Find an example of a non-Archimedean ordered field.

The order of an element g of a group is the size of the subgroup {¢” : n €
Z} that g generates. In a periodic group, all elements have finite order.
Suppose G is a periodic group in which there is no finite upper bound on
the orders of elements. Show that G = H for some non-periodic group H.

Suppose (X, <) is an infinite total order in which X is well-ordered by <.
Show that there is a total order (X*,<*) such that

(X, <) = (X7, <),

but X* is not well-ordered by <*.
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Completeness

We now aim to establish a complete proof-system for first-order logic. The result
is Theorem 7.19 on p. 65. The proof of this theorem follows the pattern of our
proof of Compactness.

First-order logic is based on propositional logic. It will be useful to have a
general description of logics that encompasses both propositional and first-order
logic. So, this is where we begin. All sections following § 7.3 concern first-order
logic, unless otherwise noted.

There are a few exercises, on pp. 56, 59, 60, 61, 61, 61 and 64.

7.1 Logic in general

A logic has an alphabet, which is just a certain non-empty set; the members
of this set can be called the symbols of the logic. These symbols can be put
together to form strings. If we want a formal definition, we can say that such
a string is a finite, non-empty sequence of symbols of the logic; that is, the
string is a function k — sy from {0,1,...,n} into the alphabet, for some n in
w. We usually write this function as

5051 - " Sn;

this the result of juxtaposing the symbols si in the prescribed order. Such a
string has sub-strings, namely the strings

S$¢5¢+1 """ Sm;

where 0 < £ < m < n; the sub-string is proper if 0 < £ or m < n. Certain
strings will be formulas of the logic. In particular, certain strings will be atomic
formulas. Some rules of construction are specified for converting certain finite
sets of strings into other strings. Then a formula of the logic is a member of
the smallest set X of strings such that:

() all atomic formulas are in X; and

(f) X contains every string that results from applying a rule of construction
to a set of elements of X.

99
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Hence properties of all formulas can be proved by induction.

Moreoever, it is required that, for every formula that is not atomic, there is
exactly one rule of construction and one set of formulas such that the original
formula results from applying that rule to that set. This is the principle of
uniquely readability as formulas; it makes possible the recursive definition of
functions on the set of formulas.

For any logic, a proof-system consists of:
(¥) axioms, which are just certain formulas of the logic;

rules of inference, that is ways of inferring certain formulas from certain
) ) g
ﬁmte sets of formulas.

So the notions of axiom and rule of inference are parallel to the notions of
atomic formula and rule of construction. However, in a proof-system, there is
no requirement corresponding to unique readability.

Let S be proof-system. A deduction or formal proof in S of the formula ¢
from the set ® of formulas is a sequence

z/JOa"w’(/}n

of formulas where 1, is ¢, and for each k such that k& < n, one of the following
holds:

(%) ¢y, € @, or
(1) g is an axiom of S, or

(1) ¥ follows from some subset of {¢; : j < k} by one of the rules of inference
of S.

To denote that such a deduction exists, we can write
P |—5 @Y.

Then we can say that ¢ is deducible from ® in S. In case ® is empty, we can
just write

}_S @,
and we can call ¢ a theorem of S.

Here are some basic facts:

Lemma 7.1.
(%) Every non-empty initial segment of a deduction is also a deduction;
(1) if @ Fs v and ® C ®*, then ®* s p;
(1) if @ Fs o, then ®g Fs ¢ for some finite subset Py of P;
(8) if @ Fs ¥ for each ¢y in ¥, and ¥ ks x, then ® kg x.

Proof. Exercise. O
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7.2 Propositional logic

We shall work here with the propositional logic whose alphabet consists of:
() the propositional variables Py, where k € w;
(f) the connectives = and —;
(1) the left bracket ( and the right bracket ).

The atomic formulas are then the propositional variables. There are two rules
of construction:

(¥) From the string A, construct —A.
(t) From the strings A and B, construct (4 — B).

Note that the same formula might be both (A — B) and (C — D) for some
strings A, B, C and D such that A is not C. But if all of these strings are
formulas, then (as one can prove) A must be C. We use F' and G and H as
syntactical variables for propositional formulas.

In propositional logic, there is a notion of truth, which we can develop as
follows. If S C w, let 2° be the set of functions from S to 2. We can consider 2
as the universe of the field Fy; then a ring-structure on 2° is induced. If F is a
propositional formula, and all variables appearing in F' are in S, then there is a
function F from 2° into 2, as given by the following recursive definition:

() If F is Py, then F(o) = a(k) for all « in 2¢.
() If Fis =G, then F =1+G.
(1) If Fis (G — H), then F=1+G - (1+ H).

Suppose S is the set of variables actually appearing in F', and ﬁ'(a) =1 for all
a in 2°; then F is called a tautology.

An element «a of 2¥ can be called a structure for propositional logic. (Alterna-
tively, the set {P, : a(n) = 1} can be called the structure; each one determines
the other.) Then a formula F is true in o if F'(a) = 1. If every formula in a set
® of formulas is true in a structure «, then a is a model of ®. If F' is true in
every model of ®, then we say that F' is a logical consequence of ®, or that

® entails F, and we write
dEF.

A formula F is valid, or is a validity, if it is true in all structures; in that case,

we write
EF.

A proof-system S for propositional logic is called:
(*) sound, if ® F ¢ whenever ¢ Fgs ¢;
(f) complete, if ® s ¢ whenever ® F .
Lemma 7.2. Let S be a proof-system for propositional logic. Then S is sound
if and only if:
(%) each aziom of S is valid;

(t) ® E ¢ whenever ¢ can be inferred from ® by one of the rules of inference

of S.
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Proof. Suppose S is sound. If ¢ is an axiom of S, then the one-term sequence
@ is a deduction of ¢ from &, so ks ¢ and therefore F . Suppose, instead,
that ¢ can be inferred from ® by one of the rules of inference of S. Then ® is
a finite set {¢g, ..., ¥, }, so the sequence

1/)0,---;1/%;90

is a deduction of ¢ from ® in S. Hence ® ks ¢, and therefore @ F .

The converse is proved by induction on the lengths of deductions. Suppose that
each axiom of § is valid, and ® F ¢ whenever ¢ can be inferred from ® by
one of the rules of inference of S. As an inductive hypothesis, suppose ® F ¢
whenever ¢ has a deduction in S from @ of length less than n + 1. Now say the
sequence

¢07"'7¢n—17g0

of length n+1 is a deduction in S from ®. If p € ®, then ® F ¢ trivially. If p is
an axiom of S, then F ¢ by assumption, so ® F ¢. The remaining possibility is
that ¢ can be inferred from some subset I' of {14 : k¥ < n} by a rule of inference
of §S. Then T F ¢ by assumption. Also, ® F 1), for each 1 in T' by inductive
hypothesis, since each 1, has a proof from ® of length k£ + 1, namely

¢07"'71/)k-

Hence every model of ® is a model of I', and so ¢ is true in this model; that is,
D E . O

Let us also note that if a proof-system is complete, then so is every proof-system
obtained by addition of new axioms or rules of inference.

In the only proof-system for first-order logic that we shall consider,
(%) the axioms are just the tautologies;

(1) the only rule of inference is modus ponens, that is, G can be inferred from
{F,(F = G)}.

If, in this system, F' is deducible from the set ® of formulas, then we can just
write
d+FF

(since we shall consider no other proof-systems for propositional logic). We have
proved (in class) that this system is sound and complete.

7.3 First-order logic

The foregoing notions in propositional logic generalize to first-order logic. For
us, the alphabet for a first-order logic will consist of:

*) the symbols in a signature £ for the logic;

I

)
1) the Boolean connectives — and —;
)

§

(
() individual variables vy, where k € w;
(
(

the quantifier 3;
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(1) the brackets (and ).

The set of formulas of the resulting logic can be denoted
Fm,.

Certain formulas are sentences; the set of them is
Sn, .

We do not have proof by induction on this set, since sentences can be constructed
from formulas that are not sentences. However, we can still define proof-systems
for Sn,. (Alternatively, we could define a proof-system for Fm.)

There are L-structures 2, and then for each sentence o of L, there is an element
o® of 2. Then o is true in 2 if ¢ = 1. The notions of model, entailment,
validity, soundness and completeness can now be defined as for proposi-
tional logic. Hence we have Lemma 7.2 for Sn, in addition to propositional
logic.

To prove that a certain proof-system for Sn, is complete, we shall use the
method first expounded by Leon Henkin, in [3]. (Henkin’s proof was a part of his
doctoral thesis; see [4]. We have already used Henkin’s method to prove Com-
pactness.) The particular treatment in these notes owes something to Shoen-
field’s in [10]. Iintroduce the notions of tautological and deductive completeness
merely to make our ultimate proof-system seem natural.

If F is an n-ary formula F(P,...,P,—1) of propositional logic, and o € Sng,
then by substitution we can form the sentence

F(O'(), - .,O'nfl)

of L. If F is a tautology, then F(og,...,0,-1) can be called a tautology of
Sng.

Lemma 7.3. Tautologies of Sny are validities.

Proof. We can prove by induction on propositional formulas F' that, if F' is
F(Py,...,P,_1), then for all sentences oy, of Snz, and all L-structure 2,

F(O'(), - .,O'n_l)m - F(O'()Ql, . ,O'n_lm).

(Details are an exercise.) The claim follows immediately from this. O

7.4 Tautological completeness

Suppose S is a proof-system for Sn, such that, if Fy, ..., F} are n-ary propo-
sitional formulas, and

{Fy,...,Fx_1} E F, (7.1)
and o0g,...,0,_1 € Sng, then

{F()(O'(), - ,O'n_l), e ,Fk_l((f(), .. -;Un—l)} "5 Fk(CT(], - 7Un—1); (72)

let us say then that S is tautologically complete.
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Lemma 7.4. Let S be a proof-system for Sny. Then S is tautologically complete
if and only if:

(%) ks o for all tautologies o of Sn, and

(t) {o,0 > 7} Fs T forall o and 7 in Su,.

Proof. If S is tautologically complete, then immediately all tautologies are the-
orems; the other condition follows since {Py, Py — P} F P;.

To prove the converse, we can use our complete proof-system for propositional
logic: Suppose we have (7.1) above. Then Fj has a a formal proof from
{Fy,...,Fx_1}. Say this proof is

Go,...,Gpn.

Then G, is Fj,. We proceed by induction on m. There are three possibilities:
(%) If Fy, € {Fp,..., Fr_1}, then trivially (7.2) follows.
(f) If Fy is a tautology, then g Fy (&) by assumption, so (7.2).

(1) If G, is (G; — Fy) for some i and j in m, then, by inductive hypothesis,
we have

hence (7.2) by assumption (and Lemma 7.1).
In all cases then, (7.2) follows. O

It should be clear that a complete proof-system is tautologically complete. The
converse fails:

Example 7.5. The proof-system in which all tautologies are axioms and modus
ponens is the only rule of inference is not complete, since it cannot be used to
prove the validity 3z x = x. Indeed, the theorems of this proof-system are just
the tautologies (as one can show); but dz # = z is not a tautology.

Let L be the negation of a tautology, say
“(zz=z— Jzz=1).
Henceforth, let ¥ C Sny and o € Sng.

Lemma 7.6. In a tautologically complete proof-system S, the following are
equivalent:

(*) L F —o for some o in ¥;
(t
(
(8

) Xk o and L F =0 for some o in Sng;
) X F o for every o in Sng;
) X F L.

Proof. Exercise. (There is a corresponding lemma for propositional logic.) O
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If ¥ kg L, then X is inconsistent in S; otherwise, it is consistent.

Lemma 7.7. In a complete proof-system, every consistent subset of Snz has a
model.

Proof. If S is complete, but ¥ has no model, then ¥ F 1, so ¥ kg L by
completeness, so ¥ is inconsistent. O]

The converse of the lemma may fail, even if the proof-system is required to be
tautologically complete:

Example 7.8. Let the axioms of a proof-system S be the tautologies, and
let the rules of inference be modus ponens, along with the rule that 1 can
be inferred from every finite set that has no model. (Note however that this
is not a syntactical rule: it is not based directly on the form of sentences.)
By the Compactness Theorem of first-order logic, every set with no model is
inconsistent in this theory; therefore all consistent sets have models. However,
the validity 3z = z is not a theorem of S. (Exercise: show this.)

7.5 Deductive completeness

Let a proof-system S be called deductively complete if ¥ s (0 — 7) when-
ever YU {o} s 7.

Lemma 7.9. A tautologically and deductively complete proof-system in which
every consistent set has a model is complete.

Proof. Suppose S is such a system, and ¥ U {—o} is inconsistent in S. Then
Y U{-0} ks o by Lemma 7.6, so ¥ ks (mo — o) by deductive completeness.
But (-0 — 0) — o is a tautology, so ¥ ks o by tautological completeness.

Therefore, if ¥ /s o, then ¥ U {—0} is consistent, so it has a model by assump-
tion; this shows ¥ I 0. O

Lemma 7.10. A tautologically complete proof-system whose only rule of infer-
ence is modus ponens is deductively complete.

Proof. Exercise. (See the Deduction Theorem of propositional logic.) O

Lemma 7.11. Suppose ¥ C Sny and X is consistent in a tautologically and
deductively complete proof-system. The following are equivalent:
(*) If X CT CSng and T is consistent, then T = X.

(f) "o €X < o ¢X foralloinSn,.
Proof. Exercise. O

A set ¥ meeting one of the conditions in the lemma can be called maximally
consistent.
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7.6 Completeness

By Lemma 7.4, we know of one tautologically complete proof-system, namely,
the system whose axioms are the tautologies, and whose rule of inference is
modus ponens. Let S be this system. Then § is deductively complete, by
Lemma 7.10, and is sound, by Lemmas 7.2 and 7.3. Moreover, soundness and
deductive completeness are preserved if we add new valid axioms to S. Now we
shall see which valid axioms we can add in order to ensure that every consistent
set has a model; then we shall have a complete system by Lemma 7.9.

We follow the proof of the Compactness Theorem, replacing ‘finitely satisfiable’
with ‘consistent’. We assume that £ is countable. Suppose X is a consistent
subset of Snz. We introduce an infinite set C' of new constants and enumerate
Sncuc as {0, : n € w}. We construct a chain

Y=%C¥CXC---

where
Yo, U{o,}, if this is consistent;
EQn—i—l - .
Yon, otherwise.

If 0,, is 3z ¢, and this is in Y9,11, then we want to define Yo, 15 as

Yont1 U{er ),

where c is a variable not used in ¥3,11. But we need to know that this set is
consistent. For this we assume, as axioms of S, the sentences

(pr = x) =3z —x, (7.3)

where ¢ is a variable not appearing in x. Note that these axioms are valid. We
now have:

Lemma 7.12. If T is consistent and contains 3z @, and ¢ does not appear in
T, then T'U{p®} is consistent.

Proof. Suppose it’s not. Then
{to, - Ypa} ULpl} Fs L
for some 1); in I'. By deductive completeness,
Fs @l = pog—= - = hp_1 — L, (7.4)

where the notational convention is that a terminal string xo — x1 — X2 stands
for the formula (xo — (x1 — X2))- We can re-write (7.4) as

Fs 0l = X, (7.5)
where y is 909 = --- = ¥_1 — L. Then from (7.3) we have

Fsdzp— x
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by modus ponens; that is,
Fsdx o =y = - = 1 = L.
Then k + 1 applications of modus ponens show
ks L,

which contradicts the assumption that I' is consistent. O

So now, given a consistent subset ¥ of Sn., we can construct a consistent subset
¥* of Sn,c such that

(x) TC XY

() ¥* is maximally consistent;

(1) if (3z @) € X, then ¢?¥ € ¥ for some ¢ in C, that is, ¥* has witnesses.
As in the proof of Compactness, we want to use X* to define a model 2 of itself.

For the sake of defining the universe of 2, we assume now that S has the axioms

c=c, (7.6)
c=c »sd=d wc=d—c =d, (7.7)

where ¢, ¢/, d and d' range over C. Let E be the relation
{(e,;d) € C*: (¢ =d) € T*}.
We can now show:

Lemma 7.13. The relation E is an equivalence-relation.

Proof. We first show

Fsc=c, (7.8)
Fsc=d—>d=c,
Fsc=d—d=e—=c=e (7.10)

for all constants ¢, d and e in C.

Now, we have (7.8) trivially by (7.6). An instance of (7.7) is
c=d—c=c—oc=c—>d=g

then (7.9) follows by tautological completeness. Another instance of (7.7) is
c=c—od=e—c=d—>c=e¢

then (7.10) follows by tautological completeness.

By its maximal consistency then, ¥* contains ¢ = ¢; and if X* contains ¢ = d
and d = e, then it contains d = c and ¢ = e. O
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We define A to be C'/E. We now define R* (for each n-ary predicate R in £)
as the set

{([co), " s [en-1]) € A" : (Reg 1) € X7}
Then we have
(RCO . "Cn—l) ey = ([Co], B ;[Cn—l]) € RQ[,

but perhaps not the converse. Possibly then both Reg - -+ ¢, and ~Rcjy -+ - ¢}, _;
are in ¥*, although (¢, = ¢},) € £* in each case. To prevent this, as as axioms

of S we assume
Co=Ch—> " —Cp1=Ch_qy = Reg+cn_1 — Refy -+ Chy_yq. (7.11)
We now have:

Lemma 7.14. ([co], - ,[cn_1]) € R* <= (Rcy---cp_1) € T*.
Proof. Exercise. O

Finally, suppose f is an n-ary function-symbol (where possibly n = 0, in which
case f is a constant.) We want to be able to define f%. (If ¢ € C, then ¢* = [¢];
but there might be constants of £ as well.) To define f*, we first need some
lemmas, which are based on another axiom:

oy = dx o, (7.12)

where fv(p) C {z} and t is a term with no variables. Let us assume that this is
an axiom of §. Then we have:

Lemma 7.15 (Substitution). If fv(p) C {z}, and the constant ¢ does not
appear in p, then

Fs @z = ¢f
for all constant terms t.
Proof. We have
Fs —of = Jz —p, by (7.12)]
Fs ~Jz —p — ¢F, by tautological completeness]

Fs (mp2 = L) = Jz -~ — L, by (7.3)]

by tautological completeness]

[
[
[
Fs i = ~3 g, [
and hence g5 9% = ¢f by modus ponens. O
Lemma 7.16. kst =t for all terms t.
Proof. We have

Fsc=e¢, [by (7.6)]
Fsc=c—ot=t, [by the Substitution Lemmal]

and hence g t =t by modus ponens. O
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Lemma 7.17. s 3z fco---¢p1 = x.

Proof. We have
Fs feor cno1 = feo - cn_1, [by the last lemma)]
Fs feo---cn1 = feg---cp1 — 3z fep--cpy =1, [by (7~12)]

hence ks Az fcy - - cn—1 = x by modus ponens. ]

Finally, we assume as axioms of S the sentences

Co=Chp—r " —>Cp1=Ch 1 = fcg-Cpn1=fcy- . (7.13)

This enables us to define f%:

Lemma 7.18. For each n-ary function-symbol f, there is an n-ary operation
% on A given by

(cols .-+ [enai1]) = [d] = (fco---cpn1 =d) € T*. (7.14)
Proof. Since ¥* is maximally consistent, we now have
Az feg -1 =x € X7
Since ¥* has witnesses, we have
feocp 1 =dex”

for some constant d. This gives us a value for f*([co], - ,[ca_1]); We have to
show that this value is unique. For this, it is enough to show

Fsco=cp— -+ —cn1=Ch 41—
d=d — feg---cp1=d— fcy--c,_, =d

n—

for all ¢; and ¢}, and d and d' in C. By (7.13) and tautological completeness, it
is enough to show

Fs feo - rcn1=fcy-c, 1 »d=d — feco-cn1=d— fcg---c, ,=d.

In the axiom (7.7), we may assume that ¢ is not one of the variables ¢, d or d'.
Then by the Substitution Lemma, we have

'_SfCO"'Cn—l:Cléd:d’—)fCO"'Cn_l:d—>c’:d’_

We may also assume that ¢’ is not one of the variables ¢, d or d'. Applying the
Substitution Lemma again gives what we want. O

The structure 2 is now determined and is a model of X, by the proof of the
Compactness Theorem. In sum, what we have shown is:

Theorem 7.19 (Completeness for first-order logic). That proof-system
for Sn. is complete whose only rule of inference is modus ponens, and whose
axioms are the following:
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— Al — A ! ! .
Ye=chy—=...cno1=¢, 1 > Reo--cpn1 = Rey--cl_q;

— A — i / !
*k) Cog =Ch = = Cpe1 = Ch_q = feorCpo1 = fchoch_q.

Here the notation is as follows:

e x is a variable;

e  is a formula such that fv(p) C {z};
e Y iS a sentence;

e t is a constant term;

e c, d,c, ¢, dandd are constants;
* N € w

e R is an n-ary predicate if n > 0; and

f is an n-ary function-symbol (or a constant, if n =0).



Chapter 8

Numbers of countable
models

Our ultimate aim is to show that
I(T,w) #2 (8.1)

whenever T is a countable, complete theory. The proof will require several
interesting general results.

Note that proving (8.1) requires T' to be complete:

Example 8.1. Let P be a singulary predicate, and in the signature {L£}, let T'
be axiomatized by
Vz Yy (Px A Py — x =y).

Then T has non-isomorphic countably infinite models (w, @) and (w, {0}), and
every countably infinite model is isomorphic to one of these.

8.1 Three models

In the signature {<} U {¢,, : n € w}, let T3 be the theory axiomatized by
TO* U{cpt1 < cp:n € wh
We shall see that T3 is complete, and I(T3,w) = 3. Let
Ag={a€eQ:0<a}=QnN(0,00),
A1 = @ N {0},
A4, =Q.

Then each A; is the universe of a model 2 of Ty, where <** is the usual
ordering <, and
1
Ay _
n n+1

Then the set {c,¥* : n € w}, in Ay,

67
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(%) has no lower bound, if k£ = 0;
(f) has a lower bound, but no infimum, if & = 1;
(1) has an infimum, if k£ = 2.

Hence the three structures are not isomorphic. However, we shall be able to
show:

(%) if B F T5 and is countable, then B = 2, for some k in 3;
(f) T3 is complete.

The proof of the first claim will be by the back-and-forth method. The fol-
lowing gives the prototypical example:

Theorem 8.2. TO" is w-categorical.

Proof. Suppose 2, B E TO™ and |A| = w = |B|. We shall show 2 = 8.
We can enumerate the universes:
A={a, :n € w}, B ={b, :n € w}.

We shall recursively define an order-preserving bijection h from A to B. In
particular, h will be J{h, : n € w}, where, notationally, we shall have

hyp = {(ag,b;) : k <n}U{(ap,be) : k <n}.
We let hg = @. Suppose we have h,, so that the tuples
(ag,ag,---ran_1,a, 1), and  (by,bo, ..., bl 1,bn 1)
have the same order-type. This means that, if we write these tuples as
(coy.-.,Can—1) and (cg, ..., ch, ;) respectively, then
ci <cj = ¢ <

for all 2 and j in 2n. Since B is a dense total order without endpoints, we can
chose b, so that

! ! ! ! !
(g, agps - -+, Qp—1,0,_1,an) and (b, bo,...,0,_1,bn_1,b,)

have the same order-type. Likewise, we can choose a/, so that
(ag,ag,...,an,a,), and (b)), bo,...,b,, by)

have the same order-type. Now let hyp11 = hy, U {(an, b)), (al,,bs)}. O

Corollary 8.3. I(T5,w) = 3.

Proof. Suppose B is a countable model of T3. The interpretation in 9 of each
formula
Chi1 <xTxANz<e,

is (when equipped with the ordering induced from B) a countable model of
TO™. The same is true for the formula ¢y < z. Finally, the set

({beB:b<cy}

new

is one of the following:



8.1. THREE MODELS 69

(*) empty;
(1) a countable model of TO™;
() a countable dense total order with a greatest point, but no least point.

Then the previous theorem allows us to construct an isomorphism between 8B
and %Ay, YAy or As respectively. O

The following is really a corollary of Theorem 4.3:

Theorem 8.4. T3 admits elimination of quantifiers.

Proof. Any formula ¢(Z) of {<,cg,c1,...} can be considered as
0(5:', COy vy Cnfl)

for some formula 6 of {<}. By quantifier-elimination in TO*, there is an open
formula a of {<} such that

TO* EVE Vi (0(F,§) A )\ yirr <yi ¢ a(&,§)).
i<n

But T35 E Ciy1 < ¢y, and T3 F TO*, SO
Ty EVE (0(F,8) & @, 3)).

Thus T3 admits quantifier-elimination. O

Corollary 8.5. T3 is complete.

Proof. The three countable models 2{; form a chain:
Ao C A C As.

But here diag®B F Th(B ) for all models B of T3, so by Theorem 5.7, the chain
is elementary:

Ag <Ay < 2As.
In particular, the three structures are elementarily equivalent. Now, if 28 is an
arbitrary model of T3, then it is infinite, so B = € for some countably infinite

structure € by Theorem 6.6. But ¢ = 2(; for some k, by Corollary 8.3. Hence
B = Ay by Theorem 5.7. Thus

T3 = Th(mo),

so T3 is complete. O
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8.2 Omitting types

Since there is a sound, complete proof-system for first-order logic, we may say
that a set of sentences is consistent to mean that it has a model.

An n-type of a signature £ is a set of n-ary formulas of L.

An n-type ® of £ is realized by @ in an L-structure 2 if
AE (@)

for all ¢ in ®. A type not realized in a structure is omitted by the structure.

If a consistent theory T of L is specified, then an n-type of T is an n-type ®
that is consistent with 7T: This means that & is realized in some model of T'.
Equivalently, it means that, if ¢ is an n-tuple of new constants, then the set

TU{p(C):p € D}

is consistent. By Compactness, for ® to be consistent with 7', it is sufficient
that

Tu{3z )\ 2o}
be consistent for all finite subsets ®q of ®.

By Compactness also, for any collection of types consistent with T', there is a
model of T in which all of the types are realized.

An n-type ® of T is isolated in T by an n-ary formula ¢ if:
(x) T'U{3F ¢} is consistent;
(t) TEVZ (¢ — ¢) for all p in P.

Hence, if ¢ is satisfied by @ in a model of T, then @ realizes ®. Also, if T is
complete, then T'F 3% 1, so @ is realized in every model of T

We can call a theory countable if its signature is countable. (A more general
definition is possible: T is countable if, in its signature, only countably many
formulas are inequivalent in 7'.) It turns out that, in a countable theory, being
isolated is the only barrier to being omitted by some model:

Theorem 8.6 (Omitting Types). Suppose T is a countable theory, and ® is
a non-isolated 1-type of T. Then ® is omitted by some countable model of T'.

Proof. We adjust our proof of the Compactness Theorem. As there, we intro-
duce a set C of new constants ¢, (where n € w). We enumerate Susyc as
{on :n € w}. We construct a chain

I'=%CY¥ C---
as follows. Assume Y3, is consistent. Then let

> ) ¥3,U{on}, if this is consistent;
sntt = Yan, otherwise.

Now let
E3n+2 = Z:3n+1 U {QD(C]C)},
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where k is minimal such that ¢j does not appear in Xs3,,11, if 0, € X311 and
oy, is 3z p; otherwise, Y3, 19 = ¥3,,41- Finally, let

Ygnt3 = Bang2 U {9U(cn)},

where 1) is an element of ® such that 3,2 U {(c,)} is consistent. But we
have to check that there is such a formula 1 in ®. If there is, then we can let

Y = U Y.

new

Then ¥* has a countable model & (as in the proof of Compactness) such that
every element of A is ¢® for some ¢ in C. But by construction, no such element
can realize ®; so 2 omits .

Now, in the definition of 33,43, the formula 1) exists as desired because the set
Y3p+2 N T can be assumed to be finite. In particular, the formulas in this set
use only finitely many constants from C'. We may assume that these constants
form a tuple (cy, ci) Then we can write A X3, 12 \ T as a sentence

-,

o(cn,d),

where ¢ is a certain formula of £. Now, if

Y3ntz Fab(cn)

for some formula v, then

-

T E (¢(cn, d) = ¥(cn)),

hence

T EVz (I ¢(z,7) = ().
Since ® is not isolated in T, it is not isolated by 3§ . Therefore the set
Yant2 U {-¢(c,)} must be consistent for some v in ®. O

In the proof, it is essential that X, \ T is finite; the proof can’t be generalized
to the case where T is uncountable. But the proof can be generalized to yield
the following:

Porism 8.7. Suppose T is a countable theory, and ®; is an n-type of T for
some n (depending on k), for each k in w. Then T has a countable model
omitting each Py.

An n-type ® of a theory T is called complete if
pgd <—= —ped

for all n-ary formulas ¢ of £. Any n-tuple @ of elements of a model 2 of T
determines a complete n-type of T', namely

{o:AF (@)}

this is the complete type of @ in 2( and can be denoted

tpa(@).
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If ® is an arbitrary n-type of T', then some @ from some model 2 of T realizes
®, and therefore

® C tpy(a).
In particular, every type of T' is included in a complete type of T'.

The set of complete n-types of 7' can be denoted
Sn(T);
then we can let |, .., Sn(T") be denoted
S(T).
So the Omitting-Types Theorem gives us that, if T is countable and |S(T)| < w,

then T has a countable model that omits all non-isolated types of T.

A structure 2 that realizes only isolated types of Th(2l) is called atomic.
Examples 8.8.

(1) (w,,0) is atomic, since each element is named by a term. For example,
a 1-type realized by 5 is isolated by the formula z = 0""".

(2) The theory of Example 5.13 has no atomic models.

The following lemma hints at the characterization of countable atomic models
that we shall see in the next section.

Lemma 8.9. If 2l embeds elementarily in B, then B realizes all types that A
realizes.

Proof. Suppose h is an elementary embedding of 2l in 9, and @ realizes the
type ® in . Then

{e(@) : ¢ € @} C Th(An),
so h(d) realizes ® in B by Theorem 5.7. O

8.3 Prime structures

A structure is prime if it embeds elementarily in every model of its theory; if
that theory is T, then the structure is a prime model of T. (Note then that
only complete theories can have prime models, simply because the prime model
is elementarily equivalent to all other models.)

Examples 8.10.

(1) If T admits quantifier-elimination, then by Corollary 5.8, all embed-
dings of models of T are elementary embeddings. Hence, for example, a
countably infinite set is a prime model of the theory of infinite sets. Also,
(Q, <) embeds in every model of TO*, so it is a prime model.

(2) It is possible to show that, if |£]| < k < |B|, then B is an elementary
extension of some structure 2 such that |A| = k. Hence, a model of
a countable theory T is prime, provided it embeds elementarily in all
countable models of T. In particular then, if T is w-categorical, then its
countable model is prime.
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Theorem 8.11. Suppose T is a countable complete theory. Then the prime
models of T are precisely the countable atomic models of T

Proof. Suppose A ET.

(=) If 2 is not countable, then 2 cannot embed in countable models of T' (which
must exist, by Theorem 6.6), so 2 cannot be prime.

If 2 is not atomic, then 2 realizes some non-isolated type ® of T. But by the
Omitting-Types Theorem, T has a countable model B that omits ®. Then 2
cannot embed elementarily in 98, by Lemma 8.9.

(<) Suppose 2 is countable and atomic, and B E T. We construct an ele-
mentary embedding of 2 in B by the back-and-forth method, except that the
construction is in only one direction. Write A as {a, : n € w}. Then each
tpy (@g, - ..,an—1) is isolated in T' by some formula ¢,,. Then we have

(*) T E 3T ¢p;
(T) T EVT (‘pn — dx, ¢n+1)'

Hence we can recursively find b, in B so that
B E (pn(bo, ey bn—l)

for all n in w.

Now, every sentence in Th(244) is 8(aq, - . . ,an—1) for some formula 6 of L. Then
TEVE (pn —0),

so B E 6(b). Therefore the map ay, — by : A — B is an elementary embedding
of A in *B. O

Porism 8.12. All prime models of a countable complete theory are isomorphic.

Proof. In the proof that 2 embeds elementarily in B, if we assume also that B is
countable and atomic, then the full back-and-forth method gives an isomorphism
between the structures. O

Lemma 8.13. If I(T,w) < w, then |S(T)| < w.

Proof. Exercise. O

Theorem 8.14. Suppose T is a countable complete theory. Then T has a prime
model if and only if S(T') is countable.

Proof. Exercise. O
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8.4 Saturated structures

A saturated structure is the opposite of an atomic structure. Atomic structures
realize as few types as possible. Saturated structures realize as many types
as possible; moreover, these types are allowed to have parameters from the
structure.

To be precise, let 91 be an infinite £-structure, and let A C M. In this context,
the set S, (Th(9Mt4)) can be denoted

Sn(A).

Consider the special case where A is M itself. The set S;(M), for example,
contains types that include the type

{x#a:a€e M}

These types cannot be realized in 9. So we say that 91 is saturated, provided
that, whenever A C M and |A| < |M], each type in S(A) is realized in 9. (In
particular, if 91 is countable here, then the sets A should be finite.)

Theorem 8.15. Suppose T is countable and complete, and |S(T)| < w. Then

T has a countable saturated model.

Proof. Suppose 9 is a countable model of T'. If A is a finite subset {aj : k < n}
of M, then each element of S,,,(A) is

{p(xos -, Tm_1,00,---,0n_1) : p € p}

for some p in S;+n (7). Hence |S(A)| is countable. Therefore the set
U{S(A) : A is a finite subset of M}

is countable. So all of the types in this set are realized in a countable elementary
extension M’ of M.

Thus, if My is a countable model of T', then we can form an elementary chain
Mo KMy KMy -+

It is straightforward then to define the union of this chain: this is a structure
M whose universe N is Upe, My, and that is an elementary extension of each
M,,. Every finite subset of N is a subset of some 9, and so the types of S(A)

are realized in M, 1, hence in M. So M is saturated. O
If A is a finite subset {a; : kK < n} of M, and @ is (ag,...,an—1), we can denote
M4 by

(A,a).

If 901 is countable, then 91 is called homogeneous if
tPoy (@) = tpay(b) => (M, @) = (M, D)
for all n-tuples @ and b from M, for all n in w.

Theorem 8.16. Countable saturated structures are homogeneous.

Proof. The back-and-forth method. O
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8.5 One model

For the sake of stating and proving the following theorem more easily, we can
use the following notation. Suppose T is a theory of £. Then equivalence in
T is an equivalence-relation on the set of n-ary formulas of £. Let the set of
corresponding equivalence-classes be denoted

B,.(T).
Theorem 8.17. Suppose T is a countable complete theory. The following state-
ments are equivalent:
(0) I(T,w) =1.
(1) All types of T are isolated.
(2) Each set B, (T) is finite.
(3) Fach set S,(T) is finite.

Proof. (0)=(1): If S(T") contains a non-isolated type, then it is realized in some,
but not all, countable models of T', so I(T,w) > 1.

(1)=(0): If all types of T are isolated, then all models of T are atomic, so all
countable models of T' are prime and therefore isomorphic.

(2)=(3): Immediate.

(3)=(1)&(2): Suppose S, (T) = {po,---,Pm—1}. For each i and j in m, if i # j,
then there is a formula ¢;; in p; \ p;. Let 1); be the formula

/\ Pig-
jem~{i}

Then ¢); is in p; if and only if j = 4. If AF T, and @ is an n-tuple from A, then
2 realizes some unique p;, and then 2A F ¢;(@). Conversely, if 2 F 1;(a@), then
a@ must realize p;. Therefore v; isolates p;.

If x is an arbitrary n-ary formula, let I = {i € m : x € p;}. Then
TEVE (x < \/ 1)
iel
There are only finitely many possibilities for I, so B,,(T) is finite.

(1)=(3): Suppose infinitely many complete n-types are isolated in 7. Since T
is countable, there must be countably many such types. Say they compose the
set {p : k € w}, and each py is isolated by . Then the type

{~k : k € w}

is consistent with 7. It is not included in any of the py, so it must be included
in a non-isolated type. O
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8.6 Not two models

Theorem 8.18. Suppose T is a countable complete theory. Then I(T,w) # 2.

Proof. Suppose if possible that 75 has just two non-isomorphic countable mod-
els. One of them, 2, is prime, by Lemma 8.13 and Theorem 8.14. The other
one, B, is saturated, by Theorem 8.15. Since 2 embeds elementarily in B, we
may assume A < ‘B.

Since 20 2 B, there is a non-isolated type ® realized by some b in B, by The-
orem 8.11 and Porism 8.12. Let T* = Th(8,b). Suppose (€, ) is a countable
model of T*. Then € E T, so € is isomorphic to 2 or B. In any case, 2 embeds
elementarily in €. But ® is realized by ¢ in €. Hence € = 9B by Lemma 8.9.
Let the isomorphism take @ to @. Then it is enough to show (B,a) = (B,b).
But this follows from Theorem 8.16. O
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