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Preface

The present typeset document is based on my course “The
Cantor Set,” January – (Monday–Sunday), , :–
:. The fundamental idea is the existence of a bijection
from the power set of the natural numbers, with the Tychonoff
topology, to the Cantor Ternary Set, with the Euclidean topol-
ogy inherited from the real numbers. Named theorems proved
include the following.



Cantor’s Theorem. The power set of a set is strictly larger
than the set itself (Theorem , page ).

The Cantor–Schröder–Bernstein Theorem. Sets that em-
bed in one another are equipollent (Theorem , page ).

The Heine–Borel Theorem (for R only; Theorem , page
).

The Compactness Theorem (for propositional logic; Theo-
rem , page : effectively, the simplest nontrivial case
of the Tychonoff Theorem for infinite products).

The Stone Representation Theorem. Every Boolean alge-
bra embeds in a power set (Theorem , page ).

I spoke mostly in Turkish, while writing in English. Twenty-
five students registered, but attendence dropped below ten by
the fourth day. On the last day, there were four students, and
I was sick with the flu virus that had been going around; I
spoke for only an hour.

I started typesetting this document after the first lecture.
Sources include () my handwritten notes, prepared before
the lectures, () my memory of what happened in the lectures,
() my typeset notes for a previous course in Şirince in  on
ultraproducts, and sometimes () my wish for improvement.
I edited the document almost a year later, when preparing to
teach a similar course. Additions made during this editing are
in [square brackets]; simple corrections may be made silently.
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 Monday, January , 

If there is a bijection from a set A to a set B, we shall write

A ≈ B.

The relation ≈ is an equivalence relation, since

A ≈ A,

A ≈ B =⇒ B ≈ A,

A ≈ B & B ≈ C =⇒ A ≈ C.

In case A ≈ B, we may say A and B are equipollent. We
may also write

|A| = |B| ;
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but what does |A| itself mean?
If A is a finite set, we normally let |A| denote its size. Thus,

defining
N = {1, 2, 3, . . .} = {x ∈ Z : x > 0},

the set of counting numbers, we have

{x ∈ N : x | 12} = {1, 2, 3, 4, 6, 12},

so
∣

∣{x ∈ N : x | 12}
∣

∣ = 6.

But in this case, what is 6? For our convenience, we shall
define

6 = {0, 1, 2, 3, 4, 5},

a 6-element set. [Similarly, every counting-number n will be
an n-element set; see (), page .]

What is |A| if A is infinite? We define

ω = {0} ∪ N = {x ∈ Z : x > 0},

the set of natural numbers. Then N ≈ ω because of the
bijection x 7→ x− 1. We therefore define

|N| = ω.

A set is called countable if it is finite or equipollent with ω.
But we shall see presently that there are uncountable sets.

Because equipollence is an equivalence relation, we may con-
sider defining |A| as the corresponding equivalence class,

{X : X ≈ A}.

A problem with this is that the term class is actually appro-
priate here! if A 6= ∅, then {X : X ≈ A} is a proper class,
namely a class that is not a set.

 The Cantor Set



Every set is a class, but not every class is a set. Sets are
collections that satisfy certain axioms: for us, the Zermelo–
Fraenkel axioms, called ZF, along with the Axiom of
Choice, called AC. Together, these axioms are denoted by
ZFC. One of the axioms of ZF is

 Axiom (Extension). Sets that have the same elements that
are sets are equal:

∀x ∀y
(

∀z (z ∈ x ↔ z ∈ y) → x = y
)

.

All variables, here and in other formal expressions of set
theory, refer to sets. In particular, sets A and B can be equal,
even if A has an element that is not a set and that is not in B.
In this case though, our logic will still not distinguish between
A and B. Briefly, we may assume that all elements of sets are
sets.

This is a convenience for set theory. Elsewhere in mathemat-
ics, we do not usually consider elements of sets as sets. For
example, in point set topology, which we shall look at later, the
elements of sets are generally treated merely as points, which
are not required to be sets themselves. However, in any partic-
ular application, these points can presumably be understood
as certain sets.

Once we have sets, as governed by ZFC, then we can define
collections of them by means of formulas that have single free
variables. Such collections are classes. If ϕ(x) is a singu-
lary formula in the language of set theory, it defines the class
denoted by

{x : ϕ(x)}.

For example, we can form the class
{

x : ∀y
(

∀z (z ∈ x ↔ z ∈ y) → x = y
)

}

.
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By the Extension Axiom, this class is the universal class,
called V. Thus

V = {x : x = x}.

Every set A is (or is equal to) the class {x : x ∈ A}. However,
not every set is a class:

 Theorem (Russell Paradox). The class {x : x /∈ x} is not
a set.

Proof. Suppose if possible that the class is the set A. Then

A ∈ A =⇒ A /∈ A, A /∈ A =⇒ A ∈ A,

which is absurd.

The proof requires A to be a set, since the variable x used
in the definition of {x : x /∈ x} can be replaced only by sets.

It follows from the theorem that V itself is not a class, be-
cause of the following.

 Axiom (Separation). Every subclass of a set is a set, that
is, for every singulary formula ϕ(x),

∀y ∃z ∀x
(

x ∈ z ↔ x ∈ y ∧ ϕ(x)
)

.

The subset {x : x ∈ A ∧ ϕ(x)} of A is usually written as

{x ∈ A : ϕ(x)}.

We shall denote classes by boldface letters. These will be
constants, not variables. If C is a class, then by definition

P(C) =
{

x : ∀y (y ∈ x → x ∈ C)
}

= {x : x ⊆ C}.

 The Cantor Set



This is the power class of C. Here C may be a proper
class; but in this case it does not belong to P(C), because
the elements of this class (as of every class) are sets. A proper
class is never an element of a class (much less a set).

 Axiom (Power Set). The power class of a set is a set, which
we shall call the power set of the set:

∀x ∃y ∀z (z ∈ y ↔ z ⊆ x).

Note that
V = P(V).

Thus V ≈ P(V), except that, strictly speaking we did not
define the relation ≈ to exist between proper classes.

 Cantor’s Theorem. For all sets A,

A 6≈ P(A).

Proof. We use the idea of the proof of the Russell Paradox.
Supposing f to be an injection from A to P(A), we define

B = {x ∈ A : x /∈ f(x)},

a subset of A. Then for all c in A,

c ∈ B =⇒ c /∈ f(c), c /∈ B =⇒ c ∈ f(c).

In either case, B 6= f(c), because the two sets have different
elements. Indeed, it is usually a logical axiom that equal things
have all of the same properties, and in particular the converse
of the Extension Axiom,

∀y ∀z
(

y = z → ∀x (x ∈ y ↔ x ∈ z)
)

, ()
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is true, and more generally, for all binary formulas ϕ(x, y),

∀y ∀z
(

y = z → ∀x
(

ϕ(x, y) ↔ ϕ(x, z)
)

)

. ()

However, in an early paper, Abraham Robinson (called then
Robinsohn) showed that one could define equality of sets by
what we have called the Extension Axiom. This means one
also has () by definition; and then, in order to obtain the
generalization (), one can use, as an axiom, the special case

∀y ∀z
(

y = z → ∀x (y ∈ x ↔ z ∈ x)
)

.

In any case, at present we have B /∈ f [A], where by definition

f [A] = {f(x) : x ∈ A}.

Thus f is not surjective.

The term power set can be understood as follows. First of
all, for any sets A and B, we define BA as the set of functions
from A to B. By the ZF axioms, this is really a set. For, a
function is a class of ordered pairs with certain properties, and
an ordered pair can be defined as a certain set; if the domain
of the function is a set, then the function itself is a set.∗

∗To be precise, (a, b) can be defined as the set
{

{a}, {a, b}
}

; and a
function whose domain is a set is a set by the Replacement Axiom.

[Thus the elements of BA are indeed sets, so BA itself is a class. To show
that it is a set, we use the Pairing Axiom, whereby {A,B} is a set; and
the Union Axiom, whereby, for any class C, if C is a set, then so is its
union,

⋃

C, which by definition is {x : ∃y (x ∈ y ∧ y ∈ C)}. Now A∪B

is by definition
⋃

{A,B}, which is a set. Then the class A×B, which is
{(x, y) : x ∈ A∧y ∈ B}, is a set, because it is a subclass of P(P(A∪B)).
Finally, AB is a subclass of P(A×B).]

 The Cantor Set



For each n in ω, we understand

n = {0, . . . , n− 1} = {x ∈ ω : x < n}. ()

Then

0 = ∅, 1 = {0}, 2 = {0, 1},

and also
n + 1 = n ∪ {n}.

Then by definition 2A =
{

functions from A to {0, 1}
}

, and so

2A ≈ P(A),

because the function that assigns, to every f in 2A, the subset
{x ∈ A : f(x) = 1} of A is a bijection with P(A).

We are going to show P(ω) ≈ R. First we shall define an
injection from P(ω) to R. As a first attempt, if A ⊆ ω, we
define

f(A) =
∑

k∈A

1

2k+1
. ()

Then f(∅) = 0 and f(ω) = 1, and in general

f(A) ∈ [0, 1].

We have

f({2x : x ∈ ω}) =
2

3
, f({2x+ 1: x ∈ ω}) =

1

3
.

However, the equation f(X) = 1/2 has two solutions, {0} and
ωr {0}; so f is not injective. We now define

g(A) =
∑

k∈A

2

3k+1
. ()

By definition, g[P(ω)] is the Cantor set. We shall show
tomorrow that g is injective.
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 Tuesday, January , 

Suppose A and B are distinct subsets of ω. Defining

A△ B = (Ar B) ∪ (B rA),

the symmetric difference of A and B, we let

m = min(A△ B).

We may assume m ∈ B r A. Then

A ⊆ {x ∈ A : x < m} ∪ {x ∈ ω : x > m},

B ⊇ {x ∈ A : x < m} ∪ {m}.

With g as in (), and letting c = g
(

{x ∈ A : x < m}
)

, we have

g(A) 6 c+
1

3m+1
< c+

2

3m+1
6 g(B).

Thus g is injective.
Whenever an injective function exists from an arbitrary set

A to an arbitary set B, we write

A 4 B.

With g, we have shown P(ω) 4 R, in fact P(ω) 4 [0, 1].
We now show

[0, 1) 4 P(ω)

by defining an injective function h from [0, 1) to P(ω). If f
is as defined on P(ω) by (), then f is surjective onto [0, 1].
In this case, we can let h be a right inverse of f , so that

f
(

h(y)
)

= y

 The Cantor Set



for all y in [0, 1). This means that, for any such y, for some X
in P(ω),

f(X) = y, h(y) = X.

Since there are infinitely many values of y for which X is
not uniquely determined, we have appealed to the Axiom
of Choice, strictly speaking. This is needed when one has
to make infinitely many choices, all at once. However, in the
present case, we can make an explicit definition of h once for
all, without needing AC. If a ∈ [0, 1), we define

h(a) = {k ∈ ω : ak = 1},

where the ak are defined recursively by

ak =

{

0, if a <
∑

i<k ai/2
i+1 + 1/2k+1,

1, if a >
∑

i<k ai/2
i+1 + 1/2k+1.

This ensures that, as desired,

a =

∞
∑

k=0

ak
2k+1

= f
(

h(a)
)

.

We have defined the an so that, for all k in ω, for some n in
ω, we have k 6 n and an = 0.

We now have

[0, 1) 4 P(ω) 4 [0, 1] 4 R.

Moreover, R ≈ (0, 1) because the function

x 7→
x− 1/2

x · (1− x)
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is a bijection from (0, 1) to R; its inverse can be computed as

y 7→











1

2
+

1

2
·

√

1 + y2 − 1

y
, if y 6= 0,

1

2
, if y = 0.

[This is by the computations

y =
x− 1/2

x · (1− x)
,

yx− yx2 = x− 1/2,

yx2 + (1− y)x− 1/2 = 0,

x =
y − 1±

√

(1− y)2 + 2y

2y
=

y − 1±
√

1 + y2

2y
,

and we let the ± be + to put x in the interval (0, 1). See
Figure .] Since (0, 1) 4 [0, 1), we obtain P(ω) ≈ R from the
following.

 Cantor–Schröder–Bernstein Theorem. If A 4 B and
B 4 A, then

A ≈ B.

Proof. Suppose f is an injection from A to B; and g, from B
to A. By recursion, we define

A0 = Ar g[B], B0 = B r f [A],

An+1 = g[Bn], Bn+1 = f [An].

[See Figure .] By induction, for all n in N, whenever i < j 6
n,

Ai ∩Aj = ∅, Bi ∩ Bj = ∅.

 The Cantor Set



1

2

−1

−2

1 2−1

Figure : Graph of y =
x− 1/2

x · (1− x)
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A B

A0

g[B]
B0

f [A]

A0

A1

g
[

f [A]
]

B0

B1

f
[

g[B]
]

A0

A1

A2

g
[

f
[

g[B]
]

]

B0

B1

B2

f
[

g
[

f [A]
]

]

Figure : Cantor–Schröder–Bernstein Theorem
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[More precisely, we prove

An ⊆ Ar

⋃

k<n

Ak, An ⊆ B r

⋃

k<n

Bk

by induction. This is clear when n = 0, and if true when
n = m, then for example

Bm+1 ⊆ f [A]r
⋃

k<m

Bk+1,

but the latter is Ar
⋃

k<m+1
Bk.] Then also, [not] by induction,

A2n ∪ A2n+1 ≈ B2n+1 ∪B2n,

and therefore
⋃

n∈ω

An ≈
⋃

n∈ω

Bn.

Finally,

Ar

⋃

n∈ω

An ≈ B r

⋃

n∈ω

Bn,

since

f

[

Ar

⋃

n∈ω

An

]

=
⋂

n∈ω

f

[

Ar

⋃

k<n

Ak

]

=
⋂

n∈ω

(

B r

⋃

k6n

Bk

)

= B r

⋃

n∈ω

Bn.

Thus R is uncountable. Letting C be the Cantor set, namely
the image of P(ω) under g as defined in (), we have also

C ≈ R.

In particular, C is uncountable (though we already knew this,
because C ≈ P(ω)).
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 Wednesday, January , 

The Cantor set (strictly the Cantor ternary set) C consists
of the numbers in [0, 1] whose ternary expansions can be
written without the digit 1. If a ∈ [0, 1], the ternary expansion
of a is

0.a0a1a2 · · ·

where

ak ∈ {0, 1, 2},
∑

k∈ω

ak
3k+1

= a.

Note that
0.a0 · · · an−11 = 0.a0 · · · an−102,

so this is in C if {a0, . . . , an−1} ⊆ {0, 2}; but if

0.a0 · · · an−11 < x < 0.a0 · · · an−12,

then x /∈ C. Some elements of C are shown in Figure . We
have

C =
⋂

k∈ω

Fk,

where

F0 = [0, 1]r (1/3, 2/3),

Fn+1 = Fn r

⋃

{

(0.x0 · · ·xn1, 0.x0 · · ·xn2) : xk ∈ {0, 2}
}

.

Each set Fk is the union of finitely many closed intervals. Ev-
ery intersection of a family of finite unions of closed intervals
is called a closed subset of R. Thus C is a closed subset of
R. The complement of a closed set is called open. The only
subsets of R that are both closed and open are ∅ and R.

 The Cantor Set



X

∑

k∈X

2

3k+1

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

∅ 0

ω 1

ωr {0} 0.1

{0} 0.2

ωr {0, 1} 0.01

{1} 0.02

ωr {1} 0.21

{0, 1} 0.22

ωr {0, 1, 2} 0.001

{2} 0.002

ωr {0, 2} 0.021

{1, 2} 0.022

ωr {1, 2} 0.201

{0, 2} 0.202

ωr {2} 0.221

{0, 1, 2} 0.222

Figure : The Cantor set
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The intersection of an open subset of R with C is called open
in C; it might not be open in R (in fact it will not be). The
intersection of a closed subset of R with C is called closed in
C, but it is still closed in R anyway. However, C will have
many subsets that are both open and closed in C.

A collection of subsets of R whose every finite subcollection
has nonempty intersection is said to have the Finite Inter-
section Property or FIP. In topological terms, the following
theorem is that every closed bounded subset of R is compact
[see page ]. In fact the same is true in R

n, though we shall
not prove this (or use it).

 Heine–Borel Theorem. Every collection of bounded
closed subsets of R with the Finite Intersection Property has
nonempty intersection.

Proof. Let F be as in the hypothesis. We may assume that
all elements of F are subsets of [0, 1]. One of the collections
F ∪ {[0, 1/2]} and F ∪ {[1/2, 1]} must have the FIP. For,
suppose the first does not. Then for some finite subset F0 of
F , every element of

⋂

F0 must belong to [1/2, 1]. Let F1 be
any finite subset of F . Then

⋂

F0 ∩
⋂

F1 is nonempty, and
its every element belongs to [1/2, 1]. Thus F ∪ {[1/2, 1]} has
the FIP.

By recursion and induction, we obtain a sequence (Ik : k ∈
ω) of closed intervals such that F ∪ {Ik : k < n} always has
the FIP, and

I0 ⊇ I1 ⊇ I2 ⊇ · · · ,

and the length of Ik is 1/2k. If we let

ak = sup(Ik), b = inf{ak : k ∈ ω},
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then
⋂

k∈ω

Ik = {b}

(this is an exercise, but the proof will involve an observation to
be made on Saturday: closed sets contain their limit points).
Then b ∈

⋂

F . For, let ε > 0. For some n, we have 1/2n < ε,
so

In ⊆ (b− ε, b+ ε).

For every F in F , since F ∩ In 6= ∅, the set F has an element
in (b − ε, b+ ε). This being so for all positive ε, and F being
closed, we have b ∈ F (again because closed sets contain their
limit points).

In particular, C is compact. Using the bijection g from
P(ω) to C, we can define the closed subsets of P(ω) as
g−1[X ], where X is a closed subset of C. However, we shall
first give an independent definition of the closed subsets of
P(ω) and prove a theorem analogous to Heine–Borel.

 Thursday, January , 

Starting with a collection {Pk : k ∈ ω} of (propositional)
variables, we define (propositional) formulas recursively:

. Each variable is a formula, namely an atomic formula.
. If F is a formula, then so is ¬G, the negation of F .
. If F and G are formulas, then so is (F ∧ G), the con-

junction of F and G.

 Theorem. Every formula is uniquely readable:

. No atomic formula is also a negation or a conjunction.
. No negation is also a conjunction.
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. Every conjunction is uniquely so.

Proof. Only the last claim is not entirely clear. By induction,
we show that for all formulas F ,

(a) no proper initial segment of F is a formula, and
(b) F is not a proper initial segment of any formula.

. The claim is clearly true when F is atomic.

. Suppose the claim is true when F is a formula G. Then
the claim must be true when F is ¬G. For if H is a proper
initial segment of ¬G, then H is of the form ¬K for some K,
which is a proper initial segment of G, so, by hypothesis, K
cannot be a formula, and therefore H cannot be a formula.
There is a similar argument if ¬G is a proper initial segment
of H .

. Similarly, if the claim is true when F is G or H , then it
must be true when F is (G ∧H).

By induction, which is made possible by the recursive defi-
nition of formulas, the claim holds for all formulas F .

The foregoing theorem allows us to make recursive defini-
tions of functions on the set of all formulas. For example, for
all subsets A of ω, we recursively define which formulas are
true in A. We shall express that a formula F is true in A by
writing

A � F.

Then by definition

A � Pk ⇐⇒ k ∈ A, (a)

A � ¬F ⇐⇒ A 2 F, (b)

A � (F ∧G) ⇐⇒ A � F & A � G. (c)

 The Cantor Set



Note that the expressions ⇐⇒ and & here are just abbre-
viations of ordinary language. Without recursion, we define

Mod(F ) = {X ⊆ ω : X � F}. ()

If Γ is a set of formulas, we define

Mod(Γ) =
⋂

{Mod(F ) : F ∈ Γ}; ()

this is the set of models of Γ. If every finite subset of Γ has a
model, we shall say that Γ is consistent. We shall show that
every consistent set of formulas has a model. To do this, we
make one more recursive definition [parallel to ()].

V (Pk) = {k}, (a)

V (¬F ) = V (F ), (b)

V
(

(F ∧G)
)

= V (F ) ∪ V (G). (c)

Actually, we do not really need recursion here: we can just say

V (F ) = {k ∈ ω : Pk occurs in F}.

[We are defining a formal logic. Logic lets us do mathematics
with logical precision. Such precision may be illusory when
used to define the logic in the first place.]

 Theorem. Let F be a formula, and let A and B be subsets
of ω such that

V (F ) ∩A = V (F ) ∩B.

Then
A � F ⇐⇒ B � F.
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Proof. Induction. [The point is that the definition of when F
is true in A depends only on whether k ∈ A when Pk actually
occurs in F . One may say that this is obvious when F is
an atomic formula, by (a), and that the remaining rules (b)
and (c) maintain the claim, since they do not involve variables
explicitly. In all formal detail though, we can show

A � F ⇐⇒ V (F ) ∩A � F

as follows.
. Supposing first that F is an atomic formula Pk, we have

V (F ) = {k} by (a), and then

A � F ⇐⇒ k ∈ A [by (a)]

⇐⇒ k ∈ V (F ) ∩A [by (a)]

⇐⇒ V (F ) ∩A � F. [by (a) again]

. Suppose the claim is true when F is a formula G. Then

A � ¬G ⇐⇒ A 2 G [by (b)]

⇐⇒ V (G) ∩A 2 G [by hypothesis]

⇐⇒ V (¬G) ∩ A 2 G [by (b)]

⇐⇒ V (¬G) ∩ A � ¬G, [by (b) again]

so the claim holds when F is ¬G.
. Suppose finally the claim is true when F is either of G

and H . Since

V (G) ⊆ V
(

(G ∧H)
)

, V (H) ⊆ V
(

(G ∧H)
)

()

by (c), so that

V (G) ∩ V
(

(G ∧H)
)

∩ A = V (G) ∩A, ()

V (H) ∩ V
(

(G ∧H)
)

∩ A = V (H) ∩ A,
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we have
A � G ⇐⇒ V

(

G ∧H)
)

∩A � G,

A � H ⇐⇒ V
(

G ∧H)
)

∩ A � H,
()

since for example

A � G ⇐⇒ V (G) ∩A � G [by hyp.]

⇐⇒ V (G) ∩ V
(

(G ∧H)
)

∩ A � G [by ()]

⇐⇒ V
(

(G ∧H)
)

∩ A � G. [by hyp.]

This gives us

A � (G ∧H) ⇐⇒ A � G & A � H [(c)]

⇐⇒ V
(

(G ∧H)
)

∩ A � G

& V
(

(G ∧H)
)

∩ A � H [()]

⇐⇒ B � (F ∧G). [(c)]

This completes the induction.]

 Compactness Theorem (for propositional logic). Every
consistent set of propositional formulas has a model.

Proof. Let Γ be a consistent set of formulas. Just as in the
proof of the Heine–Borel Theorem, one of Γ ∪ {P0} and Γ ∪
{¬P0} must be consistent. In this way, by recursion, we obtain
a sequence (Gk : k ∈ ω), where each Gk is either Pk or ¬Pk,
and each collection Γ ∪ {Gk : k < n} is consistent. Let

A = {k ∈ ω : Gk is Pk}.

For all F in Γ, the collection

{F} ∪ {Gk : k ∈ V (F )}
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[being finite] has a model B. Then for all k in V (F ), we have
B � Gk, and so

k ∈ B ⇐⇒ k ∈ A.

By the foregoing theorem, since B � F , also A � F . Thus
A ∈ Mod(Γ).

 Friday, January , 

If {Fi : i ∈ I} is a family of subsets of R, each being a finite
union I0∪· · ·∪In−1 of closed intervals, then again, by definition,
⋂

i∈I Fi is a closed subset of R.
For any set Ω, since its collection of finite subsets is

{

X ∈ P(Ω) : |X| < ω

}

,

we shall denote this collection by

Pω(Ω).

 Theorem. If F is the family of closed subsets of R, then

X ∈ P(F ) =⇒
⋂

X ∈ F , ()

Y ∈ Pω(F ) =⇒
⋃

Y ∈ F . ()

Proof. Since closed sets are already intersections, () is clear.
For (), we shall show by induction that, for all n in ω, for
all n-element subsets A of F ,

⋃

A ∈ F . When n = 0, then
⋃

A =
⋃

∅ = ∅, which belongs to F since, above, we can
take one of the Fi to be the empty union. Suppose () holds
when n = m, but now A = {Ak : k 6 m}. By hypothesis,
⋃

k<mAk ∈ F , so it is an intersection
⋂

i∈I Fi of finite unions
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of closed intervals. But Am is a similar intersection
⋂

j∈J Gj.
We now have
⋃

A =
⋃

k<m

Ak ∪Am =
⋂

i∈I

Fi ∪
⋂

j∈J

Gj

=
⋂

i∈I

(

Fi ∪
⋂

j∈J

Gj

)

=
⋂

i∈I

⋂

j∈J

(Fi ∪Gj),

which is in F .

[As a porism, a corollary of the proof, () is equivalent to
two statements,

∅ ∈ F ,

X ∈ F & Y ∈ F =⇒ X ∪ Y ∈ F ,

that is, F contains the empty set and is closed under binary
intersection.]

Again, the complement of a closed set is called open. If
τ is the family of open subsets of R, then, with F as in the
theorem,

τ = {RrX : X ∈ F} = {Xc : X ∈ F}.

[We also have infinitary de Morgan laws:
(

⋂

X

)c

=
⋃

{Y c : Y ∈ X },
(

⋃

X

)c

=
⋂

{Y c : Y ∈ X }.

Using these,] we therefore have

X ∈ P(τ) =⇒
⋃

X ∈ τ,

Y ∈ Pω(τ) =⇒
⋂

Y ∈ τ.
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The latter is equivalent to

R ∈ τ,

Y ∈ τ & Z ∈ τ =⇒ Y ∩ Z ∈ τ

[the former because

⋂

∅ =
(

⋃

∅

)c

= ∅
c,

which we now take to be R]. Precisely because τ meets these
conditions, τ is called a topology on R.

Let us denote by
L

the set of propositional formulas with variables from the set
{Pk : k ∈ ω}. Then the family

{Mod(Γ) : Γ ⊆ L}

[of subsets of P(ω)] satisfies the conditions to be closed [that
is, it satisfies the conditions on F in Theorem  so that it is
the family of closed subsets of P(ω) in a topology on P(ω)].
In particular

∅ = Mod(P0 ∧ ¬P0),

Mod(F ) ∪Mod(G) = Mod(F ∨G),

where F ∨G means

¬(¬F ∧ ¬G).

If (A, τ) and (B, σ) are two topological spaces, f : A → B,
and

X ∈ σ =⇒ f−1[X ] ∈ τ,
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then f is called continuous; if also f is a bijection, and f−1 is
continuous, then f is called a homeomorphism. If C ⊆ A,
it is easy to show that {C ∩ X : X ∈ τ} is a topology on C,
called the subspace topology. We give the Cantor set this
topology from R.

 Theorem. The function g in () [on page ] is a homeo-
morphism from P(ω) to the Cantor set.

Proof. Given n in N and a subset A of n, let us define the
formula Fn,A as

E0 ∧ · · · ∧ En−1,

where

Ek is

{

Pk, if k ∈ A,

¬Pk, if k ∈ nr A.

Then
Mod(Fn,A) = {X ⊆ ω : X ∩ n = A}. ()

Now let F be an arbitary element of L. There is n in N such
that V (F ) ⊆ n. Letting

J = {X ⊆ n : X � F},

[by Theorem  and ()] we have

Mod(F ) =
⋃

X∈J

{Y ⊆ ω : Y ∩ n = X} =
⋃

X∈J

Mod(Fn,X).

Since
Mod(F )c = Mod(¬F ), ()

we can conclude that the open subsets of L are just the unions
of sets Mod(Fn,A).
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For all X in P(ω),

X � Fn,A ⇐⇒ A ⊆ X ⊆ A ∪ {x ∈ ω : x > n}.

Thus

g[Mod(Fn,A)] = C ∩

[

g(A), g(A) +
1

3n

]

= C ∩ I, ()

where I is the open interval
(

g(A)−
1

3n
, g(A) +

2

3n

)

.

The intersection C ∩ I being open in C, g−1 is continuous.
For the continuity of g, we observe that the interval I has

length 1/3n−1. Let O be an open subset of R. For any a in
C ∩O, for some positive εa,

(a− εa, a+ εa) ⊆ O.

Now let na be large enough that 1/3na−1 < εa. For some subset
Aa of na, [namely the subset na∩A, where g(A) = a,] we have

a ∈

(

g(Aa)−
1

3na

, g(Aa) +
2

3na

)

.

Then also
(

g(Aa)−
1

3na

, g(Aa) +
2

3na

)

⊆ (a− εa, a+ εa).

Thus, [letting a range over C ∩O, by () we have]

C ∩O =
⋃

x∈C∩O

g[Mod(Fnx,Ax
)],

g−1[C ∩ O] =
⋃

x∈C∩O

Mod(Fnx,Ax
),

and this is an open set.
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 Saturday, January , 

If A is a subset of a topological space, and p ∈ A, there are
two possibilities.

. If, for some open set O, we have

p ∈ O & O ⊆ A,

then A is called a neighborhood of p, and p is an in-
terior point of A.

. If, for all open sets O, we have

p ∈ O =⇒ O ∩ Ac 6= ∅,

then p is a limit point of Ac.

In the latter case, p is also a limit point of Ac ∪ {p}.

To prove the Heine–Borel Theorem (Theorem , page ),
we used the easy observation that every open set is a neighbor-
hood of all of its points, so that every closed set must contain
all of its limit points. The converse takes a little more work
(left as an exercise):

 Theorem. In a topological space, every set that is a neigh-
borhood of all of its points is open, and every set that contains
all of its limit points is closed.

A topological space (Ω, τ) is compact if any of the following
equivalent conditions is satisfied:

. Every family of closed sets whose every finite subfamily
has nonempty intersection [that is, every family of closed
sets that has the Finite Intersection Property defined on
page ] has nonempty intersection.
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. For every family of closed sets with empty intersection,
there is a finite subfamily {Fi : i < n} such that

F0 ∩ · · · ∩ Fn−1 = ∅.

. For every family O of open sets whose union is all of Ω,
there is a finite subfamily {Oi : i < n} such that

O0 ∪ · · · ∪On−1 = Ω.

In the last condition, O is called an open covering of Ω, and
then {Oi : i < n} may be referred to as a finite sub-covering
of O.

The Heine–Borel Theorem (our Theorem ) is that every
closed, bounded subset of R is compact. (Actually it is true for
each R

n.) With the Compactness Theorem for propositional
logic (Theorem , page ), we showed that P(ω) is compact
in the topology whose closed sets are just the sets Mod(Γ),
where Γ ⊆ L, L being the set of propositional formulas in the
variables Pk, where k ∈ ω. Here, for each F in L, we have
again (), so that Mod(F ) is clopen: both closed and open.

 Theorem. In P(ω), the clopen sets are precisely the sets
Mod(F ), where F ∈ L.

Proof. Suppose Mod(Γ) is open (as well as closed) for some
subset Γ of L. Then Mod(Γ)c is closed, so it is compact (as is
every closed subset of a compact space, easily). But

Mod(Γ)c =
⋃

F∈Γ

Mod(¬F ).

By Compactness, there is a finite subset {Fk : k < n} of Γ such
that

Mod(Γ)c = Mod(¬F0) ∪ · · · ∪Mod(¬Fn−1),

Mod(Γ) = Mod(F0 ∧ · · · ∧ Fn−1).
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The relation ∼ of logical equivalence on L is given by

F ∼ G ⇐⇒ Mod(F ) = Mod(G). ()

We can now define

[F ] = {X ∈ L : X ∼ F},

L/∼ = {[X ] : X ∈ L}.

The definitions ensure that there is a well-defined injection

[X ] 7→ Mod(X)

from L/∼ to P(ω). By the last theorem, the map is also
surjective onto the collection B of clopen subsets of ω. Here
B is closed under

() the binary operations ∩ and ∪,
() the singulary operation c, and
() the nullary operations ∅ and ω (that is, B contains

these sets).

This makes B a Boolean subalgebra of P(ω). Since

Mod(F ∧G) = Mod(F ) ∩Mod(G), ()

Mod(F ∨G) = Mod(F ) ∪Mod(G),

Mod(¬F ) = Mod(F )c, ()

Mod(P0 ∧ ¬P0) = ∅,

Mod(P0 ∨ ¬P0) = ω,
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L/∼ is a Boolean algebra with respect to the (well-defined)
operations given by

[F ] ∧ [G] = [F ∧G],

[F ] ∨ [G] = [F ∨G],

¬[F ] = [¬F ],

⊥ = [P0 ∧ ¬P0],

⊤ = [P0 ∨ ¬P0].

In general, an abstract Boolean algebra (like L/∼) is a set
B with operations ∧, ∨, ¬, ⊥, and ⊤ with the following prop-
erties.

. The binary operations ∨ and ∧ are commutative:

x ∨ y = y ∨ x, x ∧ y = y ∧ x.

. The elements ⊥ and ⊤ are identities for ∨ and ∧ re-
spectively:

x ∨ ⊥ = x, x ∧ ⊤ = x.

. ∨ and ∧ are mutually distributive:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

. The element ¬x is a complement of x:

x ∨ ¬x = ⊤, x ∧ ¬x = ⊥.

Additional properties like associativity of ∧ and ∨ follow from
the given identities:
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 Theorem (E. Huntington, ). In any Boolean algebra:

x ∨ x = x, x ∧ x = x,

x ∨ ⊤ = ⊤, x ∧ ⊥ = ⊥,

x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x, ()

¬¬x = x,

¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y,

(x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∧ y) ∧ z = x ∧ (y ∧ z).

Proof. We prove only ():

x ∨ (x ∧ y) = (x ∧ ⊤) ∨ (x ∧ y)

= x ∧ (⊤ ∨ y) = x ∧ ⊤ = x.

We shall investigate how P(ω), or more precisely a space
homeomorphic with it, can be obtained from the Boolean al-
gebra L/∼. The same construction will work for any Boolean
algebra, and then the algebra can be recovered as being iso-
morphic to the algebra of clopen subsets of the space. This is
the Stone Representation Theorem, Theorem  below.

We shall need that, on any Boolean algebra, there is a partial
ordering ⊢ given by

x ⊢ y ⇐⇒ x ∧ y = x.

Note that, by (),

x ∧ y = x ⇐⇒ x ∨ y = y.

If A ⊆ ω, we define

Th(A) = {X ∈ L : A � X}. ()
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This is the theory of A, and it has the following properties.

F ∈ Th(A) & G ∈ Th(A) =⇒ (F ∧G) ∈ Th(A), ()

F ∈ Th(A) & F ⊢ G =⇒ G ∈ Th(A), ()

F /∈ Th(A) ⇐⇒ ¬F ∈ Th(A). ()

As a result, Th(A) [more precisely, the set {[X ] : X ∈ Th(A)}]
• is a filter of the algebra L/∼, by () and (),
• by these and (), is an ultrafilter.

We may blur the distinction between formulas in L and their
equivalence classes in L/∼ [thus identifying the sets Th(A) and
{[X ] : X ∈ Th(A)}]. An ultrafilter is a maximal filter, if the
whole algebra is not counted as a filter; any larger filter than
Th(A) would contain some F not in Th(A); but then Th(A)
contains ¬F , so the larger filter contains F ∧ ¬F , which is
equivalent to ⊥, and ⊥ ⊢ G for all G in L.

The converse also holds:

 Theorem. Every ultrafilter of L/∼ is the theory of some
element of P(ω).

Proof. Given an ultrafilter Φ of L/∼, we may let

A = {k ∈ ω : Pk ∈ Φ}.

By induction in L, Φ = Th(A), that is, for all F in L,

F ∈ Φ ⇐⇒ A � F. ()

[In detail:
. () holds by (a) when F is atomic.
. If () holds when F is G, then

¬G ∈ Φ ⇐⇒ G /∈ Φ [by ()]

⇐⇒ A 2 G [by hypothesis]

⇐⇒ A � ¬G. [by (b)]
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. If () holds when F is either of G and H , then

(G ∧H) ∈ Φ ⇐⇒ G ∈ Φ & H ∈ Φ [by () and ()]

⇐⇒ A � G & A � H [by hypothesis]

⇐⇒ A � (G ∧H). [by (c)]

This completes the induction.]

For any Boolean algebra B, we shall denote the set of ultra-
filters of B by

S(B);

this is the Stone space of B, because it will have a topology.
In our case, we have a bijection X 7→ Th(X) from P(ω) to
S(L/∼), and this will be a homeomorphism.

 Sunday, January , 

We have been working with the relation � from P(ω) to
L. We have used it to define, by () on page , a map
X 7→ Mod(X) from L to P(P(ω)). This map has the prop-
erties given by () and () on page , so that, when we
define the relation ∼ of logical equivalence as in (), the map
X 7→ Mod(X) induces a Boolean-algebra embedding of L/∼
in P(P(ω)). As we have shown (Theorem , page ), the
embedding is an isomorphism with the algebra of clopen sub-
sets of P(ω).

We have also defined by () a “dual” map, Y 7→ Th(Y ),
from P(ω) to P(L/∼). By Theorem  (page ), the map
is a bijection onto S(L/∼), the set of ultrafilters of L/∼.

As by () we define Mod(Γ) when Γ ⊆ L, so we can define

Th(A ) =
⋂

Y ∈A

Th(Y )
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when A ⊆ P(ω). Then

Γ ⊆ ∆ =⇒ Mod(Γ) ⊇ Mod(∆),

A ⊆ B =⇒ Th(A ) ⊇ Th(B).

Simply on this basis,

Mod ◦Th ◦Mod = Mod,

Th ◦Mod ◦Th = Th,

so that there is a one-to-one correspondence, called a Ga-
lois correspondence, between the sets Mod(Γ) and the sets
Th(A ). In the original Galois theory, the correspondence is
between subfields of a field K and subgroups of the group of
automorphisms of K; one obtains this by using, in place of our
�, the relation R from the field to the automorphism group
given by

x R σ ⇐⇒ xσ = x.

In our case, the sets Th(A ) are filters of L/∼, while the sets
Mod(Γ) can be called elementary classes (though all this
means is that they are the classes of models of sets of formulas).

 Stone Representation Theorem. Every Boolean alge-
bra embeds in an algebra P(Ω) for some set Ω.

Proof. If we replace L with an arbitrary Boolean algebra B,
then we can also replace P(ω) with S(B), and � with ∈.
When we define the map x 7→ [x] from B to P(S(B)) by

[a] = {U ∈ S(B) : a ∈ U},

then

[a] ∩ [b] = [a ∧ b],

[a]c = [¬a],
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so the map is a homomorphism of Boolean algebras. It is an
embedding, by the Axiom of Choice, or rather by the weaker
axiom called the Prime Ideal Theorem (which is that every
proper ideal of a ring is included in a prime ideal; the Axiom of
Choice gives that every proper ideal is included in a maximal
ideal; maximal ideals are always prime, but in Boolean rings,
prime ideals are also maximal).

In the proof, the subsets [a] of S(B) serve as the clopen sets
of a topology, the Stone topology; the closed sets are

⋂

x∈I

[x],

where I ⊆ B. This topology is always compact: showing this
comes down to observing that if

⋂

x∈I0
[x] is never empty when

I0 is a finite subset of I, then I is included in a proper filter,
and therefore (by the Prime Ideal Theorem) an ultrafilter U ;
but this just means U ∈

⋂

x∈I [x].
A first-order logic, such as the logic of set theory, de-

fines formulas as in propositional logic, except that the atomic
formulas are not propositional variables, but (in the case of
set theory) formulas x ∈ y; also, if ϕ is a formula, and x is
a variable, then so is ∃x ϕ. One has the notion of a free
variable of a formula; if a formula has no free variable, the
formula is a sentence. Every sentence has a class of models,
which, considered in themselves, are structures. Defining
logical equivalence as before, one obtains a Boolean algebra
of sentences, called a Lindenbaum algebra after a student
of Tarski, murdered by the Nazis. The Stone space of this al-
gebra is automatically compact. The Compactness Theorem
can then be understood as being that every ultrafilter of the
Lindenbaum algebra is in fact the theory of some structure.
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Finally, in the Stone Representation Theorem, instead of a
Boolean algebra, we may start with an arbitrary topological
space and extract its algebra of clopen subsets. However, the
Stone space of this algebra will not be homeomorphic with
the original space unless this is compact and totally discon-
nected (for any two points, some clopen set contains only one
of them).
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