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Chapter 1
Introduction
These notes are based on lectures given for Math 406, `Introduction to Mathe-matical Logic and Model-theory', at METU in 2004. I have expanded on a fewpoints and rearranged some topics.Background reading includes [7]. Exercises appear here and there, emphasizedwith bold type; and there are some sections comprising exercises, as you can seefrom the table of contents.
1.1 Building-blocks
An ordered pair (a; b) is the set ffag; fa; bgg. Then the Cartesian productA�B of the sets A and B is the set

f(a; b) : a 2 A & b 2 Bg:To express that f is a function from A to B, we can just write
f : A �! B:This means f is a subset of A � B with a certain property (namely, for everya in A, there is a unique b in B such that (a; b) 2 f ; then we write f(a) = b).The set of all functions from A to B can be denoted

BA: (1.1)(Some people write AB.) Let ! be the set of natural numbers:
! = f0; 1; 2; 3; : : : g= f0; 00; 000; 0000; : : : g:It is notationally convenient to treat 0 as ?, and x0 as x [ fxg. Then
n = f0; : : : ; n� 1gfor all n in !. Under this understanding of the natural numbers, the nthCartesian power of A is precisely

An;
4



1.2. STRUCTURES 5
in the notation introduced on line (1.1) above: the nth Cartesian power of A isthe set of functions from n to A. An element of An can be written as(a0; : : : ; an�1)or a or ~a ; the function is then, in any case,

i 7�! ai : n �! A;and it can be called an (ordered) n-tuple from A.Note well that A0 = f?g = f0g = 1; this is true even if A is empty. Also, everyelement of A1 is f(0; a)g for some a in A. So we have a bijection
a 7�! f(0; a)g : A �! A1: (1.2)We may sometimes treat this bijection as an identi�cation; that is, we maydecide not to distinguish between a and f(0; a)g.For any m and n in !, we have a bijection(~a ;~b ) 7�! ~a ~̂b : Am �An �! Am+n (1.3)where ~a ~̂b is the (m+n)-tuple (a0; : : : ; am�1; b0; : : : ; bn�1); this is the (m+n)-tuple ~c such that

ck = (ak; if k < m;bk�m; if m 6 k < m+ n:We always treat the bijection in (1.3) as an identi�cation.An n-ary operation on A is a function from An to A. The set of these canbe denoted AAn :In particular, a 0-ary or nullary operation on A is an element of A1; by thebijection in (1.2) then, we may identify a nullary operation on A with an elementof A.An n-ary relation on A is a subset of An; the set of these is P(An).An n-ary operation on A is then a (certain kind of) subset of An � A, andthis product can be identi�ed with An �A1 and hence with An+1; so an n-aryoperation on A can be thought of as an (n+ 1)-ary relation on A.
1.2 Structures
Our fundamental object of study will be structures. The notion of a structureprovides a way to unify the treatment of many mathematical ideas. By ouro�cial de�nition, a structure is an ordered pair (A; I), also referred to as A,where:(�) A is a non-empty set, called the universe of the structure;(y) I is a function, written also s 7�! sA;whose domain L is called the signature of the structure;



6 CHAPTER 1. INTRODUCTION
(z) sA is either an element of A or an n-ary operation or relation on A forsome positive n, for each s in L.If L = fs0; s1; : : : g, then A can be written

(A; sA0 ; sA1 ; : : : ):Examples 1.1. The following are structures:(1) (!; 0; 0);(2) a group (G; �;�1; 1);(3) an abelian group (G;+;�; 0);(4) a ring (R;+;�; �; 0; 1);(5) the ring Z or (Z;+;�; �; 0; 1);(6) the �eld R or (R;+;�; �; 0; 1);(7) a partial order (X;6);(8) a vector-space V over a �eld K; here the signature of V is f+;�; 0g [fa � : a 2 Kg, where a � is the unary operation of multiplying by a;(9) the power-set structure on a non-empty set 
, namely
(P(
);\;[; c;?;
;�);

(10) the truth-structure
(B;^;_;:; 0; 1;�);

where B = f0; 1g, and � is the binary relation f(0; 0); (0; 1); (1; 1)g. (Thename `truth-structure' is my invention.)
The last two examples are the same if 
 = 1. Propositional logic studies thetruth-structure; model-theory studies all structures.With I as above in the structure (A; I):(�) sA is the interpretation in A of s;(y) s is a symbol for sA.So s is one of the following:(�) a constant;(y) an n-ary function-symbol for some positive n in !;(z) an n-ary predicate (or relation-symbol) for some positive n in !.Since nullary operations on A can be considered as elements of A, a constantcan be considered as a nullary function-symbol.Here are some observations about our de�nition of structure:(�) I am following the old convention (used for example in [1]) of denoting theuniverse of a structure by a Roman letter, and the structure itself by thecorresponding Fraktur or Gothic letter. Recent writers (as in [6] or [9])use `calligraphic' letters, not Fraktur:
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For a structure with universe: A B C . . . M N . . .I write: A B C . . . M N . . .Others may write: A B C . . . M N . . .Another option (taken in [5]) is to use an ordinary letter like A for a struc-ture, and then dom(A) for its universe. (Here `dom' stands for domain.)Finally, one might not bother to make a typographical distinction betweena structure and its universe. Indeed, as suggested in the examples, thedistinction is not easy to make with standard structures like Z or R.(y) Similarly, it is not always easy or convenient to distinguish between asymbol and its interpretation. A homomorphism from a group G to agroup H is usually described as a function f from G to H such that

f(g0 � g1) = f(g0) � f(g1)for all ge in G. If we are trying to be precise, we should call the groups G(or (G; �G)) and H (or (H; �H)), and we should say that f is such that
f(g0 �G g1) = f(g0) �H f(g1)for all ge in G. But writing this way soon becomes tedious.(z) In a structure (A; I), the interpretation-function I could be consideredto carry, within itself, the identity of the universe A. This is certainlytrue if the signature L of the structure contains a unary function-symbolf , since then I determines the function fA and hence its domain, A. Inany case, A and I work together to provide interpretations of the symbolsin L as elements of, or operations or relations on, a certain set, namely Aitself. That's all a structure is: something that provides a mathematicalinterpretation for certain symbols. We shall develop this idea later. Whatmakes model-theory interesting is that the same symbols can have dif-ferent interpretions. Here begins the distinction between syntax (formalsymbolism) and semantics (mathematical meaning).

1.3 Propositional logic
Of the so-called truth-structure given in the Examples 1.1, the signature isf^;_;:; 0; 1;�g. Besides the binary predicate � (which could also be written
6), the symbols are Boolean connectives. Other Boolean connectives arealso used. Each Boolean connective is an n-ary function-symbol for some n in!, and each has a standard interpretation as an operation on B. For example:(0) 0 and 1 are nullary connectives;(1) : is a singulary or unary connective;(2) ^, _, ! and $ are binary connectives.To give the interpretations of the connectives, we can understand B as a two-element abelian group with the addition-table+ 0 10 0 11 1 0 .
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Then one way to give the standard interpretations is:(0) the nullary connectives 0 and 1 are interpreted as themselves;(1) : is interpreted as the singulary operation x 7! x+ 1 on B(2) ^, _,! and$ are interpreted as the binary operations on B taking (x; y)to xy, xy + x+ y, xy + x+ 1 and x+ y + 1 respectively.These interpretations can be given in other (but equivalent) ways: For example,we can de�ne ! by (x! y) = 1 () x � y:
In general, a signature for propositional logic is a set of Boolean connectives.Let L be such. The formulas of L are certain strings of:(�) symbols from L;(y) propositional variables P0, P1, P2, . . . .In particular:(�) P is a formula, if P is a variable.(y) �F0 � � �Fn�1 is a formula, if � is an n-ary connective from L, and the Fiare formulas. (If n = 0, then � by itself is a formula.)Commonly, if � is binary, then, instead of �F0F1, one writes(F0 � F1):A formula is n-ary if its variables belong to the set fP0; : : : ; Pn�1g. (Alterna-tively, one may want to refer to a formula as n-ary if it contains no more thann distinct variables.)Since each Boolean connective � has a standard interpretation, also denoted �,every n-ary formula F represents an n-ary operation

~x 7�! bF (~x ) : Bn �! B
as follows:(�) If k < n, then Pk is an n-ary formula and, as such, represents the operation

~x 7�! xk : Bn �! B
(which can be denoted bPk).(y) If � is n-ary, and F0, . . . , Fn�1 are k-ary, then �F0 � � �Fn�1 represents

~x 7�! � ( bF0(~x ); : : : ; bFn�1(~x )) : Bk �! B:
The notion that a propositional formula represents an operation will be devel-oped further in the next chapter in case L is f:;!g. We shall be able to restrictourselves to this signature, because it is adequate. In general, a signature forpropositional logic is adequate if, for each n-ary operation f on B, there is an(n+ k)-ary formula F of L (for some k) such that

f(~x ) = bF (~x ; ~y )
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for all ~x in Bn and ~y in Bk: that is, every operation f on B is representedin L by some formula F . We allow the arity of F to be larger than that of f ,since we want it to be possible for signatures without nullary connectives to beadequate. (If something is n-ary, then its arity is n.) The following is provedin [8]:Theorem 1.2. A signature of propositional logic is adequate, provided that in
it are represented:(�) the constant functions 0 and 1;(y) the ternary function f given bye0 e1 e2 f(~e )0 0 0 01 0 0 10 1 0 01 1 0 10 0 1 01 0 1 00 1 1 11 1 1 1

.

Proof. By induction. The nullary operations are represented by assumption.Suppose all n-ary operations are represented, and g is (n + 1)-ary. Let he bethe n-ary operation ~x 7! g(~x ; e), if e 2 B. Then g is(~x ; y) 7�! f(h0(~x ); h1(~x ); y):Since the he are represented by inductive hypothesis, and f is represented byassumption, g is also represented. By induction, the operations of all arities arerepresented.Example 1.3. The propositional signature f!;:g is adequate, because:(�) P0 ! P0 represents 1;(y) :(P0 ! P0) represents 0;(z) the operation f as in the theorem is represented by the formula
:((:P2 ! P0)! :(P2 ! P1));since its truth-table is:: ((: P2 ! P0) ! : (P2 ! P1))0 1 0 0 0 1 0 0 1 01 1 0 1 1 0 0 0 1 00 1 0 0 0 1 0 0 1 11 1 0 1 1 0 0 0 1 10 0 1 1 0 1 1 1 0 00 0 1 1 1 1 1 1 0 01 0 1 1 0 0 0 1 1 11 0 1 1 1 0 0 1 1 1

.

(See also [7, x 2.2{3]. This formula is logically equivalent|or truth-equivalent in the sense of [7, x 2.4]|to (:P2 ! P0) ^ (P2 ! P1).)



Chapter 2
Propositional model-theory
This chapter is inspired in part by [1, x 1.2]. Generally, the term model-theoryrefers to �rst-order model-theory, because the logic it uses is �rst-order logic.The notion of structure de�ned in ch. 1 is the notion as used in �rst-ordermodel-theory. However, some model-theoretic ideas can be worked out in thesimpler context of propositional logic. This is what is done here. In particular,a simpler notion of structure will be introduced, albeit one that retains thefundamental idea of providing an interpretation for symbols.Our o�cial signature for propositional logic will be

f!;:g:
Let V be our set fPk : k 2 !g of propositional variables. For the sake of aprecise de�nition of formula, let S be the set of all �nite strings (or sequences)of symbols from the set V [ f!;:g [ f(; )g:Now let U be the subset of P(S) comprising the subsets N of S such that:(�) V � N , that is, N contains all elements of V (when these are consideredas sequences of length 1);(y) for all F in S, if F 2 N , then :F 2 N ;(z) for all F and G in S, if F and G are in N , then (F ! G) 2 N .Let Fm = TU . This is just the set of propositional formulas in the signaturef!;:g. Throughout this chapter, all formulas are elements of Fm.In particular, by construction, Fm is the smallest subset N of S with the prop-erties above. We may say that the de�nition of Fm is inductive, because itmakes proof by induction on formulas possible: If N � Fm, then, to proveN = Fm, it is enough to show that N has the properties (�, y, z) above.As a �rst example of proof by induction on formulas, we have the next lemmabelow. We �rst make some (obvious) de�nitions:If s0, s1, . . . , and sn�1 are symbols, then the length of the string s0s1 � � � sn�1is n; and the string begins with s0. An initial segment of the string is one ofthe strings s0s1 � � � sk�1, where k 6 n. The initial segment is proper if k < n.

10



11
Lemma 2.1.(�) Every formula has positive length.(y) Every formula of length 1 is a variable.(z) Every formula of length greater than 1 begins with : or (.(x) Every formula beginning with : is :F for some formula F .({) Every formula beginning with ( is (F ! G) for some formulas F and G.
Proof. By induction on formulas. Let N be the set of formulas F such that:(�) F has positive length;(y) if F has length 1, then F is a variable;(z) if F has length greater than 1, then F begins with : or (;(x) if F is :E for some string E, then E is a formula;({) if F begins with (, then F is (G! H) for some formulas G and H.Then N contains the variables, and N contains :F and (F ! G) if it containsF and G. Hence N = Fm.
De�nition of functions on Fm by recursion is possible, because of the next the-orem below. This will use another lemma. Now, because formulas have lengths,this lemma|and other facts about formulas|can be proved by induction (usu-ally strong induction) on these lengths:Lemma 2.2. No proper initial segment of a formula is a formula.

Proof. Let N be the set of formulas of which no proper initial segment is aformula. We shall prove by strong induction on the lengths of formulas thatN = Fm. Suppose N contains all formulas shorter than a formula F . ByLemma 2.1, we know that F is a variable P or a formula :G or (G! H), whereG and H are formulas. The only proper initial segment of P is the empty string,which is not a formula. Any proper initial segment of :G is :G0 for some initialsegment G0 of G; so G0 is not a formula, by strong inductive hypothesis; hence:G0 is not a formula. Finally, and similarly, any initial segment of (G! H) is(G0 ! H 0) for some formulas G0 and H 0. Then one of G and G0 is an initialsegment of the other. But each one is shorter than F ; so by strong inductivehypothesis, G and G0 are the same formula. Then H 0 is a proper initial segmentof H; so these formulas must be the same. Thus, in all cases, F 2 N . By stronginduction, N = Fm.
We need not use induction again to prove the following:Theorem 2.3 (Unique Readability). If F is a formula, then F satis�es
exactly one of the following conditions:(�) F 2 V ;(y) F is :G for some formula G;(z) F is (G! H) for some unique formulas G and H.
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Proof. Every formula is a variable or is :F or (F ! G) for some formulas Fand G. Suppose (F ! G) is also (F 0 ! G0), where F 0 and G0 are also formulas.Then (as in the previous proof) one of F and F 0 is an initial segment of theother. By the last lemma, this means F and F 0 are the same, so G and G0 mustbe the same.Corollary 2.4 (Recursion). Let f: be a unary, and f! a binary, operation
on some set. Let g be a function from V into that set. Then g extends uniquely
to the domain Fm so that(�) g(:F ) = f:(g(F )),(y) g((F ! G)) = f!(g(F ); g(G))
for all F and G in Fm.

Proof. Not important. The idea is to let G be the set of all relations with thedesired properties of g (except the property of being a function), and then toshow that TG is in G and is in fact a function. See [7, Theorem 5.2.1].
Notationally, we suppose:(�) P , Q, R, . . . are in V ;(y) F , G, H, . . . are in Fm;These symbols can be called syntactical variables, since their possible valuesare symbols and strings of symbols in the formal logic that we are studying.(There is some discussion of this terminology in [2, x08].)We also let ~e = (e0; : : : ; en�1) 2 Bn for an appropriate n in !, where B = f0; 1g.The formula F is n-ary if its variables come from fPk : k < ng. Under thisde�nition, the n-ary formulas are also (n + 1)-ary. The set of n-ary formulascan be denoted Fmn :Note that this set has an inductive de�nition, and de�nition by recursion offunctions on Fmn is possible. (Exercise: how can the inductive de�nition ofFm be adapted to an inductive de�nition of Fmn?)We can understand : to be the unary operation on B given by

e :e0 11 0 ,
and ! to be the binary operation on B given by

e0 e1 e0 ! e10 0 11 0 00 1 11 1 1
.

These agree with the de�nitions given on p. 8. Then we have a unique functionF 7! bF from Fmn into BBn such that:
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(�) bPk is ~e 7! ek, if k < n;(y) bF (~e ) = :( bG(~e )), if F is :G;(z) bF (~e ) = bG(~e )! bH(~e ), if F is (G! H).A truth-assignment for an n-ary formula F is an element ~e of Bn; the elementbF (~e ) of B is the value of F at ~e . The computation of this value is a �niteprocedure, and depends only on those ek such that Pk actually appears in F .Example 2.5. Let F be (P0 ! (:P1 ! P2)). Let G be (:P1 ! P2). ThenbF (~e ) = 1 () bP0(~e ) 6 bG(~e )() e0 6 bG(~e )() e0 = 0 or (e1 + 1) 6 e2() e0 = 0 or e1 = 1 or e2 = 1:

We write ` Fif bF (~e ) = 1 for all truth-assignments ~e for F ; in this case, F is a tautology.Otherwise, we write 0 F:The question of whether F is a tautology can be answered by computing itstruth-table, namely:
P0 : : : Pn�1 F... ... ...e0 : : : en�1 bF (~e )... ... ...

.
(See also [7, x 2.3].)
2.1 Formal proofs
Let us use � as a syntactical variable for sets of formulas. For us, a formalproof or a deduction of F from � will be a �nite sequence

G0; : : : ; Gnof formulas, where:(�) Gn is F ;(y) for each k less than n+ 1, Gk is a tautology, or Gk is in �, or there are iand j less than k such that Gj is (Gi ! Gk).In terms of [7, x 2.9], we are using the proof-system whose only axioms are thetautologies, and whose only rule of inference is modus ponens. If there is sucha deduction, we write � ` F;
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and we can say that F is deducible from �; we can also say that the elementsof � are hypotheses in the deduction.We may write deductions vertically, so as to justify each step; but the deductionitself is just a �nite sequence of formulas:Examples 2.6.(�) fF; (F ! G)g ` G, by the deduction

F [hypothesis](F ! G) [hypothesis]G [modus ponens]
(y) If ` (F ! G), then fFg ` G by the deduction

F [hypothesis](F ! G) [axiom]G [modus ponens](The formal proof is the same, but the justi�cations are not.)(z) f(P ! (Q ! R)); (P ! Q)g ` (P ! R); �nding the deduction is anexercise.
Something to think about is whether there are procedures:(�) for determining whether � ` F ;(y) for �nding the proof, if it exists.Lemma 2.7. If G0; : : : ; Gn is a formal proof, and k 6 n, then G0; : : : ; Gk is a
formal proof.

Proof. Immediate from the de�nition.Lemma 2.8. � ` F just in case �0 ` F for some �nite subset �0 of �.
Proof. ()) Say there is a formal proof G0; : : : ; Gn of F from �. Let�0 = � \ fG0; : : : ; Gng:Then G0; : : : ; Gn is a formal proof of F from �0, and �0 is a �nite subset of �.(() A formal proof from �0 is a formal proof from any set that includes �0.Lemma 2.9. ` F () ? ` F .
Proof. ()) If ` F , then F is a one-step derivation of itself from ?, so ? ` F .(() We argue by strong induction on the lengths of deductions. Suppose thatF is a tautology whenever F has a deduction from ? of length less than n+ 1.Now suppose that G0; : : : ; Gn�1; Fis a deduction (which has length n + 1) of F . Then either F is a tautology, orthere are i and j less than n such that Gj is (Gi ! F ). In the latter case, by
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inductive hypothesis, both Gi and (Gi ! F ) are tautologies. But the value of(Gi ! F ) at ~e is just bF (~e ), if bGi(~e ) = 1. Hence F is a tautology. By induction,all formulas deducible from ? are tautologies.
We are sometimes more interested in knowing whether a deduction exists thanin what it is. Towards developing this knowledge, we have:Lemma 2.10. Suppose fF : � ` Fg ` G. Then � ` G, that is, G is already
in the set fF : � ` Fg.
Proof. Let �� = fF : � ` Fg. In a deduction of G from ��, if an element of�� appears, then replace it with its deduction from �. The result is then itselfa deduction from �.
A useful application of the lemma is:Theorem 2.11 (Modus Ponens). If � ` F and � ` (F ! G), then � ` G.
Proof. Let �� = fH : � ` Hg. If F and (F ! G) are in ��, then G has athree-line proof from �� as in one of the Examples 2.6 above. Hence � ` G, bythe last lemma.
A set � of formulas is inconsistent if � ` :F for some F in �; otherwise, � isconsistent. A formula F is a contradiction if :F is a tautology. There arevarious ways to express inconsistency:Lemma 2.12. The following are equivalent:(�) � is inconsistent;(y) � ` F and � ` :F for some F ;(z) � ` F for all F ;(x) a contradiction is deducible from �.
Proof. (�) ) (y). If � is inconsistent, then � ` :F for some F in �; but then� ` F also.(y) ) (z). Say � ` F and � ` :F . But ` (F ! (:F ! G)) for all G (by anexercise). By two applications of Modus Ponens, � ` G.(z)) (x). Immediate.(x) ) (�). Suppose F is a contradiction, and � ` F . Then � 6= ?, since onlytautologies are derivable from ?. Hence there is G in �. But ` (F ! :G) (byan exercise), so � ` :G by Modus Ponens.Lemma 2.13.(�) � is inconsistent just in case some �nite subset of � is inconsistent.(y) � is consistent just in case fF : � ` Fg is consistent.

Proof. Exercise.Theorem 2.14 (Deduction). � ` (F ! G) if and only if � [ fFg ` G.
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Proof. ()) Exercise.(() We use strong induction on the lengths of deductions. Suppose the claimholds when G has a formal proof of length less than n + 1. Suppose also thatH0; : : : ;Hn�1; G is a formal proof of G from � [ fFg. Now,` (G! (F ! G))(by an exercise). Hence, if G 2 � or G is a tautology, then� ` (F ! G)by Modus Ponens. The other possibility is that Hj is (Hi ! G) for some i andj in n. Then � ` (F ! Hi) and � ` (F ! (Hi ! G)) by inductive hypothesis.But also ` ((F ! Hi)! ((F ! (Hi ! G))! (F ! G)))(exercise). By two applications of Modus Ponens, � ` (F ! G).
The Deduction Theorem gives a condition under which certain proofs exist. Inparticular, we have:Corollary 2.15.(�) If � [ fFg is inconsistent, then � ` :F .(y) If � 0 G, then � [ f:Gg is consistent.

Proof. Suppose � [ fFg is inconsistent. Then � [ fFg ` :F by Lemma 2.12.Hence � ` (F ! :F ). But also` ((F ! :F )! :F )(exercise). Hence � ` :F by Modus Ponens.The remainder is an exercise.
Recall the distinction on p. 7 between syntax and semantics. The notion offormal proof can be called syntactic because it involves formal manipulationof symbols. A good proof-system will capture the notion of logical consequence,a notion that can be called semantic. We now develop this notion:
2.2 Logical consequence
A structure for propositional logic is a function � (or P 7! �(P )) from Vto B. (Alternatively, the structure is not the function �, but the set fP 2V : �(P ) = 1g; but such a de�nition can cause confusion. In any case, theset and the function determine each other.) Suppose F is n-ary, and ~e is thetruth-assignment (�(P0); : : : ; �(Pn�1)):If bF (~e ) = 1, then we say that F is true in �, and we write� � F:
So far we have only introduced some new notation. Whether F is true in � canbe determined by �nite computation. In particular:
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(�) � � P () �(P ) = 1;(y) � � :F () � 2 F ;(z) � 2 (F ! G) () � � F & � � :G.So truth can be computed as in the following (which can be compared withExample 2.5):Example 2.16. The following are equivalent:(�) � � P ! (:Q! R);(y) � � :P or � � (:Q! R);(z) �(P ) = 0 or � � Q or � � R;(x) �(P ) = 0 or �(Q) = 1 or �(R) = 1.

The notion of structures allows us to make the following de�nition. If � is a(possibly in�nite) set of formulas, and if � � F for every F in �, then � is amodel of �, and we can write � � �:Finally, F is a logical consequence of �, or � entails F , if F is true in everymodel of �. In this case, we can write� � F:Here, if � is a �nite set fG0; : : : ; Gn�1g, then we can also write
G0; : : : ; Gn�1 � F(without braces). We consider logical consequence or entailment as a semanticnotion, because, from its de�nition, it seems not to be determined by simplecomputation. Indeed, there are in�nitely many (in fact, uncountably many)structures, and anyway a formula might be a logical consequence of an in�niteset of formulas.It is important to note that � is used in two completely di�erent ways:(�) to express truth, which is a relation between a structure and a formula(or set of formulas);(y) to express entailment, which is a relation between a set of formulas anda formula.The following is a semantic version of the Deduction Theorem; it is easier toprove:Lemma 2.17. � [ fFg � G just in case � � (F ! G).

Proof. Exercise.
Repeated application of the lemma gives

F0; : : : ; Fn � G () � F0 ! � � � ! Fn ! G: (2.1)The notational convention here is that F ! G ! H at the end of a formulameans (F ! (G ! H)); that is, grouping is from the right. Towards analternative expression of this equivalence, let us note:
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Lemma 2.18. Suppose F and G are both n-ary. The following are equivalent:(�) F � G;(y) bF (~e ) 6 bG(~e ) for all ~e .
Proof. Exercise.
We can now de�ne F and G to be (logically) equivalent if they have the sametruth-table, that is, bF (~e ) = bG(~e ) for all ~e , equivalently, F � G and G � F ; wecan express this by F � G:Note the truth-table

: (P ! : Q)0 0 1 1 00 1 1 1 00 0 1 0 11 1 0 0 1
.

As an abbreviation of :(F ! :H), let us write
F ^ H;

this is the conjunction of F and H.Lemma 2.19. Show that:(�) F ^ G � G ^ F ;(y) (F ^ G) ^ H � F ^ (G ^ H);(z) F ^ G! H � F ! G! H (here ^ has priority over !).

Proof. Exercise.
Now we can write the equivalence (2.1) as

F0; : : : ; Fn � G () � (F0 ^ : : : ^ Fn ! G):
Alternatively, if fF0; : : : ; Fng = �, then instead of F0 ^ : : : ^ Fn, we can write^�;
this is the conjunction of �. Then

� � G () � (^�! G);
provided � is �nite. So we have a procedure to determine whether � � G,provided also that � is �nite: just check whether V� ! G is a tautology.What if � is in�nite?
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2.3 Soundness and Completeness
We aim to reduce the semantic notion of entailment to the syntactic notion ofdeducibility, by proving that our proof-system has the properties of:(�) soundness: if � ` F , then � � F ;(y) completeness: if � � F , then � ` F .Let us write

� Fif � � F for all structures �; in this case, F can be called a validity.In the �nitary case, soundness and completeness are now easy to prove:Lemma 2.20. The tautologies are precisely the validities:

` F () � F:
Proof. The following are equivalent:(�) ` F ;(y) bF (~e ) = 1 for all ~e ;(z) � � F for all structures �;(x) � F .This completes the proof.
The reverse direction of the following can be called weak completeness:Theorem 2.21. If � is �nite, then

� ` F () � � F:
Proof. Suppose fG0; : : : ; Gn�1g � F . Then� ` F () ` G0 ! � � � ! Gn�1 ! F [by the Deduction Theorem]() � G0 ! � � � ! Gn�1 ! F [by the last lemma]() � � F
by Lemma 2.17.
Another connexion between deducibility and entailment is now the following:Corollary 2.22. � is consistent if and only if every �nite subset of � has a
model.

Proof. If � is not consistent, then, by Lemma 2.13, some �nite subset �0 of �is inconsistent. Then �0 ` :(P ! P ) by Lemma 2.12, so �0 � :(P ! P ). But:(P ! P ) has no model, so �0 has no model.Conversely, if �0 is a �nite subset of � with no model, then �0 � :(P ! P ),so �0 ` :(P ! P ), whence �0 is inconsistent by Lemma 2.12.
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Both implications in Theorem 2.21 are true generally:Theorem 2.23 (Soundness). If � ` F , then � � F .
Proof. Proof by strong induction on the length of deductions. Suppose theclaim is true when F has a deduction of length less than n+1 from �. SupposeG0; : : : ; Gn�1; F is a formal proof of F from �.(�) If ` F , then � F by Lemma 2.20, so � � F .(y) If F 2 �, then � � F trivially.(z) If Gj is (Gi ! F ) for some i and j less than n, then � � Gi and� � (Gi ! F ) by inductive hypothesis, whence also � � F .This completes the induction.Theorem 2.24 (Completeness). If � � F , then � ` F .
Proof. Suppose � 0 F ; we shall show � 2 F . By Corollary 2.15, � [ f:Fg isconsistent. Our proof, in outline, has three parts:(0) There is a set �� of formulas such that:� � [ f:Fg � ��;� �� is consistent;� if G =2 ��, then :G 2 ��.(1) Let the structure � be given by

�(P ) = 1 () P 2 ��:Then � � G () G 2 �� (2.2)for all formulas G.(2) Hence � � ��, so � � :F . Therefore � 2 F . This shows � 2 F .Details of (0) and (1) are as follows:(0) The in�nite set Fm of formulas is countable, that is, it can be writtenas fGn : n 2 !g (exercise). We now recursively de�ne a sequence (�n :n 2 !) of sets of formulas:(�) �0 = � [ f:Fg.
(y) �n+1 = (�n [ fGng; if this is consistent;�n; otherwise.Then � = �0 � �1 � � � � . Let �� = Sn2! �n. We can now establish thedesired points:� Obviously � [ f:Fg � ��.� Suppose if possible that �� is inconsistent. Then some �nite sub-set fH0; : : : ;Hkg is inconsistent, by Lemma 2.8. Each formula Hiis in some set �m(i). Let n = maxfm(0); : : : ;m(k)g. Then �n isinconsistent.However, by induction, each of the sets �n is consistent.Therefore �� is consistent.
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� Finally, suppose G =2 ��. Now, G is Gn for some n. Then �n [ fGgis inconsistent, by de�nition of �n+1 and ��. Hence:(�) �n ` :G, by Corollary 2.15;(y) �� ` :G;(z) �� [ f:Gg is consistent, by Lemmas 2.10 and 2.12, since �� isconsistent;(x) �m [ f:Gg is consistent for all m.But :G is Gm for some m. Hence :G 2 Gm+1 � ��.By the consistency of ��, we now have

G =2 �� () :G 2 ��:
(1) We prove the equivalence (2.2) by induction on Fm. It is trivially trueif G is a variable, by de�nition of �. Suppose it is true if G is H or K.Then � � :H () � 2 H () H =2 �� () :H 2 ��;and also

� 2 (H ! K) () � � H & � � :K() H 2 �� & :K 2 ��() (H ! K) 62 ��:(Exercise: why does the last equivalence hold?)This completes the proof.
Note well the method of the proof: Given a consistent set of formulas, weextended it to a larger consistent set, ��, that determined the structure, �,that we wanted.A set � of formulas can be called maximally consistent if:(�) � is consistent; and(y) if � � � and � is consistent, then � = �.Lemma 2.25. Suppose � is consistent. The following are equivalent:(�) � is maximally consistent.(y) If G =2 �, then :G 2 �.
Proof. Exercise.
Our proof of the Completeness Theorem established and used the followingresult:Porism 2.26. Every consistent set of formulas is included in a maximally con-
sistent set.

The following can be proved as a corollary of Completeness:Theorem 2.27 (Compactness). If every �nite subset of � has a model, then� has a model.
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Proof. Suppose every �nite subset of � has a model. Then � is consistent byLemma 2.22. Let F be a contradiction. Then � 0 F . Hence � 2 F . Inparticular, there is a model of � in which F is false.
Conversely, Completeness can be proved as a corollary of the CompactnessTheorem (exercise).
2.4 Additional exercises
(1) Give a formal proof of H from F , G and (:(F ! :G)! H).(2) On Fm, let F 7! F 0 be the operation of `reversing the arrows,' so that,for example,

(P ! :(:Q! R))0 is (:(R! :Q)! P ):
What is the precise recursive de�nition of the function F 7! F 0?(3) Prove or disprove: Either � � F , or � � :F .(4) Prove or disprove: If � � (F ! G), then either � � :F or � � G.We have introduced ^ so that (F ^ G) is an abbreviation of :(F ! :G).(5) Show that (F ! G) � :(F ^ :G): (2.3)

Let (:F ! G) be abbreviated (F _G):We can develop propositional logic in the signature f^;_;:g. Let Fm0 be theset of formulas in this signature.(6) Give a precise de�nition of Fm0.(7) De�ne A � F for structures A and F in Fm0.The de�nition of � � F is exactly as before, when � is a set of formulas in Fm0.(8) Prove or disprove: If � � F or � � G, then � � (F _G).(9) Prove or disprove: If � � (F _G), then � � F or � � G.(10) Show that f^;:g is an adequate signature.Informally, we can de�ne a unary operation F ! F � on Fm0 so that F � is theresult of interchanging ^ and _ in F and of replacing every variable P with :P .(11) Give a precise recursive de�nition of F 7! F �.(12) Show that F � � :F for all F in Fm0.



Chapter 3

First-order logic
Recall from x 1.2 the de�nitions and examples involving structures; these arethe kinds of structures that we shall now be dealing with.Let A be a structure with signature L. So A has universe A. We use c, R and fas syntactical variables for the constants, n-ary predicates and n-ary relationsof L, respectively.
3.1 Terms
If k < n, then there is an n-ary operation

~a 7�! ak : An �! A (3.1)
on A. This operation is projection onto the kth coordinate, and it can bede�ned regardless of the operations symbolized in L. Also, each element b in Adetermines, for each positive n, the constant n-ary operation

~a 7�! b : An �! A: (3.2)
If b is the interpretation of a constant in L, then that constant can be understoodto symbolize the constant operation. All of the operations that are symbolizedin L can be composed with one another, and with projections, to give otheroperations on A. The terms of L symbolize these possibilities. The symbolsused in terms of L are:(�) the function-symbols f of L;(y) the constants c of L;(z) (individual) variables, say from the set fxk : k 2 !g; these will sym-bolize the projections.Then the terms of L are de�ned inductively thus:(�) Each individual variable is a term of L.(y) Each constant in L is a term of L.

23
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(z) If f is an n-ary function-symbol of L, and t0, . . . , tn�1 are terms of L,then the string ft0 � � � fn�1is a term of L. (This is not generally a string of length n+1; it is a stringwhose length is 1 more than the sum of the lengths of the strings tk. If fis binary, then we may uno�cially write the term as (t0 f t1) instead offt0t1.)Let the set of terms of L be denoted

TmL :As in propositional logic, so here, de�nition by recursion is possible, because ofthe following:Theorem 3.1 (Unique Readability). Every term of L is uniquely
st0 � � � tn�1

for some n in !, some terms tk of L (if n 6= 0), and some s in L. If n 6= 0,
then s is an n-ary function-symbol of L; if n = 0, then s is a constant of L or
a variable.

Proof. Exercise. (The proof can be developed as for Theorem 2.3.)
Note well that, by our de�nition, none of the symbols used in terms is a bracket.If the variables in a term t come from fxk : k < ng, then t is n-ary; the set ofn-ary terms of L can be denoted

TmnL :Note then Tm0L � Tm1L � Tm2L � � � � :An n-ary term t of L determines an n-ary operation tA on A. The formalde�nition is recursive:(�) xkA is ~a 7! ak, if k < n (as in (3.1)).(y) cA is ~a 7! cA (as in (3.2); here c is understood respectively as term andconstant).(z) (ft0 � � � tn�1)A is
~a 7�! fA(t0A(~a ); : : : ; tk�1A(~a ));that is, fA � (t0A; : : : ; tk�1A).We have just extended the interpretation-function I of A so as to include afunction t 7�! tA : TmnL �! AAn : (3.3)If t 2 Tm0L, then tA = f(0; a)g for some a in A; but (as in ch. 1) we can thenidentify tA with a, and we can call t a constant term.
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Suppose L � L0. An expansion of A to L0 is a structure A0 whose signature isL0, and whose universe is A, such that

sA0 = sAfor all s in L. Then A is the reduct of A0 to L.Example 3.2. The ring (Z;+;�; �; 0; 1) is an expansion of the abelian group(Z;+;�; 0); the latter is a reduct of the former.
We can treat the elements of A as new constants (not belonging to L); addingthese to L gives the signature L(A). Then A has a natural expansion AA to thissignature, so that aAA = afor all a in A. (Some writers prefer to de�ne L(A) as L[fca : a 2 Ag, and thento de�ne caAA = a.)In fact, when it comes to interpreting terms (and, later, formulas), we alwaystreat A as if it were AA. This means that every n-ary term t of L(A) has aninterpretation tA in A according to the de�nition above, provided we understandaA as a itself when a 2 A. In other contexts, however, it will be important todistinguish clearly between A and AA. We shall also want to speak of expansions
AX of A, where X is an arbitrary subset of A.If t is an n-ary term of L (or L(A)), and ~a 2 An, then the result of replacingeach xk in t with ak, for each k in n, can be written

t(~a );this is a constant term of L(A). For a recursive de�nition, we have that t(~a ) is:(�) ak, if t is xk;(y) c, if t is c;(z) ft0(~a ) � � � tk�1(~a ), if t is ft0 � � � fk�1.Thus we have de�ned a function
t 7�! t(~a ) : TmnL �! Tm0L(A) : (3.4)The tuple ~a also determines the function

g 7�! g(~a ) : AAn �! A: (3.5)We now have several functions, in (3.3), (3.4) and (3.5), �tting together into asquare: TmnL ~a����! Tm0L(A)
I
??y ??yI
AAn ����!~a A

:
It doesn't matter which way you go around:Lemma 3.3. tA(~a ) = t(~a )AA for all n-ary terms of L, all L-structures A, and
all n-tuples ~a from A.
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Proof. The claim is perhaps obvious; but there is a proof by induction:If t is xk, then tA(~a ) = ak, and t(~a )AA = akAA = ak.If t is c, then tA(~a ) = cA, while t(~a )AA = cAA = cA.Finally, if the claim holds when t is any of terms ti, and now t is ft0 � � � fk�1,then we have

tA(~a ) = fA(t0A(~a ); : : : ; tk�1A(~a ))= fA(t0(~a )AA ; : : : ; tk�1(~a )AA)= (ft0(~a ) � � � tk�1(~a ))AA= t(~a )AA :
This completes the induction.
As an exercise, you can give a recursive de�nition of

t(u0; : : : ; un�1);where t is an n-ary term, and the uk are terms. What is the arity of theresulting term? Show that
t(u0; : : : ; un�1)A(~a ) = tA(u0A(~a ); : : : ; un�1A(~a )):Note then that, if t is n-ary, then t is precisely the term denoted

t(x0; : : : ; xn�1):Example 3.4. Let L be the signature of rings (with identity), and let A be Z(or Q or R or C or some other in�nite integral domain or �eld). If t is a term ofL(A), then tA is a polynomial over A. What if A is �nite, say the 2-element�eld F2? In that case, if t is x0 � (x0 + 1) or 0, then tA(a) = 0 for all a in A.However, x0 � (x0 + 1) and 0 do not represent the same polynomial, since theyhave di�erent interpretations in �elds (like F4) that properly include F2. (Here,F4 can be de�ned as F2[X]=(X2 + 1).)
3.2 Formulas
As terms symbolize operations, so formulas will symbolize relations. Each for-mula ' of L will have an interpretation 'A that is a relation on A. When thisrelation is nullary and is in fact f?g, that is, 1, then ' will be called true in A,and we shall write

A � ':Conversely, it is possible to de�ne truth in structures �rst, and then interpreta-tions. We shall look at both approaches.So-called polynomial equations are examples of atomic formulas, which are the�rst kinds of formulas to be de�ned. From these, we shall de�ne open formulas,and then arbitrary formulas.
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Atomic formulas and their interpretations

The atomic formulas of L are of two kinds:(�) If t0 and t1 are terms of L, then t0 = t1 is an atomic formula of L. (Somewriters prefer to use a symbol like � instead of =.)(y) If R is an n-ary predicate of L, and t0, . . . , tn�1 are terms of L, thenRt0 � � � tn�1 is an atomic formula of L. (If R is binary, then we mayuno�cially write (t0 R t1) instead of Rt0t1.)An atomic formula � can be called k-ary if the terms it is made from are k-ary.A polynomial equation in two variables over R has a solution-set, which canbe considered as the interpretation of the equation. Likewise, arbitrary atomicformulas have solution-sets, which are their interpretations: If � is a k-aryatomic formula of L, then the interpretation in A of � is the k-ary relation�A on A de�ned as follows. (Strictly, the validity of the de�nition depends onTheorem 3.5 below.)(t0 = t1)A = f~a 2 Ak : t0A(~a ) = t1A(~a )g; (3.6)(Rt0 � � �Rn�1)A = f~a 2 Ak : (t0A(~a ); : : : ; tn�1A(~a )) 2 RAg: (3.7)As a special case, if k = 0, we have(t0 = t1)A = 1 () t0A = t1A; (3.8)(Rt0 � � � tn�1)A = 1 () (t0A; : : : ; tn�1A) 2 RA: (3.9)Note that the atomic formula t0 = t1 can be considered as the special caseof Rt0 � � � tn�1 when n = 2 and R is =. We treat the special case separatelybecause we consider the equals-sign to be always available for use in formulas,and we always interpret it as true equality.
Open formulas and their interpretations

We can treat atomic formulas as propositional variables, combining them to getopen (or quanti�er-free) formulas:(�) atomic formulas are open formulas;(y) if ' and � are open formulas, then so are :' and ('! �).As with atomic formulas, so with arbitrary open formulas: they are k-ary ifthe terms they are built up from are k-ary. Hence, if ' and � are k-ary openformulas, then so are :' and (' ! �). We can now de�ne interpretations ofk-ary open formulas by adding to (3.6) and (3.7) the following rules (again,Theorem 3.5 is required):(:')A = Ak r 'A = ('A)c; (3.10)('! �)A = Ak r ('A r �A) = ('A r �A)c: (3.11)In particular, if k = 0, then:(:')A = 1 () 'A = 0;('! �)A = 0 () 'A = 1 & �A = 0:
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Formulas in general

Formulas in general may contain the existential quanti�er 9. The inductivede�nition of formula is:(�) atomic formulas are formulas;(y) if ' and � are formulas, then so are :' and ('! �);(z) if ' is a formula, and x is a variable, then 9x ' is a formula.The possibility of de�ning the foregoing interpretations of open formulas de-pends on the following:Theorem 3.5 (Unique Readability). Every formula of L is uniquely one of
the following:(�) an equation t0 = t1, for some terms te of L;(y) a relational formula Rt0 � � � tn�1 for some terms tk and n-ary predicateR of L, for some positive n;(z) a negation :' for some formula ';(x) an implication ('! �) for some formulas ' and �;({) an existential formula 9x ' for some formula ' and some variable x.
Proof. Exercise.
Towards interpretations in general

In order to de�ne interpretations of arbitrary formulas, we can still use (3.10)and (3.11) above to de�ne (:')A and (' ! �)A in terms of 'A and �A.However, we also must de�ne (9x ')A in terms of 'A; and we must �rst de�nethe arity 9x ' in terms of the arity of '. This is not quite so easy. We shall doit presently. When we are done, then, for every n-ary formula ' of L, there willbe an n-ary relation 'A on A; this relation is de�ned by ', and the relationcan be called a 0-de�nable relation of A. The de�nable relations are thosede�ned by formulas of L(A); more generally, if X � A, then the X-de�nablerelations are those de�ned by formulas of L(X). (Singulary de�nable relationscan just be called de�nable sets.)If X and Y are k-ary de�nable relations of A, then so are Xc, X \ Y , X [ Y ,&c. In short, all Boolean combinations of de�nable relations are de�nable,since f:;!g is an adequate signature for propositional logic.Now, if ' is an n-ary formula, de�ning as such the n-ary relation X, then wecan also treat ' as (n+ 1)-ary, de�ning the relation X �A on A. This relationis the set f(~a ; b) 2 An+1 : ~a 2 Xg:This set is also ��1(X), where � is the function(~a ; b) 7�! ~a : An+1 �! An; (3.12)this map is projection onto the �rst n coordinates. In short then, inverse
images of de�nable sets under projections are de�nable. Using the quanti�er 9in formulas will allow images under projections to be de�nable.
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Indeed, suppose ' is an (n + 1)-ary formula. Then we can de�ne (9xn ')A toconsist of those ~a in An such that there exists b in A such that (~a ; b) 2 'A.Hence (9xn ')A is �00('A), the image of 'A, where � is the projection in (3.12).But what is (9xi ')A here, if i < n? De�ning this takes a bit more work;see Remark 3.8 below. Meanwhile, we can give an alternative approach tointerpreting formulas:
Truth

Let FmL be the set of formulas of L. We recursively de�ne a function
' 7�! fv(') : FmL �! P(fxk : k 2 !g)as follows:(�) fv(�) is the set of variables in �, if � is atomic (for an exercise, this canbe given a recursive de�nition);(y) fv('! �) = fv(') [ fv(�);(z) fv(9x ') = fv(')r fxg.Then fv(') is the set of free variables of '.If fv(') = ?, then ' is a sentence. So an atomic sentence � is a nullary atomicformula; in this case, we can de�ne

A � � () �A = 1; (3.13)in either case, � is true in A. Otherwise, � is false in A, and we can write
A 2 �:We can also de�ne

A � :� () A 2 �; (3.14)
A 2 (� ! �) () A � � & A � :� ; (3.15)provided � and � are sentences for which truth and falsity in A have beende�ned. To de�ne A � 9v ', we should assume that we have been working withformulas of L(A) all along, and we should de�ne a kind of substitution:For formulas ', if x is a variable and t is a term, we de�ne the formula

'xtrecursively:(�) If � is atomic, then �xt is the result of replacing each occurrence of x in �with t (as an exercise, you can de�ne this recursively);(y) (:')xt is :('xt );(z) ('! �)xt is ('xt ! �xt );(x) (9x ')xt is 9x ' (no change);({) (9u ')xt is 9u 'xt , if u is not x.
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Then 'xt is the result of replacing each free instance of x in ' with t. Now wecan de�ne

A � 9x ' () A � 'xa for some a in A. (3.16)We have now completed the de�nition of truth; it is expressed by lines (3.8),(3.9), (3.13), (3.14), (3.15) and (3.16).
Interpretations

If fv(') � fxk : k < ng, then ' can be called n-ary, and we can write ' as
'(x0; : : : ; xn�1):Then, instead of 'x0a0 � � �xn�1an�1 , we can write
'(a0; : : : ; an�1)or '(~a ). (Here, ~a is a tuple of constants. We could let it be a tuple (t0; : : : ; tn�1)of arbitrary terms; but then we should have to ensure that '(t0; : : : ; tn�1) isthe result of simultaneously substituting each tk for the free instances of thecorresponding variable xk.)Lemma 3.6. Let ' be an n-ary formula of L.(�) If ' is atomic, then 'A = f~a 2 An : A � '(~a )g.(y) If ' is :�, then f~a 2 An : A � '(~a )g = f~a 2 An : A � �(~a )gc.(z) If ' is (�!  ), then

f~a 2 An : A � '(~a )g = f~a 2 An : A � �(~a )gc [ f~a 2 An : A �  (~a )g:
(x) If ' is 9xn �, then

f~a 2 An : A � '(~a )g = �00(f(~a ; b) 2 An+1 : A � �(~a ; b)g);
where � (as in (3.12)) is projection onto the �rst n coordinates.

Proof. Exercise.
Now we can de�ne 'A = f~a 2 An : A � '(~a )gfor all formulas '.In a formula of L(A), any constants from A can be called parameters. So thede�nable relations of A are, more fully, the relations de�nable with parameters.Example 3.7. Algebraic geometry studies the de�nable relations of C andof other algebraically closed �elds. It can be shown that, on C, all de�nablerelations are de�nable by open formulas. The model-theoretic expression forthis fact is that the theory of algebraically closed �elds admits elimination ofquanti�ers.
As an exercise, you can think about what are the de�nable sets of
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(1) the �eld C;(2) (!;<; 0);(3) (!;<);(4) (!; s), if s is x 7! x+ 1;(5) a set (that is, a structure in the empty signature).You probably will not be able to prove your answers at this point.

Remark 3.8. To complete our �rst approach to de�nable sets, let us ignore theordering of !. If I is a �nite subset of !, and if fi : xi 2 fv(')g � I, let ussay that ' is I-ary. Let AI be the set of functions from I to A, a typical suchfunction being denoted (ai : i 2 I):The de�nition of 'A as a subset of AI starts out as before. To de�ne (9xj ')A,let �Ij be the function
(xi : i 2 I) 7�! (xi : i 2 I r fjg) : AI �! AIrfjg:Now we can de�ne (9xj ')A = (�Ij )00('A):But this doesn't allow 9v ' to be treated as J-ary when J contains j. So weshould say in addition that if ' is I-ary, and J is any �nite subset of !, thenthe set 'A �AJrIis the interpretation of ' when considered as (I[J)-ary. Also, suppose fi : xi 2fv(9xj ')g � J . Then ' is (J [ fjg)-ary, and we can de�ne

(9xj ')A = (�J[fjgj )00('A)�Afjg\J :This formulation of de�nable relations is rather complicated to be useful; themain point is that a geometric characterization of de�nable relations is possible:
Theorem 3.9. The family of 0-de�nable relations of a structure A of L is the
smallest family of relations on A that is closed under Boolean operations, Carte-
sian products, projections and permutations of coordinates; that contains the di-
agonal f(a; a) : a 2 Ag; and that contains the sets fcAg, RA and f(a0; : : : ; an) :fA(a0; : : : ; an�1) = ang.
3.3 Logical consequence
Having de�ned truth, we can de�ne logical consequence. Let SnL be the setof sentences of L. The L-structure A is a model of a subset � of SnL if eachsentence in � is true in A; then we can write

A � �:If a sentence � is true in every model of �, then � is a (logical) consequenceof �, and we can write � � �:
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If ? � �, then we can write just

� �;in this case, � is a validity.Two sentences are (logically) equivalent if each is a logical consequence ofthe other.Lemma 3.10. Let � and � be sentences of L.(�) � � � if and only if � (� ! �), for all � and � in SnL.(y) � and � are equivalent if and only if � (� ! �) ^ (� ! �).(z) Logical equivalence is an equivalence-relation on SnL.
Proof. Exercise.
Instead of the formula ('! �) ^ (�! '), let us write

'$ �:By the lemma, � and � are logically equivalent if and only if (� $ �) is avalidity. We may blur the distinction between logically equivalent sentences,identifying � with ::� for example.Instead of :9v :', we may write
8v ':Then :8v ' is (equivalent to) 9v :'.Example 3.11. The sentence(8x (Px! Qx)! (8x Px! 8x Qx))is a validity, where P and Q are unary predicates. To prove this, note that,by (3.15), it is enough to show that A � (8x Px ! 8x Qx) whenever A �8x (Px! Qx). So suppose

A � 8x (Px! Qx): (3.17)It is now enough to show that, if also A � 8x Px, then A � 8x Qx. So suppose
A � 8x Px: (3.18)Let a 2 A. Then A � Pa, by (3.18). But A � (Pa ! Qa), by (3.17). Hence

A � Qa. Since a was arbitrary, we have A � 8x Qx.
If fv(') = fu0; : : : ; un�1g, and A � 8u0 � � � 8un�1 ', we may write just

A � ':Here, the sentence 8u0 � � � 8un�1 ' is the (universal) generalization of '.Now we can de�ne � � ' for arbitrary formulas ' (although � should stillbe a set of sentences); we can also say that arbitrary formulas ' and � are(logically) equivalent if
� ('$ �):
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For the formula ' with free variables x0, . . . , xn�1, if we have

A � 9u0 � � � 9un�1 ';then we can say that ' is satis�ed in A.It can happen then that A 2 ' and A 2 :'. However, if � is a sentence, theneither � or :� is true in A.Example 3.12. Each of the following formulas is true in every group:
x � (y � z) = (x � y) � z;x � 1 = x;1 � x = x; x � x�1 = 1;x�1 � x = 1:

If � � SnL, let ConL(�) = f� 2 SnL : � � �g:Lemma 3.13. ConL(ConL(�)) = ConL(�).
Proof. Since � � ConL(�), we have ConL(�) � ConL(ConL(�)). Suppose� 2 ConL(ConL(�)). Then ConL(�) � �. But if A � �, then A � ConL(�), soin this case A � �. Thus � 2 ConL(�).
A subset T of SnL is a theory of L if ConL(T ) = T . A subset � of a theory Tis a set of axioms for T if T = ConL(�);we may also say then that � axiomatizes T .Example 3.14. The theory of groups is axiomatized by

8x 8y 8z x � (y � z) = (x � y) � z;8x x � 1 = x;8x 1 � x = x; 8x x � x�1 = 1;8x x�1 � x = 1:
If A is an L-structure, letTh(A) = f� 2 SnL : A � �g:Lemma 3.15. Th(A) is a theory.

Proof. Say Th(A) � �. Since A � Th(A), we have A � �, so � 2 Th(A).
We can now call Th(A) the theory of A. Note that, if T is Th(A), then

T � � () T 2 :�for all sentences �. An arbitrary theory T need not have this property; if itdoes, then T is complete. So, the theory of a structure is always complete.The converse holds, by the next lemma; also, the set SnL is a theory, but it isnot complete:



34 CHAPTER 3. FIRST-ORDER LOGIC
Lemma 3.16. Let T be a theory of L.(�) If T has no model, then T is SnL itself.(y) If T is complete, then T is Th(A) for some structure A, which is a

model of T .(z) If T has a model A, then T is included in Th(A), which is a complete
theory: in particular T � � =) T 2 :�
for all � in SnL.(x) Hence, to prove that T is complete, it is enough to show that T has
models and T 2 � =) T � :�
for all � in SnL.

Proof. Consider the points in order:(�) If T is a theory with no models, and � is a sentence, then � is true inevery model of T , so T � �, whence � 2 T .(y) If T is complete, then by de�nition it cannot contain all sentences, soit must have a model A. Then T � Th(A). By this and completeness ofT , we have
T � � =) � � � =) � 2 :� =) T 2 :� =) T � �

for all � in SnL . In short, T � � () A � �, so T = Th(A).(z) The set f�;:�g has no models.(x) Obvious.This completes the proof.
We can also speak of the theory of a class of L-structures. If K is such a class,then Th(K) is the set of sentences of L that are true in every structure in K.In particular, if � � SnL, then we can de�ne

Mod(�)
to be the class of all models of �. Then

Th(Mod(�)) = ConL(�):
Example 3.17. By de�nition, a group is just a model of the theory of groups,as axiomatized in Example 3.14. Hence this theory is Th(K), where K is theclass of all groups.
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3.4 Additional exercises
(1) Letting P and Q be unary predicates, determine, from the de�nition of �,whether the following hold. (A method is shown in Example 3.11.)(�) (9x Px! 9x Qx) � 8x (Px! Qx);(y) (8x Px! 9x Qx) � 9x (Px! Qx);(z) 9x (Px! Qx) � (8x Px! 9x Qx);(x) f9x Px; 9x Qxg � 9x (Px ^ Qx);({) 9x Px! 9y Qy � 8x 9y (Px! Qy).(2) Let L = fRg, where R is a binary predicate, and let A be the L-structure(Z;6). Determine 'A if ' is:(�) 8x1 (Rx1x0 ! Rx0x1);(y) 8x2 (Rx2x0 _Rx1x2).(3) Let L be fS; Pg, where S and P are binary function-symbols. Then(R;+; �) is an L-structure. Show that the following sets and relations arede�nable in this structure:(�) f0g;(y) f1g;(z) fa 2 R : 0 < ag;(x) f(a; b) 2 R2 : a < bg.(4) Show that the following sets are de�nable in (!;+; �;6; 0; 1):(�) the set of even numbers;(y) the set of prime numbers.(5) Let R be the binary relation

f(x; x+ 1) : x 2 Zg
on Z. Show that R is 0-de�nable in the structure (Z; <); that is, �nd abinary formula ' in the signature f<g such that '(Z;<) = R.
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Quanti�er-elimination
In general, if we have some sentences, how might we show that the theory thatthey axiomatize is complete? If the theory is not complete, this is easy to show:Example 4.1. The theory of groups is not complete, since the sentence

8x 8y xy = yxis true (by de�nition) only in abelian groups, but there are non-abelian groups(such as the group of permutations of three objects). The theory of abeliangroups is not complete either, since (in the signature f+;�; 0g) the sentence
8x (x+ x = 0! x = 0)is true in (Z;+;�; 0), but false in (Z=2Z;+;�; 0).

Let TO be the theory of strict total orders; this is axiomatized by the universalgeneralizations of:
:(x < x);x < y ! :(y < x);x < y ^ y < z ! x < z;x < y _ y < x _ x = y:This theory is not complete, since (!;<) and (Z; <) are models of TO withdi�erent complete theories (exercise).Let TO� be the theory of dense total orders without endpoints, namely,TO� has the axioms of TO, along with the universal generalizations of:

9z (x < z ^ z < y);9y y < x;9y x < y:The theory TO� has a model, namely (Q; <). We shall show that TO� iscomplete. In order to do this, we shall �rst show that the theory admits (full)elimination of quanti�ers.
36
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An arbitrary theory T admits (full) elimination of quanti�ers if, for everyformula ' of L, there is an open formula � of L such that

T � ('$ �)|in words, ' is equivalent to � modulo T .Lemma 4.2. An L-theory T admits quanti�er-elimination, provided that, if '
is an open formula, and v is a variable, then 9v ' is equivalent modulo T to
an open formula.

Proof. Use induction on formulas. Speci�cally:Every atomic formula is equivalent modulo T to an open formula, namely itself.Suppose ' is equivalent modulo T to an open formula �. Then T � (:'$ :�);but :� is open.Suppose also � is equivalent modulo T to an open formula �. Then
T � (('! �)$ (�! �));but (�! �) is open.Finally, T � (9v ' $ 9v �) (exercise); but by assumption, 9v � is equivalentto an open formula 
; so T � (9v ' $ 
) (exercise). This completes theinduction.

The lemma can be improved slightly. Every open formula is logically equivalentto a formula in disjunctive normal form:_
i<m

^
j<n�(j)i ;

where each �(j)i is either an atomic or a negated atomic formula. (See x 2.6 ofthis year's notes for Math 111.) This formula in disjunctive normal form canalso be written _
i<m

^�i
where �i = fa(j)i : j < ng. Note that

� (9v _
i<m

^�i $ _
i<m 9v

^�i) (4.1)
(exercise). The formulas 9v V�i are said to be primitive. In general, aprimitive formula is a formula

9u0 � � � 9un�1 ^�;
where � is a �nite non-empty set of atomic and negated atomic formulas. (Re-member thatV� is just an abbreviation for '0 ^ : : : ^ 'n�1, where the formulas'i compose �; so � must be �nite since formulas must have �nite length. Also,formulas have positive length, so � must be non-empty. However, the notationV? could be understood to stand for a validity.)
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Using (4.1), we can adjust the induction above to show that T admits quanti�er-
elimination, provided that every primitive formula with one (existential) quan-
ti�er is equivalent modulo T to an open formula.Henceforth suppose L is f<g, and TO � T ; so T is a theory of total orders.Then we can improve Lemma 4.2 even more. Indeed, the atomic formulas of Lnow are x = y and x < y, where x and y are variables. Moreover,

TO � (:(x < y)$ (x = y _ y < x));TO � (:(x = y)$ (x < y _ y < x)):
Hence, in L, any formula is equivalent, modulo TO, to the result of replacingeach negated atomic sub-formula with the appropriate disjunction of atomicformulas. If this replacement is done to a formula in disjunctive normal form,then the new formula will have a disjunctive normal form that involves nonegations. So T admits quanti�er-elimination, provided that every formula

9v ^�
is equivalent, modulo T , to an open formula, where now � is a set of atomicformulas.Using this criterion, we shall show that TO� admits quanti�er-elimination:Theorem 4.3. TO� admits (full) elimination of quanti�ers.

Proof. Let � be a �nite, non-empty set of atomic formulas (in the signaturef<g). Let X be the set of variables appearing in formulas in �; that is,
X = [

�2� fv(�):Then X is a �nite non-empty set; say
X = fx0; : : : ; xng:Suppose A is an L-structure, and ~a 2 An+1. If � is an atomic formula of Lwith variables from X, we can let �(~a ) be the result of replacing each xi in �with ai. Then we can let

�(~a ) = f�(~a ) : � 2 �g:
Suppose in fact

A � TO [ f^�(~a )g:Let us de�ne �(A;~a ) as the set of atomic formulas � such that fv(�) � X and
A � �(~a ). Then � � �(A;~a ):Moreover, once � has been chosen, there are only �nitely many possibilities for
the set �(A;~a ). Let us list these possibilities as�0; : : : ;�m�1:
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Now, possibly m = 0 here. In this case,TO � (9v ^�$ v 6= v);
so we are done. Henceforth we may assume m > 0. If B � TO[fV�(~b )g, then

B �
^�i(~b )for some i in m. ThereforeTO � (^�$ _

i<m
^�i);

and hence TO � (9v ^�$ _
i<m 9v

^�i):
Therefore, for our proof of quanti�er-elimination, we may assume that � is oneof the sets �(A;~a ) (so that, in particular, m = 1).Now partition � as � [ �, where no formula in �, but every formula in �,contains v. There are two extreme possibilities:(�) Suppose � = ?. ThenX = fvg (since if x 2 Xrfvg, then (x = x) 2 �).Also, � = � = fv = vg, so

� (9v ^�$ v = v);and we are done in this case.(y) Suppose � = ?. Then v =2 X, and
� (9v ^�$^�);so we are done in this case.Henceforth, suppose neither � nor � is empty. Then

� (9v ^�$^� ^ 9v ^�):We shall show that TO� � (9v ^�$^�); (4.2)which will complete the proof. To show (4.2), it is enough to show
TO� � (^�! 9v ^�):

But this follows from the de�nition of TO�:Indeed, remember that � is �(A;~a ). Hence, for all i and j in n+ 1, we have
ai < aj () (xi < xj) 2 �;ai = aj () (xi = xj) 2 �:

We have v 2 X. We can relabel the elements of X as necessary so that v is xnand a0 6 : : : 6 an�1:
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(Here, ai 6 ai+1 means ai < ai+1 or ai = ai+1 as usual.) Suppose B � TO�,and Bn contains ~b such that B �

V�(~b ). We have to show that there is c in Bsuch that B �
V�(~b ; c). Now, for all i and j in n, we have

bi < bj () ai < aj ;bi = bj () ai = aj :Because B is a model of TO� (and not just TO), we can �nd c as neededaccording to the relation of an with the other ai:(�) If an = ai for some i in n, then let c = bi.(y) If an�1 < an, then let c be greater than bn�1.(z) If an < a0, then let c be less than b0.(x) If ak < an < ak+1, then we can let c be such that bk < c < bk+1.This completes the proof that TO� admits quanti�er-elimination.
We have proved more than quanti�er-elimination: we have shown that, moduloTO�, the formula 9v V� is equivalent to v 6= v or v = v or an open formula with
the same free variables as 9v V�. In the proof, we introduced v 6= v simply as aformula ' such that A 2 ' for every structure A. Such a formula corresponds toa nullary Boolean connective, namely an absurdity (the negation of a validity).We used 0 as such a connective; but let us now use ?.Likewise, instead of v = v, we can use, as a validity, the nullary Boolean con-nective >. From the last proof, therefore, we have:Porism 4.4. In the signature f<g, with the nullary connectives ? and > al-
lowed, every formula is equivalent modulo TO� to an open formula with the
same free variables.

In a signature of �rst-order logic without constants, an open sentence consistsentirely of Boolean connectives, with no propositional variables; so it is eitheran absurdity or a validity. As a consequence, we have:Theorem 4.5. TO� is a complete theory.

Proof. By the porism, every sentence is equivalent to an open sentence; as justnoted, such a sentence is an absurdity or a validity. Suppose TO� � (� $ ?).But � (� $ ?) $ :�; so TO� � :�. Similarly, if TO� � (� $ >), thenTO� � �. Hence, for all sentences �, if TO� 2 �, then TO� � :�. ThereforeTO� is complete by Lemma 3.16.
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Relations between
structures
There are several binary relations on the class of structures in a signature L.Some relations involve universes of structures; others do not.Let A and B be L-structures.
5.1 Fundamental de�nitions
The structure A is a substructure of B, or B is an extension of A, if A � Band(�) cA = cB for all constants c of L;(y) RA = An \RB for all n-ary predicates R of L, for all positive n in !;(z) fA = fB � idAn for all n-ary function-symbols f of L, for all positive nin !.In this case, we write

A � B:Immediately, A � B if and only if A � B and
A � � () B � � (5.1)

for all atomic sentences � of L(A) of one of the forms
a0 = c;Ra0 � � � an�1;fa0 � � � an�1 = an:

The two structures A and B are called elementarily equivalent if (5.1) holdsfor all sentences � of L (not L(A)). In this case, we write
A � B:
41
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Then the relation � of elementary equivalence is in fact the equivalence-relation induced on the class of L-structures by the functionM 7! Th(M); thatis,

A � B () Th(A) = Th(B):All models of a complete theory are elementarily equivalent, and �rst-order logicprovides no means to distinguish between elementarily equivalent structures.We shall see other possible ways to distinguish between them.
5.2 Additional de�nitions
The structure A is an elementary substructure of B, and B is an elemen-tary extension of A, if A � B and AA � BA. Then we write

A 4 B:(Some people prefer just to write A � B.) Note here that AA � BA if and onlyif (5.1) holds for all sentences � of L(A). In particular, elementary substructures
are substructures.Various functions between (universes of) structures are possible. To describethem, it is convenient to use the following convention. If h is a function from Ato B, we also understand h as the function from An to Bn given by

h(~a ) = h(a0; : : : ; an�1) = (h(a0); : : : ; h(an�1)); (5.2)for each n in !. In particular, as a function from A0 to B0, h is f(0; 0)g.The structure A embeds in B if there is an injection h from A to B such that:(�) h(cA) = cB for all constants c in L;(y) h00(RA) = h00(An) \ RB for all n-ary predicates R in L, for all positive nin !;(z) h � fA = fB � h for all n-ary function-symbols f in L, for all positive nin !.Then h is an embedding of A in B; to express this, we can write
h : A �! B:Immediately, h : A! B if and only if h : A! B and

A � '(~a ) () B � '(h(~a )); for all ~a from A, (5.3)for all atomic formulas ' of L of one of the forms
x0 = x1;x0 = c;Rx0 � � �xn�1;fx0 � � �xn�1 = xn:If (5.3) holds for all formulas ' of L, then h is an elementary embedding of

A in B, and we can write h : A ��! B:



5.3. IMPLICATIONS 43
Example 5.1. The map x 7! x=1 is an embedding of the ring Z in the �eld Q,but not an elementary embedding, since Z � '(1), but Q 2 '(1=1), where ' is:9y y + y = x.
If h : A ! B and h is a surjection onto B, then h is called an isomorphismfrom A to B, and we can write

h : A �=�! B:
If an isomorphism from A to B exists, then A is isomorphic to B, and we canwrite

A �= B;the relation �= can be called isomorphism.
5.3 Implications
Lemma 5.2. Isomorphism is an equivalence-relation. If h : A �=! B, thenh�1 : B �=! A.

Proof. Exercise.
Isomorphic structures are practically the same. One way to make this preciseis by means of the following:Lemma 5.3. Suppose h : A! B. Then (5.3) holds for all atomic formulas '
of L. If also h is onto B, then (5.3) holds for all formulas ' of L.
Proof. Note that (5.3) can be re-formulated in other ways, according to taste:

~a 2 'A () h(~a ) 2 'B; for all n-tuples ~a from A, (5.4)or more simply h00('A) = h00(An) \ 'B:To prove it, assuming h : A! B, we �rst establish by induction that
h � tA = tB � h (5.5)for all terms t of L:(�) (5.5) is true by de�nition if t is a constant or variable;(y) if (5.5) is true when t 2 fu0; : : : ; un�1g, and now t is fu0 � � �un�1, thenh � tA = h � fA � (u0A; : : : ; un�1A) [by def'n of tA]= fB � h � (u0A; : : : ; un�1A) [by def'n of �]= fB � (h � u0A; : : : ; h � un�1A) [by (5.2)]= fB � (u0B � h; : : : ; un�1B � h) [by inductive hyp.]= fB � (u0B; : : : ; un�1B) � h= tB � h: [by def'n of tA]
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Therefore (5.5) holds for all t. Now we turn to (5.4). To prove it for openformulas, we observe:(�) If ' is t0 = t1 for some terms ti, then

~a 2 'A () t0A(~a ) = t1A(~a ) [by de�nition of 'A]() h(t0A(~a )) = h(t1A(~a )) [since h is injective]() t0B(h(~a ))) = t1B(h(~a ))) [by (5.5)]() h(~a ) 2 'B: [by de�nition of 'B]
(y) If ' is Rt0 � � � tn�1 for some terms ti and predicate R, then:
~a 2 'A () (t0A(~a ); : : : ; tn�1A(~a )) 2 RA [by def'n of 'A]() h(t0A(~a ); : : : ; tn�1A(~a )) 2 RB [by def'n of isom.]() (t0B(h(~a )); : : : ; tn�1B(h(~a ))) 2 RB [by (5.5)]() h(~a ) 2 'B: [by def'n of 'B]

(z) If (5.4) holds when ' is �, and now ' is :�, then:
~a 2 'A () ~a =2 �A [by def'n of 'A]() h(~a ) =2 �B [by inductive hypothesis]() h(~a ) 2 'B: [by def'n of 'B]

(x) Similarly, if (5.4) holds when ' is � or  , and now ' is (�!  ), then:
~a =2 'A () ~a 2 �A & ~a =2  A [by def'n of 'A]() h(~a ) 2 �B & h(~a ) =2  B [by inductive hypothesis]() h(~a ) =2 'B: [by def'n of 'B]

Finally, to establish (5.4) in case h is surjective, suppose (5.4) holds when ' isan (m+ 1)-ary formula �, and now ' is the m-ary 9xm �. We have
~a 2 'A () (~a ; b) 2 �A for some b in A() (h(~a ); h(b)) 2 �B for some b in A() (h(~a ); c) 2 �B for some c in A() h(~a ) 2 'B(Note how the surjectivity of h was used.) This completes the proof.

As an immediate consequence, we have:Theorem 5.4. If A �= B, then A � B.

For other consequences, we �rst observe:
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Lemma 5.5. If h : A! B, then h(A) is the universe of a structure h(A) such
that h : A �=! h(A) and h(A) � B.

Proof. Exercise.Theorem 5.6. Suppose h : A! B. Then A
��! B if and only if h(A) 4 B.

Let the diagram of A be the set of open sentences of Th(AA); this set can bedenoted diagA:Then we can give the following characterization of the relations � and 4:Theorem 5.7. Suppose h : A ! B, and B� is the expansion of B to L(A)
such that aB� = h(a) (5.6)
for all a in A. Then

B� � diagA () h : A! B; (5.7)
B� � Th(AA) () h : A �! B: (5.8)

In particular, if A � B, then
B � diagA () A � B;
B � Th(AA) () A 4 B:

Proof. Note that B� � '(~a ) () B � '(h(~a )). The points about elementaryembeddings and substructures follow from the de�nitions; about embeddingsand substructures, from Lemma 5.3.Corollary 5.8. If T is a theory admitting quanti�er-elimination, then all em-
beddings of models of T are elementary embeddings.

Proof. If T admits quanti�er-elimination and A � T , then diagA � Th(AA).
Model-theory is interesting because not all elementarily equivalent structuresare isomorphic:Example 5.9. We know that Th(Q; <) = TO�. Since also (R; <) � TO�, wehave (R; <) � (Q; <); however, (Q; <) 6�= (R; <), simply because R is uncount-able, so there is no bijection at all between Q and R.
5.4 Categoricity
The cardinality of a structure A is the cardinality jAj of its universe A. Let �be an in�nite cardinality. A theory T is called �-categorical if(�) T has a model of cardinality �;(y) all models of T of cardinality � are isomorphic (to each other).
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Example 5.10. We shall prove later, in Theorem 8.2, that TO� is !-categorical.
A theory is totally categorical if it is �-categorical for each �.Example 5.11. In the empty signature, structures are pure sets, and isomor-phisms are just bijections. Hence, if L = ?, then ConL(?) is totally categorical.
There are sentences �n (where n > 0) in the empty signature such that, for alltheories T and structures A of some common signature,

A � T [ f�n : n > 0g () A � T & jAj > !:
Indeed, let �n be 9x0 � � � 9xn�1 ^

i<j<nxi 6= xj :
Moreover, for any formula ' with at most one free variable, x, if n > 1, we canform the sentence

9x0 � � � 9xn�1 ( ^i<j<nxi 6= xj ^ ^i<n'(xi));this sentence can be abbreviated
9>nx ':

Then
A � 9>nx ' () j'Aj > n:Example 5.12. Suppose L = fEg, where E is a binary predicate, and let T bethe theory of equivalence-relations with exactly two classes, both in�nite. So Thas the axioms:

8x x E x;8x 8y (x E y ! y E x);8x 8y 8z (x E y ^ y E z ! x E z);9x 9y 8z (:(x E y) ^ (x E z _ y E z))8x 9>ny x E y
for each n greater than 1. Then T is !-categorical. However, if � is an un-
countable cardinal, then T is not �-categorical. For example, there is a modelin which both E-classes have size !1 (that is, @1), and a model in which oneclass has size !1, the other !.
In a countable signature, there are at most j2!j|that is, continuum-many|structures with a given countable universe A, because each symbol in the signa-ture will be interpreted as a subset of some An, and there are at most continuum-many of these.The spectrum-function is

(T; �) 7�! I(T; �);
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where T is a theory,� is an in�nite cardinal, and I(T; �) is the number of non-isomorphic models of T of size �. A theory in a countable signature is alsocalled countable. If T is countable, then we have

1 6 I(T; !) 6 j2!j: (5.9)
We've seen in Examples 5.10 and 5.11 that the lower bound cannot be improved.Vaught's conjecture is that

I(T; !) < j2!j =) I(T; !) 6 !:
If the Continuum Hypothesis is accepted, than this implication is trivial; theConjecture is that the implication holds even if the Continuum Hypothesis isrejected.The upper bound of (5.9) cannot be improved:Example 5.13. Let L be fPn : n 2 !g, where each Pn is a unary predicate.Let T have the following axioms, where I and J are �nite disjoint subsets of !:

9x (^i2I Pix ^ ^j2J :Pjx):In the same way that we proved TO� admitted quanti�er-elimination and wascomplete, we can prove that T admits QE and is complete. But T has continu-um-many countably in�nite models. Indeed, T has a model A, where A = 2!,and PnA = f� 2 A : s(n) = 1g:We could replace A with the set A0 of � in 2! such that, for some k, if n > k,then �(n) = 0. This A0 is countable. In fact there is an injection from A0 into2<!, where 2<! = [
n2! 2n:This set is partially ordered by � and is a tree. A branch of this tree is amaximal totally ordered subset; the union of a branch is an element of 2!. If �and � are distinct elements of 2!, then �(n) 6= �(n) for some n in !, and then

� 2 PnA () � =2 PnA:Hence, if also � and � are not in A0, then A0 [ f�g and � [ f�g determinenon-isomorphic models of T . Hence T has at least (and therefore exactly)continuum-many countable models, since j2! rA0j = j2!j.
For those who know some algebra:Examples 5.14. As examples of complete T where I(T; !) = !, we have:(�) the theory of torsion-free divisible abelian groups;(y) ACF0, the theory of algebraically closed �elds of characteristic 0.



Chapter 6
Compactness
We now aim to prove compactness for �rst-order logic. A subset � of SnL is(�) satis�able if it has a model;(y) �nitely satis�able if every �nite subset of � has a model.Compactness is that every �nitely satis�able set is satis�able.Lemma 6.1. If � is �nitely satis�able, but � [ f�g is not, then � [ f:�g is.

Proof. Say �0 is a �nite subset of � such that �0 [ f�g has no model. Then�0 � :�. Say �1 is another �nite subset of �. Then �0 [ �1 has a model inwhich :� is true.
In proving the Completeness Theorem for propositional logic, we start froma set � of propositional formulas from which a formula F cannot be derived.Then �[f:Fg is consistent. We �nd a maximal consistent set �� that includes�[ f:Fg. From �� we de�ne a structure A that is a model of � in which F isfalse.We can try to do something similar to prove compactness for �rst-order logic.Suppose � is a maximal �nitely satis�able set of �rst-order formulas in somesignature L. (In particular then, � 2 � () :� =2 �.) We can try to de�ne anL-structure A by letting:(�) A be the set of constants in L;(y) cA = c for every constant c in L;(z) fA(c0; : : : ; cn�1) = d () (fc0 � � � cn�1 = d) 2 �;(x) (c0; : : : ; cn�1) 2 RA () Rc0 � � � cn�1 2 �.We want A to be a model of �. There are three problems:(�) The signature L might not contain any constants.(y) Suppose L does contain constants c and d. We have A � (c = d) ()cA = dA () c = d. So A can't be a model of � unless either � does notcontain (c = d), or c and d are the same symbol.(z) If A � :'xc for every constant c in L, then A � :9x '. However, possibly� contains all of the formulas :'xc , but also 9x '.
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The solution to these problems is as follows:(�) We expand L to a signature L0 that contains in�nitely many constants.Then we enlarge � to a maximal �nitely satis�able subset �0 of SnL0 .(y) Letting C be the set of constants of L0, we de�ne an equivalence-relationE on C by c E d () (c = d) 2 �0:Then we let A be, not C, but C=E.(z) In enlarging � to �0, we ensure that, if 9x ' 2 �0, then 'xc 2 �0 for somec in C.Theorem 6.2 (Compactness for �rst-order logic). Every �nitely satis�able
set of formulas (in some signature) is satis�able.

Proof. Suppose � is a �nitely satis�able subset of SnL. Let C be a set of newconstants (so L \ C = ?). For any L-structure A, there is some a in A; so wecan expand A to an L [ C-structure A0 by de�ning
cA0 = a

for all c in C. In particular, � is still �nitely satis�able as a set of sentences ofL0.We'll assume that L is countable (although the general case would proceedsimilarly). So we can enumerate SnL[C as f�n : n 2 !g, and C as fcn : n 2 !g.We shall de�ne a chain �0 � �1 � �2 � � � � ;where each �k is �nitely satis�able, and only �nitely many constants in Cappear in formulas in �k. The recursive de�nition is the following:(�) �0 = �. (By assumption, �0 is �nitely satis�able, and it contains noconstants of C.)(y) Assume �2n has been de�ned as required. Then de�ne
�2n+1 = (�2n [ f�ng; if this is �nitely satis�able;�2n; if not.

Then �2n+1 is as required.(z) Suppose �2n+1 has been de�ned as required. Suppose also �n 2 �2n+1,and �n is 9x ' for some '. The set of m such that cm does not appearin a formula in �2n+1 has a least element, k. Then the set �2n+1 [ f'xckgis �nitely satis�able. For, if � is a �nite subset of �2n+1, then it has amodel A. Then A � 'xa for some a in A; so we can expand A to a modelof �2n+1 [ f'xckg by interpreting ck as a. In this case we de�ne
�2n+2 = �2n+1 [ f'xckg;otherwise, let �2n+2 = �2n+1. In either case, �2n+2 is as desired.
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Now we de�ne �� = [

n2!�n:
This is �nitely satis�able, since each �nite subset is a subset of some �n. Sup-pose �� [ f�g is �nitely satis�able. But � is �n for some n, and �2n [ f�gis �nitely satis�able, so � 2 �2n+1, and � 2 ��. So �� is a maximal �nitelysatis�able set.We now de�ne a structure A of L [ C that will turn out to be a model of �:We �rst de�ne E = f(c; d) 2 C2 : (c = d) 2 ��g:Then E is an equivalence-relation on C (exercise). So, we can let

A = C=E:Let the E-class of c be denoted [c]. We can de�ne
cA = [c]:If R is an n-ary predicate in L, we de�ne

RA = f([c0]; : : : ; [cn�1]) 2 An : (Rc0 � � � cn�1) 2 ��g:This means (Rc0 � � � cn�1) 2 �� =) ([c0]; : : : ; [cn�1]) 2 RA:In fact the converse holds too; that is,
c0 E d0 & : : : & cn�1 E dn�1 & (Rc0 � � � cn�1) 2 �� =) (Rd0 � � � dn�1) 2 ��(exercise). If f is an n-ary function-symbol in L, then (9x fc0 � � � cn�1 = x) 2�� (since the sentence is true in every structure), so (fc0 � � � cn�1 = d) 2 �� forsome d in C. Moreover,
c0 E c00 & : : : & cn�1 E c0n�1 & (fc0 � � � cn�1 = d) 2 �� &(fc00 � � � c0n�1 = d0) 2 �� =) d E d0(exercise). Hence we can de�ne

fA = f([c0]; : : : ; [cn�1]; [d]) 2 A : (fc0 � � � cn�1 = d) 2 ��g:Note then
fA[c0] � � � [cn�1] = [d] () (fc0 � � � cn�1 = d) 2 ��(exercise). Finally, if c is a constant of L, we can consider it as a nullaryfunction-symbol, obtaining the interpretation

cA = [d] () (c = d) 2 ��:So we have A. It remains to show A � ��. We shall do this by showing
A � � () � 2 �� (6.1)
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for all sentences � of L [ C, by induction on the length of �.We need a preliminary observation: If t is a term with no variables, and c 2 C,then tA = [c] () (t = c) 2 ��(exercise). Now suppose � is the atomic sentence Rt0 � � � tn�1, and tiA = [ci]for each i in n. Then

A � � () (t0A; : : : ; tn�1A) 2 RA() ([c0]; : : : ; [cn�1]) 2 RA() (Rc0 � � � cn�1) 2 ��() � 2 ��:If instead � is the equation t0 = t1, then
A � � () t0A = t1A() [c0] = [c1]() (c0 = c1) 2 ��() � 2 ��:Now suppose that (6.1) holds when � has the length of � , � or ':(�) If � is :� , then

A � � () A 2 � () � =2 �� () � 2 ��by maximality of �.(y) If � is (� ! �), then
A 2 � () A � � & A � 6 �() � 2 �� & � =2 ��() � 2 ��by maximality of ��.(z) If � is 9x ', then

A � � () A � 'xc for some c in C() 'xc 2 �� for some c in C() 9x ' 2 ��by de�nition of ��.By induction, (6.1) holds for all �, so A � ��.
In the proof, we introduced a set C of new constants such that jCj = jSnLj. Wecan denote jSnLj by jLj. For the model A of � produced, we have jAj 6 jCj =jLj.Theorem 6.3. If T is a theory such that, for all n in !, there is a model of T
of size greater than n, then T has an in�nite model.
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Proof. For each n in !, introduce a new constant cn. Every model of thetheory T [ fci 6= cj : i < j < !g is in�nite. Also this theory has models, byCompactness, since the theory is �nitely satis�able. Indeed, every �nite subsetof the theory is a subset of T [ fci < cj : i < j < ng for some n. We canexpand a model of T of size greater than n to a model of the larger theory byinterpreting each ci by a di�erent element of the universe.Example 6.4. Let K be the class of �nite �elds (considered as structures inthe signature f+;�; �; 0; 1g). Then Th(K) has in�nite models; these are calledpseudo-�nite �elds. Every �eld F has a characteristic: If

F � 1 + � � �+ 1| {z }p = 0
for some prime number p, then p is the characteristic of F , or charF = p; ifthere is no such p, then charF = 0. The �eld F is perfect if either:(�) charF = 0; or(y) charF = p and every element of F has a p-th root.Then perfect �elds are precisely the �elds that satisfy the axioms

8x 9y (1 + � � �+ 1| {z }p = 0! yp = x):
Now, if F is �nite, then charF = p for some prime p, and the function x 7! xp isan automorphism of F , that is, an isomorphism from F to itself. This showsF is perfect. Therefore the pseudo-�nite �elds are also perfect. In fact, axiomscan be written for the theory of pseudo-�nite �elds (James Ax, 1968).
Another �eld-theoretic application of Compactness is:Example 6.5. An ordered �eld is a structure F or (F;+;�; �; 0; 1; <) suchthat:(�) (F;+;�; �; 0; 1) is a �eld;(y) (F;<) is a total order;(z) F � 8x 8y (0 < x ^ 0 < y ! 0 < x+ y ^ 0 < x � y);(x) F � 8x (x < 0! 0 < �x).An ordered �eld must have characteristic 0 (why?); hence Q can be treated as asub-�eld of it. In an ordered �eld, the formula 0 < x de�nes the set of positiveelements. The ordered �eld F is Archimedean if, for all positive a and b in F ,there is a natural number n such that

F � a < b+ � � �+ b| {z }n :
Then R is an Archimedean ordered �eld. However, there is an ordered �eld Fsuch that F � R, but F is not Archimedean. Indeed, let c be a new constant.Then the theory Th(R) [ fn < c : n 2 !g
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is �nitely satis�able, since for every �nite subset � of this theory, R itself expandsto a model of �. So the theory has a model F, by Compactness; but

F � 1 + � � �+ 1| {z }n < c
for all n in !.Theorem 6.6 (L�owenheim{Skolem{Tarski). Suppose A is an in�nite L-
structure, and � is an in�nite cardinal such that jLj 6 �. Then there is anL-structure B such that jBj = � and A � B.

Proof. Introduce �-many new constants c� (where � < �). In the CompactnessTheorem, let � be Th(A)[fc� 6= c� : � < � < �g. This set is �nitely satis�able.Indeed, any �nite subset is included in a subset Th(A)[fc�i 6= c�j : i < j < ngfor some �nite subset f�0; : : : ; �n�1g of �. Then A expands to a model of thisset of sentences, once we interpret each constant c�i as a di�erent element ofA. (Since A is in�nite, we can do this.) Therefore � is �nitely satis�able. The
proof of Compactness now produces a model of � of size �.Theorem 6.7 (Vaught). Suppose T is a �nitely satis�able theory of L, andjLj 6 �. Then T is complete, provided:(�) T has no �nite models;(y) T is �-categorical.
Proof. Suppose T is �nitely satis�able, but has no �nite models, but is notcomplete. By Compactness, T does have models. Then for some sentence �,neither � nor :� is a consequence of T . Hence, both T [ f:�g and T [ f�ghave models. By L�owenheim{Skolem{Tarski, they have models of size �. Thesemodels are not elementarily equivalent, so they are not isomorphic; this meansT is not �-categorical.Examples 6.8.(�) To prove that TO� is complete, it is enough to show that every modelis in�nite, and that every countable model is isomorphic to (Q; <).(y) If a real vector-space V has positive dimension �, then

jV j = � � j2!j = max(�; j2!j):
A space of dimension 0 is the the trivial space, namely the space con-taining only the 0-vector; this space has size 1. Real vector-spaces of thesame dimension are isomorphic Hence the theory of real vector-spaces is�-categorical if � > j2!j. Therefore the theory of non-trivial real vector-spaces is complete.

6.1 Additional exercises
(1) Show that every Archimedean ordered �eld is elementarily equivalent tosome countable, non-Archimedean ordered �eld.



54 CHAPTER 6. COMPACTNESS
(2) Show that every non-Archimedean ordered �eld contains in�nitesimalelements, that is, positive elements a that are less than every positiverational number.(3) Find an example of a non-Archimedean ordered �eld.(4) The order of an element g of a group is the size of the subgroup fgn : n 2Zg that g generates. In a periodic group, all elements have �nite order.Suppose G is a periodic group in which there is no �nite upper bound onthe orders of elements. Show that G � H for some non-periodic group H.(5) Suppose (X;<) is an in�nite total order in which X is well-ordered by <.Show that there is a total order (X�; <�) such that

(X;<) � (X�; <�);
but X� is not well-ordered by <�.



Chapter 7
Completeness
We now aim to establish a complete proof-system for �rst-order logic. The resultis Theorem 7.19 on p. 65. The proof of this theorem follows the pattern of ourproof of Compactness.First-order logic is based on propositional logic. It will be useful to have ageneral description of logics that encompasses both propositional and �rst-orderlogic. So, this is where we begin. All sections following x 7.3 concern �rst-orderlogic, unless otherwise noted.There are a few exercises, on pp. 56, 59, 60, 61, 61, 61 and 64.
7.1 Logic in general
A logic has an alphabet, which is just a certain non-empty set; the membersof this set can be called the symbols of the logic. These symbols can be puttogether to form strings. If we want a formal de�nition, we can say that sucha string is a �nite, non-empty sequence of symbols of the logic; that is, thestring is a function k 7! sk from f0; 1; : : : ; ng into the alphabet, for some n in!. We usually write this function as

s0s1 � � � sn;this the result of juxtaposing the symbols sk in the prescribed order. Such astring has sub-strings, namely the strings
s`s`+1 � � � sm;where 0 6 ` 6 m 6 n; the sub-string is proper if 0 < ` or m < n. Certainstrings will be formulas of the logic. In particular, certain strings will be atomicformulas. Some rules of construction are speci�ed for converting certain �nitesets of strings into other strings. Then a formula of the logic is a member ofthe smallest set X of strings such that:(�) all atomic formulas are in X; and(y) X contains every string that results from applying a rule of constructionto a set of elements of X.
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Hence properties of all formulas can be proved by induction.Moreoever, it is required that, for every formula that is not atomic, there isexactly one rule of construction and one set of formulas such that the originalformula results from applying that rule to that set. This is the principle ofuniquely readability as formulas; it makes possible the recursive de�nition offunctions on the set of formulas.For any logic, a proof-system consists of:(�) axioms, which are just certain formulas of the logic;(y) rules of inference, that is, ways of inferring certain formulas from certain

�nite sets of formulas.So the notions of axiom and rule of inference are parallel to the notions ofatomic formula and rule of construction. However, in a proof-system, there isno requirement corresponding to unique readability.Let S be proof-system. A deduction or formal proof in S of the formula 'from the set � of formulas is a sequence
 0; : : : ;  n

of formulas where  n is ', and for each k such that k 6 n, one of the followingholds:(�)  k 2 �, or(y)  k is an axiom of S, or(z)  k follows from some subset of f j : j < kg by one of the rules of inferenceof S.To denote that such a deduction exists, we can write
� `S ':

Then we can say that ' is deducible from � in S. In case � is empty, we canjust write `S ';and we can call ' a theorem of S.Here are some basic facts:Lemma 7.1.(�) Every non-empty initial segment of a deduction is also a deduction;(y) if � `S ' and � � ��, then �� `S ';(z) if � `S ', then �0 `S ' for some �nite subset �0 of �;(x) if � `S  for each  in 	, and 	 `S �, then � `S �.
Proof. Exercise.
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7.2 Propositional logic
We shall work here with the propositional logic whose alphabet consists of:(�) the propositional variables Pk, where k 2 !;(y) the connectives : and !;(z) the left bracket ( and the right bracket ).The atomic formulas are then the propositional variables. There are two rulesof construction:(�) From the string A, construct :A.(y) From the strings A and B, construct (A! B).Note that the same formula might be both (A ! B) and (C ! D) for some
strings A, B, C and D such that A is not C. But if all of these strings are
formulas, then (as one can prove) A must be C. We use F and G and H assyntactical variables for propositional formulas.In propositional logic, there is a notion of truth, which we can develop asfollows. If S � !, let 2S be the set of functions from S to 2. We can consider 2as the universe of the �eld F2; then a ring-structure on 2S is induced. If F is apropositional formula, and all variables appearing in F are in S, then there is afunction F̂ from 2S into 2, as given by the following recursive de�nition:(�) If F is Pk, then F̂ (�) = �(k) for all � in 2!.(y) If F is :G, then F̂ = 1 + Ĝ.(z) If F is (G! H), then F̂ = 1 + Ĝ � (1 + Ĥ).Suppose S is the set of variables actually appearing in F , and F̂ (�) = 1 for all� in 2S ; then F is called a tautology.An element � of 2! can be called a structure for propositional logic. (Alterna-tively, the set fPn : �(n) = 1g can be called the structure; each one determinesthe other.) Then a formula F is true in � if F̂ (�) = 1. If every formula in a set� of formulas is true in a structure �, then � is a model of �. If F is true inevery model of �, then we say that F is a logical consequence of �, or that� entails F , and we write � � F:A formula F is valid, or is a validity, if it is true in all structures; in that case,we write

� F:A proof-system S for propositional logic is called:(�) sound, if � � ' whenever � `S ';(y) complete, if � `S ' whenever � � '.Lemma 7.2. Let S be a proof-system for propositional logic. Then S is sound
if and only if:(�) each axiom of S is valid;(y) � � ' whenever ' can be inferred from � by one of the rules of inference

of S.
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Proof. Suppose S is sound. If ' is an axiom of S, then the one-term sequence' is a deduction of ' from ?, so `S ' and therefore � '. Suppose, instead,that ' can be inferred from � by one of the rules of inference of S. Then � isa �nite set f 0; : : : ;  ng, so the sequence

 0; : : : ;  n; 'is a deduction of ' from � in S. Hence � `S ', and therefore � � '.The converse is proved by induction on the lengths of deductions. Suppose thateach axiom of S is valid, and � � ' whenever ' can be inferred from � byone of the rules of inference of S. As an inductive hypothesis, suppose � � 'whenever ' has a deduction in S from � of length less than n+1. Now say thesequence  0; : : : ;  n�1; 'of length n+1 is a deduction in S from �. If ' 2 �, then � � ' trivially. If ' isan axiom of S, then � ' by assumption, so � � '. The remaining possibility isthat ' can be inferred from some subset � of f k : k < ng by a rule of inferenceof S. Then � � ' by assumption. Also, � �  k for each  k in � by inductivehypothesis, since each  k has a proof from � of length k + 1, namely
 0; : : : ;  k:Hence every model of � is a model of �, and so ' is true in this model; that is,� � '.

Let us also note that if a proof-system is complete, then so is every proof-systemobtained by addition of new axioms or rules of inference.In the only proof-system for �rst-order logic that we shall consider,(�) the axioms are just the tautologies;(y) the only rule of inference is modus ponens, that is, G can be inferred fromfF; (F ! G)g.If, in this system, F is deducible from the set � of formulas, then we can justwrite � ` F(since we shall consider no other proof-systems for propositional logic). We haveproved (in class) that this system is sound and complete.
7.3 First-order logic
The foregoing notions in propositional logic generalize to �rst-order logic. Forus, the alphabet for a �rst-order logic will consist of:(�) the symbols in a signature L for the logic;(y) individual variables vk, where k 2 !;(z) the Boolean connectives : and !;(x) the quanti�er 9;
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({) the brackets ( and ).The set of formulas of the resulting logic can be denotedFmL :Certain formulas are sentences; the set of them isSnL :We do not have proof by induction on this set, since sentences can be constructedfrom formulas that are not sentences. However, we can still de�ne proof-systemsfor SnL. (Alternatively, we could de�ne a proof-system for FmL.)There are L-structures A, and then for each sentence � of L, there is an element�A of 2. Then � is true in A if �A = 1. The notions of model, entailment,validity, soundness and completeness can now be de�ned as for proposi-tional logic. Hence we have Lemma 7.2 for SnL in addition to propositionallogic.To prove that a certain proof-system for SnL is complete, we shall use themethod �rst expounded by Leon Henkin, in [3]. (Henkin's proof was a part of hisdoctoral thesis; see [4]. We have already used Henkin's method to prove Com-pactness.) The particular treatment in these notes owes something to Shoen-�eld's in [10]. I introduce the notions of tautological and deductive completenessmerely to make our ultimate proof-system seem natural.If F is an n-ary formula F (P0; : : : ; Pn�1) of propositional logic, and �k 2 SnL,then by substitution we can form the sentence

F (�0; : : : ; �n�1)of L. If F is a tautology, then F (�0; : : : ; �n�1) can be called a tautology ofSnL.Lemma 7.3. Tautologies of SnL are validities.

Proof. We can prove by induction on propositional formulas F that, if F isF (P0; : : : ; Pn�1), then for all sentences �k of SnL, and all L-structure A,
F (�0; : : : ; �n�1)A = F̂ (�0A; : : : ; �n�1A):(Details are an exercise.) The claim follows immediately from this.

7.4 Tautological completeness
Suppose S is a proof-system for SnL such that, if F0, . . . , Fk are n-ary propo-sitional formulas, and fF0; : : : ; Fk�1g � Fk; (7.1)and �0; : : : ; �n�1 2 SnL, then

fF0(�0; : : : ; �n�1); : : : ; Fk�1(�0; : : : ; �n�1)g `S Fk(�0; : : : ; �n�1); (7.2)let us say then that S is tautologically complete.
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Lemma 7.4. Let S be a proof-system for SnL. Then S is tautologically complete
if and only if:(�) `S � for all tautologies � of SnL, and(y) f�; � ! �g `S � for all � and � in SnL.
Proof. If S is tautologically complete, then immediately all tautologies are the-orems; the other condition follows since fP0; P0 ! P1g � P1.To prove the converse, we can use our complete proof-system for propositionallogic: Suppose we have (7.1) above. Then Fk has a a formal proof fromfF0; : : : ; Fk�1g. Say this proof is

G0; : : : ; Gm:Then Gm is Fk. We proceed by induction on m. There are three possibilities:(�) If Fk 2 fF0; : : : ; Fk�1g, then trivially (7.2) follows.(y) If Fk is a tautology, then `S Fk(~� ) by assumption, so (7.2).(z) If Gj is (Gi ! Fk) for some i and j inm, then, by inductive hypothesis,we have
fF0(~� ); : : : ; Fk�1(~� )g `S Gi(~� );fF0(~� ); : : : ; Fk�1(~� )g `S Gj(~� );hence (7.2) by assumption (and Lemma 7.1).In all cases then, (7.2) follows.

It should be clear that a complete proof-system is tautologically complete. Theconverse fails:Example 7.5. The proof-system in which all tautologies are axioms and modus
ponens is the only rule of inference is not complete, since it cannot be used toprove the validity 9x x = x. Indeed, the theorems of this proof-system are justthe tautologies (as one can show); but 9x x = x is not a tautology.
Let ? be the negation of a tautology, say

:(9x x = x! 9x x = x):
Henceforth, let � � SnL and � 2 SnL.Lemma 7.6. In a tautologically complete proof-system S, the following are
equivalent:(�) � ` :� for some � in �;(y) � ` � and � ` :� for some � in SnL;(z) � ` � for every � in SnL;(x) � ` ?.
Proof. Exercise. (There is a corresponding lemma for propositional logic.)
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If � `S ?, then � is inconsistent in S; otherwise, it is consistent.Lemma 7.7. In a complete proof-system, every consistent subset of SnL has a
model.

Proof. If S is complete, but � has no model, then � � ?, so � `S ? bycompleteness, so � is inconsistent.
The converse of the lemma may fail, even if the proof-system is required to betautologically complete:Example 7.8. Let the axioms of a proof-system S be the tautologies, andlet the rules of inference be modus ponens, along with the rule that ? canbe inferred from every �nite set that has no model. (Note however that thisis not a syntactical rule: it is not based directly on the form of sentences.)By the Compactness Theorem of �rst-order logic, every set with no model isinconsistent in this theory; therefore all consistent sets have models. However,the validity 9x x = x is not a theorem of S. (Exercise: show this.)
7.5 Deductive completeness
Let a proof-system S be called deductively complete if � `S (� ! �) when-ever � [ f�g `S � .Lemma 7.9. A tautologically and deductively complete proof-system in which
every consistent set has a model is complete.

Proof. Suppose S is such a system, and � [ f:�g is inconsistent in S. Then� [ f:�g `S � by Lemma 7.6, so � `S (:� ! �) by deductive completeness.But (:� ! �)! � is a tautology, so � `S � by tautological completeness.Therefore, if � 6`S �, then �[ f:�g is consistent, so it has a model by assump-tion; this shows � 6� �.
Lemma 7.10. A tautologically complete proof-system whose only rule of infer-
ence is modus ponens is deductively complete.

Proof. Exercise. (See the Deduction Theorem of propositional logic.)
Lemma 7.11. Suppose � � SnL and � is consistent in a tautologically and
deductively complete proof-system. The following are equivalent:(�) If � � � � SnL and � is consistent, then � = �.(y) :� 2 � () � =2 � for all � in SnL.
Proof. Exercise.
A set � meeting one of the conditions in the lemma can be called maximallyconsistent.
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7.6 Completeness
By Lemma 7.4, we know of one tautologically complete proof-system, namely,the system whose axioms are the tautologies, and whose rule of inference is
modus ponens. Let S be this system. Then S is deductively complete, byLemma 7.10, and is sound, by Lemmas 7.2 and 7.3. Moreover, soundness anddeductive completeness are preserved if we add new valid axioms to S. Now weshall see which valid axioms we can add in order to ensure that every consistentset has a model; then we shall have a complete system by Lemma 7.9.We follow the proof of the Compactness Theorem, replacing `�nitely satis�able'with `consistent'. We assume that L is countable. Suppose � is a consistentsubset of SnL. We introduce an in�nite set C of new constants and enumerateSnL[C as f�n : n 2 !g. We construct a chain

� = �0 � �1 � �2 � � � �
where �2n+1 = (�2n [ f�ng; if this is consistent;�2n; otherwise.If �n is 9x ', and this is in �2n+1, then we want to de�ne �2n+2 as�2n+1 [ f'xcg;where c is a variable not used in �2n+1. But we need to know that this set isconsistent. For this we assume, as axioms of S, the sentences

('xc ! �)! 9x '! �; (7.3)
where c is a variable not appearing in �. Note that these axioms are valid. Wenow have:Lemma 7.12. If � is consistent and contains 9x ', and c does not appear in�, then � [ f'xcg is consistent.

Proof. Suppose it's not. Then
f 0; : : : ;  k�1g [ f'xcg `S ?for some  i in �. By deductive completeness,

`S 'xc !  0 ! � � � !  k�1 ! ?; (7.4)
where the notational convention is that a terminal string �0 ! �1 ! �2 standsfor the formula (�0 ! (�1 ! �2)). We can re-write (7.4) as

`S 'xc ! �; (7.5)
where � is  0 ! � � � !  k�1 ! ?. Then from (7.3) we have

`S 9x '! �



7.6. COMPLETENESS 63
by modus ponens; that is,

`S 9x '!  0 ! � � � !  k�1 ! ?:
Then k + 1 applications of modus ponens show

� `S ?;which contradicts the assumption that � is consistent.
So now, given a consistent subset � of SnL, we can construct a consistent subset�� of SnL[C such that(�) � � ��;(y) �� is maximally consistent;(z) if (9x ') 2 �, then 'xc 2 � for some c in C, that is, �� has witnesses.As in the proof of Compactness, we want to use �� to de�ne a model A of itself.For the sake of de�ning the universe of A, we assume now that S has the axioms

c = c; (7.6)c = c0 ! d = d0 ! c = d! c0 = d0; (7.7)
where c, c0, d and d0 range over C. Let E be the relation

f(c; d) 2 C2 : (c = d) 2 ��g:
We can now show:Lemma 7.13. The relation E is an equivalence-relation.

Proof. We �rst show
`S c = c; (7.8)`S c = d! d = c; (7.9)`S c = d! d = e! c = e (7.10)

for all constants c, d and e in C.Now, we have (7.8) trivially by (7.6). An instance of (7.7) is
c = d! c = c! c = c! d = c;

then (7.9) follows by tautological completeness. Another instance of (7.7) is
c = c! d = e! c = d! c = e;

then (7.10) follows by tautological completeness.By its maximal consistency then, �� contains c = c; and if �� contains c = dand d = e, then it contains d = c and c = e.
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We de�ne A to be C=E. We now de�ne RA (for each n-ary predicate R in L)as the set f([c0]; � � � ; [cn�1]) 2 An : (Rc0 � � � cn�1) 2 ��g:Then we have (Rc0 � � � cn�1) 2 �� =) ([c0]; � � � ; [cn�1]) 2 RA;but perhaps not the converse. Possibly then both Rc0 � � � cn�1 and :Rc00 � � � c0n�1are in ��, although (ck = c0k) 2 �� in each case. To prevent this, as as axiomsof S we assume

c0 = c00 ! � � � ! cn�1 = c0n�1 ! Rc0 � � � cn�1 ! Rc00 � � � c0n�1: (7.11)We now have:Lemma 7.14. ([c0]; � � � ; [cn�1]) 2 RA () (Rc0 � � � cn�1) 2 ��.
Proof. Exercise.
Finally, suppose f is an n-ary function-symbol (where possibly n = 0, in whichcase f is a constant.) We want to be able to de�ne fA. (If c 2 C, then cA = [c];but there might be constants of L as well.) To de�ne fA, we �rst need somelemmas, which are based on another axiom:

'xt ! 9x '; (7.12)where fv(') � fxg and t is a term with no variables. Let us assume that this isan axiom of S. Then we have:Lemma 7.15 (Substitution). If fv(') � fxg, and the constant c does not
appear in ', then `S 'xc ! 'xt
for all constant terms t.
Proof. We have

`S :'xt ! 9x :'; [by (7.12)]`S :9x :'! 'xt ; [by tautological completeness]`S (:'xc ! ?)! 9x :'! ?; [by (7.3)]`S 'xc ! :9x :'; [by tautological completeness]and hence `S 'xc ! 'xt by modus ponens.Lemma 7.16. `S t = t for all terms t.
Proof. We have

`S c = c; [by (7.6)]`S c = c! t = t; [by the Substitution Lemma]and hence `S t = t by modus ponens.
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Lemma 7.17. `S 9x fc0 � � � cn�1 = x.
Proof. We have
`S fc0 � � � cn�1 = fc0 � � � cn�1; [by the last lemma]`S fc0 � � � cn�1 = fc0 � � � cn�1 ! 9x fc0 � � � cn�1 = x; [by (7.12)]hence `S 9x fc0 � � � cn�1 = x by modus ponens.

Finally, we assume as axioms of S the sentences
c0 = c00 ! � � � ! cn�1 = c0n�1 ! fc0 � � � cn�1 = fc00 � � � c0n�1: (7.13)This enables us to de�ne fA:Lemma 7.18. For each n-ary function-symbol f , there is an n-ary operationfA on A given by

fA([c0]; : : : ; [cn�1]) = [d] () (fc0 � � � cn�1 = d) 2 ��: (7.14)
Proof. Since �� is maximally consistent, we now have

9x fc0 � � � cn�1 = x 2 ��:Since �� has witnesses, we have
fc0 � � � cn�1 = d 2 ��for some constant d. This gives us a value for fA([c0]; � � � ; [cn�1]); we have toshow that this value is unique. For this, it is enough to show

`S c0 = c00 ! � � � ! cn�1 = c0n�1 !d = d0 ! fc0 � � � cn�1 = d! fc00 � � � c0n�1 = d0for all ck and c0k and d and d0 in C. By (7.13) and tautological completeness, itis enough to show
`S fc0 � � � cn�1 = fc00 � � � c0n�1 ! d = d0 ! fc0 � � � cn�1 = d! fc00 � � � c0n�1 = d0:In the axiom (7.7), we may assume that c is not one of the variables c0, d or d0.Then by the Substitution Lemma, we have

`S fc0 � � � cn�1 = c0 ! d = d0 ! fc0 � � � cn�1 = d! c0 = d0:We may also assume that c0 is not one of the variables ck, d or d0. Applying theSubstitution Lemma again gives what we want.
The structure A is now determined and is a model of �, by the proof of theCompactness Theorem. In sum, what we have shown is:Theorem 7.19 (Completeness for �rst-order logic). That proof-system
for SnL is complete whose only rule of inference is modus ponens, and whose
axioms are the following:
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(�) the tautologies;(y) ('xc ! �)! 9x '! �, where c does not appear in �;(z) c = c;(x) c = c0 ! d = d0 ! c = d! c0 = d0;({) c0 = c00 ! : : : cn�1 = c0n�1 ! Rc0 � � � cn�1 ! Rc00 � � � c0n�1;(k) 'xt ! 9x ';(��) c0 = c00 ! � � � ! cn�1 = c0n�1 ! fc0 � � � cn�1 = fc00 � � � c0n�1.

Here the notation is as follows:� x is a variable;� ' is a formula such that fv(') � fxg;� � is a sentence;� t is a constant term;� c, c0, ck, c0k, d and d0 are constants;� n 2 !;� R is an n-ary predicate if n > 0; and� f is an n-ary function-symbol (or a constant, if n = 0).



Chapter 8
Numbers of countable
models
Our ultimate aim is to show that

I(T; !) 6= 2 (8.1)whenever T is a countable, complete theory. The proof will require severalinteresting general results.Note that proving (8.1) requires T to be complete:Example 8.1. Let P be a singulary predicate, and in the signature fLg, let Tbe axiomatized by 8x 8y (Px ^ Py ! x = y):Then T has non-isomorphic countably in�nite models (!;?) and (!; f0g), andevery countably in�nite model is isomorphic to one of these.
8.1 Three models
In the signature f<g [ fcn : n 2 !g, let T3 be the theory axiomatized byTO� [ fcn+1 < cn : n 2 !g:We shall see that T3 is complete, and I(T3; !) = 3. Let

A0 = fa 2 Q : 0 < ag = Q \ (0;1);A1 = Qr f0g;A2 = Q:Then each Ak is the universe of a model Ak of T3, where <Ak is the usualordering <, and cnAk = 1n+ 1 :Then the set fcnAk : n 2 !g, in Ak,
67
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(�) has no lower bound, if k = 0;(y) has a lower bound, but no in�mum, if k = 1;(z) has an in�mum, if k = 2.Hence the three structures are not isomorphic. However, we shall be able toshow:(�) if B � T3 and is countable, then B �= Ak for some k in 3;(y) T3 is complete.The proof of the �rst claim will be by the back-and-forth method. The fol-lowing gives the prototypical example:Theorem 8.2. TO� is !-categorical.

Proof. Suppose A;B � TO� and jAj = ! = jBj. We shall show A �= B.We can enumerate the universes:
A = fan : n 2 !g; B = fbn : n 2 !g:We shall recursively de�ne an order-preserving bijection h from A to B. Inparticular, h will be Sfhn : n 2 !g, where, notationally, we shall havehn = f(ak; b0k) : k < ng [ f(a0k; bk) : k < ng:We let h0 = ?. Suppose we have hn so that the tuples(a0; a00; : : : ; an�1; a0n�1); and (b00; b0; : : : ; b0n�1; bn�1)have the same order-type. This means that, if we write these tuples as(c0; : : : ; c2n�1) and (c00; : : : ; c02n�1) respectively, thenci < cj () c0i < c0jfor all i and j in 2n. Since B is a dense total order without endpoints, we canchose b0n so that(a0; a00; : : : ; an�1; a0n�1; an) and (b00; b0; : : : ; b0n�1; bn�1; b0n)have the same order-type. Likewise, we can choose a0n so that(a0; a00; : : : ; an; a0n); and (b00; b0; : : : ; b0n; bn)have the same order-type. Now let hn+1 = hn [ f(an; b0n); (a0n; bn)g.Corollary 8.3. I(T3; !) = 3.

Proof. Suppose B is a countable model of T3. The interpretation in B of eachformula cn+1 < x ^ x < cnis (when equipped with the ordering induced from B) a countable model ofTO�. The same is true for the formula c0 < x. Finally, the set\
n2!fb 2 B : b < cng

is one of the following:
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(�) empty;(y) a countable model of TO�;(z) a countable dense total order with a greatest point, but no least point.Then the previous theorem allows us to construct an isomorphism between Band A0, A1 or A2 respectively.

The following is really a corollary of Theorem 4.3:
Theorem 8.4. T3 admits elimination of quanti�ers.

Proof. Any formula '(~x ) of f<; c0; c1; : : : g can be considered as
�(~x ; c0; : : : ; cn�1)

for some formula � of f<g. By quanti�er-elimination in TO�, there is an openformula � of f<g such that
TO� � 8~x 8~y (�(~x ; ~y ) ^ ^i<n yi+1 < yi $ �(~x ; ~y )):

But T3 � ci+1 < ci, and T3 � TO�; so
T3 � 8~x (�(~x ;~c )$ �(~x ;~c )):

Thus T3 admits quanti�er-elimination.
Corollary 8.5. T3 is complete.

Proof. The three countable models Ak form a chain:
A0 � A1 � A2:

But here diagB � Th(BB) for all models B of T3, so by Theorem 5.7, the chainis elementary:
A0 4 A1 4 A2:In particular, the three structures are elementarily equivalent. Now, if B is anarbitrary model of T3, then it is in�nite, so B � C for some countably in�nitestructure C by Theorem 6.6. But C �= Ak for some k, by Corollary 8.3. Hence

B � A0 by Theorem 5.7. Thus
T3 � Th(A0);

so T3 is complete.
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8.2 Omitting types
Since there is a sound, complete proof-system for �rst-order logic, we may saythat a set of sentences is consistent to mean that it has a model.An n-type of a signature L is a set of n-ary formulas of L.An n-type � of L is realized by ~a in an L-structure A if

A � '(~a )for all ' in �. A type not realized in a structure is omitted by the structure.If a consistent theory T of L is speci�ed, then an n-type of T is an n-type �that is consistent with T : This means that � is realized in some model of T .Equivalently, it means that, if ~c is an n-tuple of new constants, then the set
T [ f'(~c ) : ' 2 �gis consistent. By Compactness, for � to be consistent with T , it is su�cientthat T [ f9~x ^�0gbe consistent for all �nite subsets �0 of �.By Compactness also, for any collection of types consistent with T , there is amodel of T in which all of the types are realized.An n-type � of T is isolated in T by an n-ary formula  if:(�) T [ f9~x  g is consistent;(y) T � 8~x ( ! ') for all ' in �.Hence, if  is satis�ed by ~a in a model of T , then ~a realizes �. Also, if T iscomplete, then T � 9~x  , so � is realized in every model of T .We can call a theory countable if its signature is countable. (A more generalde�nition is possible: T is countable if, in its signature, only countably manyformulas are inequivalent in T .) It turns out that, in a countable theory, beingisolated is the only barrier to being omitted by some model:Theorem 8.6 (Omitting Types). Suppose T is a countable theory, and � is

a non-isolated 1-type of T . Then � is omitted by some countable model of T .
Proof. We adjust our proof of the Compactness Theorem. As there, we intro-duce a set C of new constants cn (where n 2 !). We enumerate SnL[C asf�n : n 2 !g. We construct a chain

T = �0 � �1 � � � �as follows. Assume �3n is consistent. Then let
�3n+1 = (�3n [ f�ng; if this is consistent;�3n; otherwise.

Now let �3n+2 = �3n+1 [ f'(ck)g;
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where k is minimal such that ck does not appear in �3n+1, if �n 2 �3n+1 and�n is 9x '; otherwise, �3n+2 = �3n+1. Finally, let�3n+3 = �3n+2 [ f: (cn)g;where  is an element of � such that �3n+2 [ f: (cn)g is consistent. But wehave to check that there is such a formula  in �. If there is, then we can let

�� = [
n2!�n:

Then �� has a countable model A (as in the proof of Compactness) such thatevery element of A is cA for some c in C. But by construction, no such elementcan realize �; so A omits �.Now, in the de�nition of �3n+3, the formula  exists as desired because the set�3n+2 r T can be assumed to be �nite. In particular, the formulas in this setuse only �nitely many constants from C. We may assume that these constantsform a tuple (cn; ~d ). Then we can write V�3n+2 r T as a sentence
'(cn; ~d );where ' is a certain formula of L. Now, if�3n+2 �  (cn)for some formula  , then

T � ('(cn; ~d )!  (cn));hence T � 8x (9~y '(x; ~y )!  (x)):Since � is not isolated in T , it is not isolated by 9~y '. Therefore the set�3n+2 [ f: (cn)g must be consistent for some  in �.
In the proof, it is essential that �n r T is �nite; the proof can't be generalizedto the case where T is uncountable. But the proof can be generalized to yieldthe following:Porism 8.7. Suppose T is a countable theory, and �k is an n-type of T for
some n (depending on k), for each k in !. Then T has a countable model
omitting each �k.An n-type � of a theory T is called complete if

' =2 � () :' 2 �for all n-ary formulas ' of L. Any n-tuple ~a of elements of a model A of Tdetermines a complete n-type of T , namely
f' : A � '(~a )g;this is the complete type of ~a in A and can be denotedtpA(~a ):
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If � is an arbitrary n-type of T , then some ~a from some model A of T realizes�, and therefore � � tpA(~a ):In particular, every type of T is included in a complete type of T .The set of complete n-types of T can be denotedSn(T );then we can let Sn2! Sn(T ) be denotedS(T ):So the Omitting-Types Theorem gives us that, if T is countable and jS(T )j 6 !,then T has a countable model that omits all non-isolated types of T .A structure A that realizes only isolated types of Th(A) is called atomic.Examples 8.8.(1) (!;0 ; 0) is atomic, since each element is named by a term. For example,a 1-type realized by 5 is isolated by the formula x = 000000.(2) The theory of Example 5.13 has no atomic models.
The following lemma hints at the characterization of countable atomic modelsthat we shall see in the next section.Lemma 8.9. If A embeds elementarily in B, then B realizes all types that A
realizes.

Proof. Suppose h is an elementary embedding of A in B, and ~a realizes thetype � in A. Then f'(~a ) : ' 2 �g � Th(AA);so h(~a ) realizes � in B by Theorem 5.7.
8.3 Prime structures
A structure is prime if it embeds elementarily in every model of its theory; ifthat theory is T , then the structure is a prime model of T . (Note then thatonly complete theories can have prime models, simply because the prime modelis elementarily equivalent to all other models.)Examples 8.10.(1) If T admits quanti�er-elimination, then by Corollary 5.8, all embed-dings of models of T are elementary embeddings. Hence, for example, acountably in�nite set is a prime model of the theory of in�nite sets. Also,(Q; <) embeds in every model of TO�, so it is a prime model.(2) It is possible to show that, if jLj 6 � 6 jBj, then B is an elementaryextension of some structure A such that jAj = �. Hence, a model ofa countable theory T is prime, provided it embeds elementarily in all

countable models of T . In particular then, if T is !-categorical, then itscountable model is prime.
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Theorem 8.11. Suppose T is a countable complete theory. Then the prime
models of T are precisely the countable atomic models of T .
Proof. Suppose A � T .()) If A is not countable, then A cannot embed in countable models of T (whichmust exist, by Theorem 6.6), so A cannot be prime.If A is not atomic, then A realizes some non-isolated type � of T . But by theOmitting-Types Theorem, T has a countable model B that omits �. Then Acannot embed elementarily in B, by Lemma 8.9.(() Suppose A is countable and atomic, and B � T . We construct an ele-mentary embedding of A in B by the back-and-forth method, except that theconstruction is in only one direction. Write A as fan : n 2 !g. Then eachtpA(a0; : : : ; an�1) is isolated in T by some formula 'n. Then we have(�) T � 9~x 'n;(y) T � 8~x ('n ! 9xn 'n+1).Hence we can recursively �nd bk in B so that

B � 'n(b0; : : : ; bn�1)
for all n in !.Now, every sentence in Th(AA) is �(a0; : : : ; an�1) for some formula � of L. Then

T � 8~x ('n ! �);
so B � �(~b ). Therefore the map ak 7! bk : A! B is an elementary embeddingof A in B.
Porism 8.12. All prime models of a countable complete theory are isomorphic.

Proof. In the proof that A embeds elementarily inB, if we assume also thatB iscountable and atomic, then the full back-and-forth method gives an isomorphismbetween the structures.
Lemma 8.13. If I(T; !) 6 !, then jS(T )j 6 !.
Proof. Exercise.
Theorem 8.14. Suppose T is a countable complete theory. Then T has a prime
model if and only if S(T ) is countable.
Proof. Exercise.
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8.4 Saturated structures
A saturated structure is the opposite of an atomic structure. Atomic structuresrealize as few types as possible. Saturated structures realize as many typesas possible; moreover, these types are allowed to have parameters from thestructure.To be precise, letM be an in�nite L-structure, and let A �M . In this context,the set Sn(Th(MA)) can be denotedSn(A):Consider the special case where A is M itself. The set S1(M), for example,contains types that include the typefx 6= a : a 2Mg:These types cannot be realized inM. So we say thatM is saturated, providedthat, whenever A � M and jAj 6 jM j, each type in S(A) is realized in M. (Inparticular, if M is countable here, then the sets A should be �nite.)Theorem 8.15. Suppose T is countable and complete, and jS(T )j 6 !. ThenT has a countable saturated model.

Proof. SupposeM is a countable model of T . If A is a �nite subset fak : k < ngof M , then each element of Sm(A) isf'(x0; : : : ; xm�1; a0; : : : ; an�1) : ' 2 pgfor some p in Sm+n(T ). Hence jS(A)j is countable. Therefore the set[fS(A) : A is a �nite subset of Mgis countable. So all of the types in this set are realized in a countable elementaryextension M0 of M.Thus, ifM0 is a countable model of T , then we can form an elementary chain
M0 4M1 4M2 4 � � � :It is straightforward then to de�ne the union of this chain: this is a structure

N whose universe N is [n2!Mn, and that is an elementary extension of each
Mn. Every �nite subset of N is a subset of some Mn, and so the types of S(A)are realized in Mn+1, hence in N. So N is saturated.
If A is a �nite subset fak : k < ng of M , and ~a is (a0; : : : ; an�1), we can denote
MA by (A;~a ):If M is countable, then M is called homogeneous iftpM(~a ) = tpM(~b ) =) (M;~a ) �= (M;~b )for all n-tuples ~a and ~b from M , for all n in !.Theorem 8.16. Countable saturated structures are homogeneous.

Proof. The back-and-forth method.
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8.5 One model
For the sake of stating and proving the following theorem more easily, we canuse the following notation. Suppose T is a theory of L. Then equivalence inT is an equivalence-relation on the set of n-ary formulas of L. Let the set ofcorresponding equivalence-classes be denoted

Bn(T ):
Theorem 8.17. Suppose T is a countable complete theory. The following state-
ments are equivalent:(0) I(T; !) = 1.(1) All types of T are isolated.(2) Each set Bn(T ) is �nite.(3) Each set Sn(T ) is �nite.
Proof. (0))(1): If S(T ) contains a non-isolated type, then it is realized in some,but not all, countable models of T , so I(T; !) > 1.(1))(0): If all types of T are isolated, then all models of T are atomic, so all
countable models of T are prime and therefore isomorphic.(2))(3): Immediate.(3))(1)&(2): Suppose Sn(T ) = fp0; : : : ; pm�1g. For each i and j in m, if i 6= j,then there is a formula 'ij in pi r pj . Let  i be the formula^

j2mrfig'ij :
Then  i is in pj if and only if j = i. If A � T , and ~a is an n-tuple from A, then
A realizes some unique pi, and then A �  i(~a ). Conversely, if A �  i(~a ), then~a must realize pi. Therefore  i isolates pi.If � is an arbitrary n-ary formula, let I = fi 2 m : � 2 pig. Then

T � 8~x (�$ _
i2I  i):There are only �nitely many possibilities for I, so Bn(T ) is �nite.(1))(3): Suppose in�nitely many complete n-types are isolated in T . Since Tis countable, there must be countably many such types. Say they compose theset fpk : k 2 !g, and each pk is isolated by 'k. Then the type

f:'k : k 2 !g
is consistent with T . It is not included in any of the pk, so it must be includedin a non-isolated type.
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8.6 Not two models
Theorem 8.18. Suppose T is a countable complete theory. Then I(T; !) 6= 2.
Proof. Suppose if possible that T2 has just two non-isomorphic countable mod-els. One of them, A, is prime, by Lemma 8.13 and Theorem 8.14. The otherone, B, is saturated, by Theorem 8.15. Since A embeds elementarily in B, wemay assume A 4 B.Since A 6�= B, there is a non-isolated type � realized by some ~b in B, by The-orem 8.11 and Porism 8.12. Let T � = Th(B;~b ). Suppose (C;~c ) is a countablemodel of T �. Then C � T2, so C is isomorphic to A or B. In any case, A embedselementarily in C. But � is realized by ~c in C. Hence C �= B by Lemma 8.9.Let the isomorphism take ~c to ~a . Then it is enough to show (B;~a ) �= (B;~b ).But this follows from Theorem 8.16.
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