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Introduction

In Chapter , we start with the Poincaré half-plane, which
we shall denote by

H2(R).

This is an example of a hyperbolic plane, namely a set of
points with designated lines and circles—hyperbolic lines

and hyperbolic circles—having certian properties. In H2(R),
the points are those of R2 (or C) with positive y-coordinate
or (imaginary part). A segment of a hyperbolic line is the
path of the shortest journey between the endpoints, if speed
is proportional to y-coordinate. We can compute the time of
the journey with an integral. A hyperbolic circle is the set of
points, reaching any of which takes the same time.

The hyperbolic lines turn out to be semicircles and vertical
rays; the hyperbolic circles, ordinary circles. We can define
these in the upper half-plane associated with any Euclidean

field, namely an ordered field K whose every positive element
is a square. Thus we obtain the hyperbolic plane that we call

H2(K).

Here a hyperbolic segment may not have a length that is a
number; but we can still tell when two segments are equal.
An isometry of the plane takes every segment to an equal
segment. We work out what the isometries are.





In Chapter , we show that every model of Hilbert’s axioms
for a hyperbolic plane is isomorphic to a Poincaré half-plane
over some Euclidean field. This work is based on Hilbert’s
“New Development of Bolyai-Lobachevskian Geometry,” which,
having been translated from Mathematische Annalen , is
Appendix III in the  English edition of Hilbert’s Founda-
tions of Geometry []. In Hilbert’s words, we show

that it is possible to develop Bolyai-Lobachevskian geometry
in the plane exclusively with the plane axioms without the
use of the continuity axioms.

Our specific aim in Chapter  is what Hartshorne [, p. ]
calls

Hilbert’s tour de force, the creation of an abstract field out
of the geometry of a hyperbolic plane.

We set out just enough axioms for this. Thus we differ from
Borsuk and Szmielew in Foundations of Geometry [] (one
of the “additional references” in a note added to the end of
Hilbert’s paper); for they

develop Euclidean and Bolyai-Lobachevskian geometry on
the basis of an axiom system due, in principle, to Hilbert. It
should be noted at once, however, that the authors develop
these geometries, in principle, as far as necessary to be able
to prove them categorical, i.e., to show that the Cartesian
space known from analytic geometry is up to isomorphism
the only model of Euclidean geometry, and Klein space (con-
structed with the help of notions known from the analytic
geometry of projective space) is up to isomorphism the only
model of Bolyai-Lobachevskian geometry.

The field interpreted in these models will be the field of real
numbers. However, in the most general sense, any field (or





even skew-field) yields a “Cartesian space”; any Euclidean field
yields a “Klein space.”

In a footnote on the passage quoted above, Hilbert refers to
similar work in plane elliptic geometry, by Dehn and Hessen-
berg, then in absolute geometry (“even without any assump-
tion about intersecting or nonintersecting lines”), by Hjelm-
slev, in Mathematische Annalen , , and .

Like the Ancients (as Netz [] points out), dispensing with
verbal descriptions, we may let diagrams alone define certain
points.

In the past, I have taught hyperbolic geometry axiomatically,
as in Chapter , but through Lobachevski []. I have then
introduced the Poincaré half-plane as a model, and used this
model for drawing diagrams; but students have had trouble
thinking of curved lines as straight. Chapter  is an attempt
to solve this problem.

The general problem of presenting hyperbolic geometry may
be insoluble, if only because ill defined. Different courses will
have different emphases for different purposes. The present
course concerns the logical interactions between geometry and
algebra. We use analysis at the beginning, only to justify
thinking of certain curved lines as straight. The notes are still
a fairly rough draft.
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. Lines

In the words at the head of Euclid’s Elements [, , , , ],
“a line is breadthless length” (Γραμμὴ μῆκος ἀπλατές). Such
a line may be curved: the circumference of a circle will be an
example.

The English word “line” is the noun corresponding to the
adjective “linen.” This means flaxen and is related to the Latin
linvm, meaning flax. A line is a thread or cord, originally
flaxen. A cord may lie in a heap, or be wound around a spool,
not straight at all; or it may be pulled taut, into a straight
line.

In the Cartesian plane R2, the straight lines are the solu-
tion-sets of equations

ax+ by = c, (.)

where at least one of a and b is not 0, but each, along with
c, is an element of R. If A and B are distinct points in the
plane and have coordinates (a0, a1) and (b0, b1) respectively,

After the definition of a line in the Elements, there is an obscure
definition of a straight line. In The Forgotten Revolution [, pp. –],
Lucio Russo argues plausibly that this definition is only a later addition
to the Elements, its origin being a student’s crib-sheet.





then there is a unique straight line passing through them, and
the segment denoted by AB has length given by the rule

|AB| =
√

(a0 − b0)2 + (a1 − b1)2. (.)

We may also use the notation AB for the whole straight line
that contains A and B.

We consider now lengths of other lines. If (f0, f1) or f is an
injective, continuously differentiable function into R2 from an
interval [0, T ], then we can understand f as a journey, which
proceeds

• from time 0 to time T ,
• from position f(0) to position f(T ).

Suggestively, we may say that
• the domain of f is the period, and
• the range of f is the path,

of the journey. The speed of the journey at each time t is
given by

|f ′(t)| =
√

f0′(t)2 + f1′(t)2.

The length of the journey, or the distance from its beginning
to its end, is ambiguous: it could be the length of the path or
the period.

• The length of the period is just T .
• The length of the path of f is given by

L =

∫ T

0

|f ′(t)| d t =
∫ T

0

|f ′|.

The path of f may also be the range of a (still injective and
continuously differentiable) function γ on an interval [a, b],
where

γ(a) = f(0), γ(b) = f(T ).
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With the substitution

γ(u) = f(t), γ′(u) du = f ′(t) d t, (.)

we obtain the equation

∫ T

0

|f ′| =
∫ b

a

|γ′|.

It may be that the speed of f is constrained by the rule

|f ′| = σ ◦ f, (.)

where σ is a continuous function into R, defined on a subset of
R2 that includes the path of f (which is the range of γ). We are
going to work with a nontrivial example of such a constraint
in the next section and beyond.

Meanwhile, rewriting (.) as

|f ′|
σ ◦ f = 1,

we obtain

T =

∫ T

0

|f ′|
σ ◦ f .

As distance is the time integral of speed, so time is the distance
integral of the inverse of speed. Again using the substitution
(.), we obtain

T =

∫ b

a

|γ′|
σ ◦ γ . (.)

Thus, knowing only a path from a point A to a point B in the
domain of σ, we know how long a journey takes on that path
under the constraint (.).





The constrained journey from A to B that has the shortest
period may not have a straight path. We call it a geodesic

segment (with respect to σ). The length of that shortest
period is then the geodesic distance between A and B. If a
point D is at the same distance from a point C that B is from
A, then the two geodesic segments AB and CD are equal.

An unbounded line whose segments are all geodesic will be a
geodesic line.

In another of the definitions (ὅροι) at the head of Euclid’s
Elements,

A circle is a plane figure bounded by one line, all straight
lines extending to which from one of the points lying inside
the figure are equal to one another; and the center is that
point of the circle. // Κύκλος ἐστὶ σχῆμα ἐπίπεδον ὑπὸ μιᾶς

γραμμῆς περιεχόμενον, πρὸς ἣν ἀφ’ ἑνὸς σημείου τῶν ἐντὸς

τοῦ σχήματος κειμένων πᾶσαι αἱ προσπίπτουσαι εὐθεῖαι ἴσαι

ἀλλήλαις εἰσίν. Κέντρον δὲ τοῦ κύκλου τὸ σημεῖον καλεῖται.

Now we have the notion of a geodesic circle, whose circum-
ference is the locus of points whose geodesic distances from a
given point are all the same. We may confuse a circle with its
circumference.

Let us define a geometry to be an ordered triple of three
sets, the sets consisting respectively of points, straight lines,
and circles. A standard example then is

A2(R),

whose
• points compose R2,
• straight lines are defined by equations (.) as above,
• circles are defined by equations

|z − a|2 = r2,
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where the variable z ranges over C, and also a ∈ K(i)
and r in K.

We shall make use of this example, but also another, which we
are about to define, where the “straight lines” will be geodesic
lines; circles, geodesic circles.

. Poincaré Half-plane

The points of our new geometry will compose the upper half-
plane,

{(x, y) ∈ R2 : y > 0},
which is also {z ∈ C : ℑ(z) > 0}. Geodesics will be determined
as in §. by one of the equivalent rules

σ(x, y) = y, σ(z) = ℑ(z).

The geometry will be the Poincaré half-plane, which we
may denote by

H2(R).

It will be an example of a hyperbolic plane. In such a geometry,
to refer to geodesics, we may use the adjective hyperbolic;

however, we intend no allusion to the conic section called an
hyperbola. For example, the length of the geodesic segment
bounded by A and B is the hyperbolic distance from A to B.
When we do not apply the adjective geodesic or hyperbolic,
we mean a term in the usual sense: the Euclidean sense, to be
considered further in §..

Theorem .. Between two points of H2(R), the geodesic seg-
ment is

) the straight segment joining the points, if they are on the
same vertical line;





) otherwise, the arc that they bound on a circle whose cen-
ter is on the x-axis.

Proof. . Suppose the points are (c, a) and (c, b). Along the
straight path from one to the other, (.) takes the form

T =

∫ b

a

d y

y
.

On an arbitrary path γ, we compute

∫

γ

√

dx2 + d y2

y
=

∫ b

a

√

(d x/ d y)2 + 1

y
d y > T.

. The points being A and B, we let the perpendicular bi-
sector of AB cut the x-axis at O. Letting I be the projection
of A on the x-axis, we define

α = IOA, β = IOB, (.)

assuming then
0 < α < β < π.

Using a system of polar coordinates centered at O, for travel
along the circular arc from A to B centered at O, if the arc
has radius r, from (.) we compute

T =

∫ β

α

r dϑ

r sin ϑ
=

∫ β

α

dϑ

sinϑ
.

This is independent of r. If we follow an arbitrary path,

∫

γ

√

d r2 + (r dϑ)2

r sin ϑ
=

∫ β

α

√

(d r/r dϑ)2 + 1

sinϑ
dϑ > T.
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A geodesic circle in H2(R) will be an ordinary circle, but its
center will be displaced so that its distance from the x-axis
will be, not the arithmetic, but the geometric mean of the
distances of the nearest and farthest points of the circle from
the axis. (Distances from the x-axis can only be meant in the
ordinary, Euclidean sense, since the points of the axis do not
belong to H2(R).)

The following theorem, complicated to state in words, is
illustrated by Figg. . and ..

Theorem .. In H2(R), the geodesic circle whose circumfer-
ence passes through a point E and whose geodesic center is a
point B is the (Euclidean) circle

• whose diameter is AC,
• where A and C are on the same vertical line with B,
• this line cuts the x-axis at O,
• |OA| · |OC| = |OB|2,
• and moreover

) A is E, if this lies on OB;
) otherwise, A is where DE cuts OB,

– D being where the circle with center X and
passing through E cuts the x-axis,

– X being where the perpendicular bisector of BE
cuts the x-axis.

Proof. In Figg. . and .,
• the altitudes AO, DE ′, and D′E of triangle ADD′ meet

(as the altitudes of a triangle always do) at C;
• therefore the circle with diameter DD′ passes through E

and E ′;
• the circle also cuts AO at B and B′.

As a result, the points E and E ′ lie on the circle with diameter
AC. Together with the points B and O,





A

DD′

O X

B′

B

C
E ′

E

Figure .: A hyperbolic circle
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A

DD′

O X

B′

B

C

E ′

E

Figure .: Another hyperbolic circle





) the point E determines A, and
) the point A determines C;

we show this now.
. Given E not on BO, we let angle BOX be right, but also

require X to be equidistant from B and E. Letting the circle
with center X passing through B (and therefore E) cut OX
at D, we let A be the intersection of DE and BO.

. Given A on BO, we choose X arbitrarily so that angle
BOX is right, and then we draw the circle with center X
passing through B, letting the circle cut

• OX at D and D′,
• AD and AD′ at E and E ′ respectively,
• OB also at B′.

We let C be the intersection of AO and DE ′ (and therefore
of DE ′ as well). By similarity of triangles AEC and AOD,
as well as the theorem (found in Euclid) on secants of circles,
and since |OB′| = |OB|,

|AC| · |AO| = |AE| · |AD| = |AB| · |AB′| = |AO|2 − |OB|2.

Thus C is independent of the choice of X.
It is now enough to show that A, C, and E are all at the

same geodesic distance from B.
• AB and BC are equal as geodesic segments, because, if A

and B have y-coordinates a and b respectively, then, as in the
proof of Theorem ., the geodesic length of AB is given by

∫ b

a

d y

y
= log y

∣

∣

b

a
= log b− log a = log

b

a
.

• AB and BE are equal as geodesic segments, because, let-
ting

α = OXB, β = OXE,
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so that

α

2
= ODB,

β

2
= ODE,

we have the geodesic length of EB as given by

∫ β

α

dϑ

sinϑ
= log

tan(β/2)

tan(α/2)
=

a

b
,

where we use
∫

dϑ

sinϑ
= log

∣

∣

∣

∣

tan
ϑ

2

∣

∣

∣

∣

+ C, (.)

which we can derive as follows.

∫ β

α

dϑ

sinϑ
=

∫ β

α

sin ϑ dϑ

sin2 ϑ
=

∫ β

α

sin ϑ dϑ

1− cos2 ϑ
= −

∫ cos β

cosα

d t

1− t2

by the substitution

t = cosϑ, d t = − sinϑ dϑ.

Since

1

1− t2
=

1

(1 + t)(1− t)
=

1

2

(

1

1 + t
+

1

1− t

)

,

so that

−
∫

d t

1− t2
=

1

2
(log|1− t| − log|1 + t|) + C

=
1

2
log

∣

∣

∣

∣

1− t

1 + t

∣

∣

∣

∣

+ C =
1

2
log

|1− t2|
(1 + t)2

+ C,





1 cos ϑ

sinϑ

ϑ
ϑ/2

Figure .: Angle and its half

we conclude
∫

dϑ

sin ϑ
=

1

2
log

1− cos2 ϑ

(1 + cosϑ)2
+ C = log

|sinϑ|
1 + cosϑ

+ C.

We now obtain (.) from the identity (read from Fig. .)

tan
ϑ

2
=

sin ϑ

1 + cos ϑ
.

We note in passing that some sources may use the formula

tan
ϑ

2
=

1− cosϑ

sinϑ
= csc ϑ− cotϑ.

. Euclidean Fields

The field R of real numbers is an example of a Euclidean

field, because it is an ordered field whose every positive ele-
ment has a square root. Thus a Euclidean field is an ordered
field whose ordering is definable by the rule

x 6 y ⇔ ∃z x+ z2 = y.
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Examples of ordered fields are Q and R(t), but these are not
Euclidean. The latter field consists of ratios

a0 + a1t+ · · ·+ amt
m

b0 + b1t+ · · ·+ bntn
,

where ai and bj are from R, and not all bj are 0. The ordering
is determined by

t > 0, 1 + tx > 0

for all x in R(t). This means t is a positive infinitesimal; in
particular, letting x be −n for some positive integer n, we have

0 < t <
1

n
.

The presence of infinitesimals (and therefore infinite elements,
such as 1/t) means R(t) is not Archimedean.

Every ordered field K is included in a smallest Euclidean
ordered field,

KEuc.

We obtain it by continually replacing K with

K[X ]/(X2 − a),

where a is a positive element of K with no square root. The
field KEuc is countable if K is. Since R is not countable, it is
not QEuc. The latter is the smallest Euclidean field; it contains√
2,

√√
2 +

√
3, and so forth.

If K is a Euclidean field, we can form the field K(i), where
as usual i satisfies

z2 + 1 = 0.





Figure .: Hyperbolic circle and radii

We turn the upper half-plane over K,

{(x, y) ∈ K2 : y > 0},

which is
{z ∈ K(i) : ℑ(z) > 0},

into a hyperbolic plane, as we did in case K was R; the result
will be a geometry that we can denote by

H2(K).

However, since we may no longer have the analytic properties
of C, we have not got an obvious theoretical way to define
geodesic lines. We just declare that the analogues of Theorem
. and . shall be true. By fiat then, the curves emanating
from the point in Fig. . are equal radii of a circle.

If B lies between A and C on the x-axis in K2, then the
vertical line though B actually cuts the circle with diameter
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AC, as it would in case K were R. There are two solutions to
the system of equations

(

x− a+ c

2

)2

+ y2 =

(

a− c

2

)2

, x = b

over K, because positive elements of K have square roots.

. Geometric Axioms

The first four of the thirteen books of Euclid’s Elements are
the original exposition of Euclidean plane geometry. The ex-
position begins with some definitions, two of which—for line
and circle—we have seen in §.. Here is another Euclidean
definition, in a fairly literal translation, complete with sub-
junctive mood:

Whenever a straight line, erected on a straight line, make
the adjacent angles equal to one another, a right angle is
either of the equal angles, and perpendicular is called the
former line to that on which it stands. // ῞Οταν δὲ εὐθεῖα ἐπ’

εὐθεῖαν σταθεῖσα τὰς ἐφεξῆς γωνίας ἴσας ἀλλήλαις ποιῇ, ὀρθὴ

ἐκατέρα τῶν ἴσων γωνιῶν ἐστι, καὶ ἡ ἐφεστηκυῖα εὐθεῖα κάθετος

καλεῖται, ἐφ’ ἣν ἐφέστηκεν.

Next are five postulates (αἰτήματα). Their precise meaning is
controversial; we paraphrase them for our purposes:

. Any two points can be joined by a segment of a straight
line. That Euclid intends this segment to be unique is
clear from his proof of SAS, discussed presently.

. Any segment of a straight line can be extended.

Books v and vi develop a theory of proportion; vii–ix, of numbers;
x, of irrationality; xi–xii, of solid geometry.





. A circle can be drawn through any point with any center.
. All right angles are equal.
. If a straight line crosses two others, making the internal

angles on the same side less than two right angles, then
the two lines, extended on that side, will intersect.

There are five additional “common notions” (κοιναὶ ἔννοιαι):

. What are equal to the same are equal to one another.
. If equals be added to equals, the wholes are equal.
. If equals be subtracted from equals, the remainders are

equal.
. What are congruent to one another are equal to one an-

other.
. The whole is greater than the part.

Modern mathematicians may ignore any distinction between
postulates and common notions, but call them all axioms.
They may find in Euclid’s axioms various inadequacies, which
Hilbert attempts to remedy in The Foundations of Geometry
[].

A point on a straight line divides the line into two opposite
rays. Hilbert accepts the following as an axiom, because his
system does not have circles.

Theorem .. By Euclid’s first three postulates and first three
common notions, from a given ray, a segment equal to any
given segment can be cut.

Proof. Let the given segment be AB in Fig. ., and let the
given ray begin at C and pass through D. All segments in the

Heiberg [] lists nine common notions, but brackets the four whereby,
() if unequals be added to equals, the wholes are equal; () doubles and
() halves of the same are equal to one another; () two straight lines
cannot bound a space. Mourmouras [] omits to bracket the last.
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A B C

D
F G H

Figure .: Cutting AB from CD

following are drawn and extended with Postulates  and .

BE = BC & BC = EC, [Postulate ]

BE = EC, [Common Notion ]

BF = BA, [Postulate ]

EG = EF, [Postulate ]

CG = BF, [Common Notion  or ]

CH = CG. [Postulate ]

Likewise, Hilbert accepts as an axiom that, on either side
of a given ray, an angle equal to a given angle can be drawn.
Euclid does the drawing, again by means circles, now using,
in justification, the Side-Side-Side (SSS) theorem.

Hilbert accepts as an axiom Side-Angle-Side, or SAS: If
two sides and the included angle in one triangle are equal re-





Figure .: Geodesic angle

spectively to two sides and the included angle in another tri-
angle, then the remaining angles are equal respectively. (It
follows that the remaining sides are equal too.)

Hilbert uses “equal” and “congruent” as synonyms for a rela-
tion whose properties, even transitivity, are defined by axioms,
as above. For Euclid, equality

• is present in the radii of a circle,
• is explained as congruence.

Congruent things can be made to coincide. Thus Side-Angle-
Side is a theorem for Euclid, because the equations in the
hypothesis mean that one triangle can be laid exactly on top
of the other.

Being congruent is not the same as having the same mea-
surement, although today we may take the latter to determine
equality. This is how we proved Theorem ..

In H2(R), two hyperbolic rays emanating from the same
point form a hyperbolic angle, whose size is that of the
angle formed by the rays tangent to the geodesic rays at their
common endpoint, as in Fig. .. Note that the latter angle
always has positive size, if the hyperbolic rays are distinct,
since such rays are never tangent to one another.

If we are working in H2(K) for an arbitrary Euclidean field
K, a circle still has tangents, namely straight lines, the equa-
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tion of each of which has a single common solution with the
equation of the circle. Thinking of K2 as a vector space, un-
derstanding a point X of the space as (x0, x1), defining

X · Y = x0y0 + x1y1,

we define angles ABC and DEF to be equal, provided

|(A− B) · (C −B)|
|A− B| · |C − B| =

|(D −E) · (F − E|
|D − E| · |F −E| .

The angle ABC is right, provided (A−B) · (C −B) = 0. We
now have the first three of Euclid’s postulates in our setting,
as follows.

Theorem .. In H2(K) for an arbitrary Euclidean field K,
) for any two points, there is a unique geodesic segment

between them;
) any geodesic segment can be extended to a longer one,
) a geodesic circle can be drawn passing through any point

with any center.
) all geodesic right angles are equal to one another.

In H2(K), though we can always extend a hyperbolic seg-
ment, a hyperbolic line has at least one “bound” or “limit” in
K. Given the semicircle in the upper half-plane bounded on
the x-axis by (α, 0) and (β, 0), let us say, as Hilbert does, that
α and β are the ends of the corresponding hyperbolic line.
We may denote the line by

{α, β}.
(See also §..) The ends of the vertical hyperbolic line start-
ing from (α, 0) are α and ∞, and the line itself is

{α,∞}.
Thus





bc

(a) (b)

Figure .: Parallel geodesic rays from horocycles

• a hyperbolic line has two ends;
• a hyperbolic segment, two endpoints;
• a hyperbolic ray, a single end and a single endpoint.

Two hyperbolic rays are parallel if they have the same end.
Then a hyperbolic ray is parallel to a hyperbolic line, and two
hyperbolic lines are parallel, if they share an end. Parallel
hyperbolic rays do not intersect; but some non-intersecting
hyperbolic rays are not parallel.

In each part of Fig. ., geodesic rays are
• parallel to one another,
• at right angles to a horocycle, which is a line (not geo-

desic), the perpendicular bisectors of whose chords all
have a common end.

In place of Euclid’s fifth postulate, we have the following.

Theorem .. In H2(K) for any K, for any hyperbolic line
and any point not lying on it, there are two distinct hyperbolic
rays, emanating from that point, each parallel to the given line,
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α β

C

C ′

(a)

α

C ′′

∞∞

(b)

Figure .: Hyperbolic parallel postulate

but together forming an acute angle, within which any hyper-
bolic ray emanating from the same point cuts the given line.

Proof. If the geodesic line is {α, β}, and the point is C, then
the two rays are those that we may write as Cα and Cβ. See
Fig. ..

. Hyperbolic Automorphisms

An automorphism of a geometry in the sense of §. is a
permutation of the points that induces a permutation of the
straight lines and a permutation of the circles, sending centers
to centers. We seek automorphisms of H2(K).

Theorem .. Every automorphism of H2(K) takes equal seg-
ments to equal segments.





Proof. An automorphism preserves the diagram of Fig. .
used for the proof of Theorem ..

For all z in K(i) ∪ {∞}, we define

z +∞ = ∞ = ∞+ z,

z 6= 0 =⇒ z

0
= ∞ = z · ∞ = ∞ · z,

z 6= ∞ =⇒ z

∞ = 0.



















(.)

We leave 0/0, 0 · ∞, ∞ · 0, and ∞/∞ undefined; but we do
say

∞ = ∞.

We define three permutations of K(i) ∪ {∞} by

r(z) = −z, ι(z) =
1

z
, ρ(z) = −1

z
.

They are indeed permutations, since each is its own inverse.
We shall call the first two reflection and inversion respec-
tively; the third, rotation, for reasons that will become ap-
parent. Each of the three permutations is its own inverse and
is the composite of the other two; since they have order 2, they
commute with one another.

We define also two families of operations on K(i) ∪ {∞} by

da(z) = az, τb(z) = z + b,

where a and b are in K, and a > 0. The operations are also
permutations, since

da
−1 = da−1 , τ

−1
b = τ−b.

Here da is dilation by a, and τb is translation by b.
Each of the permutations of K(i)∪{∞} that we have defined

is also a permutation of either of

 Geometries



• the upper half-plane {z ∈ K(i) : ℑ(z) > 0},
• K ∪ {∞}.

Except “rotation,” our terms allude to what the operations do
in A2(K). In H2(K),

• da is a translation along {0,∞};
• r is reflection about {0,∞};
• ι is reflection about {−1, 1};
• ρ is rotation by π about i.

Theorem .. τb, da, r, ι, and ρ are automorphisms of H2(K).

Proof. Obviously τb, da, and r preserve hyperbolic linearity
and circularity. It is now enough to show that ι does the
same, since ρ = r ◦ ι. We show that ι

) fixes {0,∞},
) interchanges

a) {α,∞} and {α−1, 0}, if α 6= 0;
b) {α− ρ, α+ ρ} and {(α− ρ)−1, (α+ ρ)−1}, if α 6= ρ.

To do so, we note that in {z ∈ K(i) : ℑ(z) > 0},
• {α,∞} is defined by z + z = 2α;
• {α− ρ, α + ρ}, by |z − α|2 = ρ2.

We show that ι

) fixes z + z = 0,
) interchanges

a) z + z = 2α and

∣

∣

∣

∣

z − 1

2α

∣

∣

∣

∣

2

=

(

1

2α

)2

,

b) |z − α|2 = ρ2 and

∣

∣

∣

∣

z − α

α2 − ρ2

∣

∣

∣

∣

=

(

ρ

α2 − ρ2

)2

.

We do this by replacing z with z−1 in one equation, then de-
riving the other. It is clear that z+ z = 0 remains unchanged.
In the other cases,





a) the line is sent to the curve given by

z−1 + z−1 = 2α,

z + z−1 = 2α|z|2,

|z|2 − 1

2α
z − 1

2α
z = 0,

and thus to the indicated circle;
b) the first circle is sent to the curve given by

|z−1 − α|2 = ρ2,

|1− αz|2 = ρ2|z|2,
(

α2 − ρ2
)

|z|2 − αz − αz = −1,

|z|2 − αz

α2 − ρ2
− αz

α2 − ρ2
=

1

ρ2 − α2
,

and thus to the second circle.
So ι permutes hyperbolic lines. In particular, it permutes the
circles not passing through 0 and that have centers on the x-
axis. Therefore it does the same without the last condition.
Moreover, when the circles are in the upper half-plane, ι also
takes hyperbolic centers to hyperbolic centers, since

ac = b2 =⇒ 1

a
· 1
c
=

(

1

b

)2

.

By definition,

SL2(K) =

{(

a b
c d

)

: ad− bc = 1

}

, I =

(

1 0
0 1

)

.

An action of a group (such as SL2(K)) on a structure (such
as a geometry) is a homomorphism from the group into the
group of automorphisms of the structure.
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Theorem .. SL2(K) acts on H2(K) by the rule
(

a b
c d

)

z =
az + b

cz + d
.

The range of the action is generated by ρ and the τb and da.

Proof. The listed automorphisms are the images of
(

0 −1
1 0

)

,

(

1 b
1 0

)

,

(√
a 0
0

√
a−1

)

respectively. Composition of automorphisms will correspond
to multiplication of matrices, since

(

a b
c d

)(

e f
g h

)

=

(

ae + bg af + bh
ce+ dg cf + dh

)

,

a
ez + f

gz + h
+ b

c
ez + f

gz + h
+ d

=
(ae + bg)z + af + bh

(ce+ dg)z + cf + dh
.

Finally, if ad − bc = 1, then

c 6= 0 =⇒ az + b

cz + d
=

a

c
+

bc− ad

c(cz + d)
= (τa/c ◦ ρ ◦ τcd ◦ dc2)z,

c = 0 =⇒ az + b

cz + d
=

az + b

d
=

b

d
+

a

d
· z = (τb/d ◦ da/d)z.

Lemma .. The action of SL2(K) on H2(K) takes any point
to any point.

Proof. c+ di = (τc ◦ dd/b ◦ τ−a)(a+ bi).

Theorem .. The action of SL2(K) on H2(K) takes any ray
to any ray.





ϕ

ϕ 2ϕ

tanϕ− cotϕ 0

i

Figure .: Hyperbolic line through i

Proof. By Lemma ., it is enough to consider rays with end-
point i. Such a ray has the end tanϕ for some ϕ, and then
the normal to the ray at i makes angle 2ϕ to the x-axis, as in
Fig. .. Since

ai + b

ci + d
= i ⇐⇒ ai+ b = di− c ⇐⇒ d = a & c = −b,

an element of SL2(K) that fixes i is precisely a matrix

(

cos ϑ sin ϑ
− sinϑ cosϑ

)

for some ϑ. We may denote the resulting operation on H2(K)
by

ρ2ϑ,
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since, applying the matrix to the end tanϕ, we compute

cos ϑ tanϕ+ sin ϑ

− sin ϑ tanϕ+ cos ϑ
=

cos ϑ sinϕ+ sinϑ cosϕ

− sin ϑ sinϕ+ cosϑ cosϕ

=
sin(ϑ+ ϕ)

cos(ϑ+ ϕ)
= tan(ϑ+ ϕ).

Thus ρ2ϑ effects rotation about i by 2ϑ.

Porism. The kernel of the action of SL2(K) on H2(K) is the
two-element subgroup generated by

(

−1 0
0 −1

)

.

We denote by
PSL2(K)

the quotient of SL2(K) by the kernel in the porism. We may
consider the quotient as a group of automorphisms of H2(K).

Theorem .. PSL2(K) is closed under conjugation by r.

Proof. By Theorem ., we need only note

r ◦ τb ◦ r = τ−b, r ◦ da ◦ r = da, r ◦ ρ ◦ r = ρ.

We can now understand the group of automorphisms of
H2(K) generated by all of the elements listed in Theorem .
as the semidirect product

PSL2(K)⋊ 〈r〉.

Theorem .. For any one point and two ends in H2(K),
the group PSL2(K) ⋊ 〈r〉 of automorphisms of H2(K) has an
element fixing the point and interchanging the ends.





Proof. By Theorem ., there is at most one such element,
and we may assume the point is i. Letting the ends be tanϑ0

and tanϑ1, we have

(ρ2(ϑ0+ϑ1) ◦ r) tanϑj = tanϑ1−j .

Theorem .. In H2(K), if two segments are equal, then an
automorphism in PSL2(K) takes one segment to the other.

Proof. By Theorem . and Fig. ., used for the proof of
Theorem ., if two segments are equal, some automorphism
in PSL2(K) takes one to the other.

Theorem .. The automorphisms in PSL2(K) ⋊ 〈r〉 pre-
serve lengths in H2(K).

Proof. In the proof of Theorem ., since

tan(ϑ+ ϕ) = tan(ϑ′ + ϕ) ⇐⇒ ρ2ϑ = ρ2ϑ′,

ρ2ϑ and is the unique automorphism in PSL2(K) to take the
given ray to the ray with the same endpoint i and end tan(ϑ+
ϕ). Hence, when a segment AB and a ray with endpoint C are
given, a unique element σ of PSL2(K) sends A to C and B to a
point D of the ray. By Theorem ., there is a point D′ of the
ray such that AB = CD′. Then σ must be the automorphism,
which exists by Theorem ., that takes B to D′; so D′ is
D.

Theorem .. The automorphisms in PSL2(K) ⋊ 〈r〉 pre-
serve angle measurements in H2(K).

Proof. This being clear for the other generators, we need only
show it for ι. Since

ι = da ◦ ι ◦ da,
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it is enough to consider angles whose vertices are on the unit
circle. More than that, if rotϑ is rotation in A2(K) by ϑ about
0, then this preserves angles, and

rot−ϑ ◦ι ◦ rotϑ,

so it is enough to consider angles with vertices at i. Since
ι = r◦ρ, it is enough to observe that, by the proof of Theorem
., ρ preserves angles at i.

Theorem .. SAS holds in H2(K).

In H2(K) we can now prove all results of so-called absolute
geometry, namely Euclidean geometry without a parallel pos-
tulate (either Euclid’s or our Theorem .). For example, we
have the following two theorems.

Theorem .. SSS holds in H2(K).

Theorem .. In H2(K), three points are collinear if each
is equidistant from the same two points.

An isometry of a geometry that satisfies the absolute ax-
ioms is a permutation of the points that preserves lengths. An
isometry is automatically an automorphism.

• An isometry of H2(K) preserves angle measurements, by
Theorem ..

• Every element of PSL2(K)⋊〈r〉 is an isometry of H2(K),
by Theorem ..

Theorem .. Every isometry of H2(K) is an automor-
phism in PSL2(K)⋊ 〈r〉.





A B

C

D
Figure .: Perpendicular bisector construction

Proof. By Theorem ., only the identical isometry fixes each
of three non-collinear points. Thus every isometry is deter-
mined by where it sends such points. By Theorems .,
., ., and ., some automorphism in PSL2(K) ⋊ 〈r〉
agrees with the isometry at those points, and therefore ev-
erywhere.

It is not clear whether H2(K) has automorphisms other than
those that we have found. For example, A2(K) has automor-
phisms, such as dilations, that are not isometries.

In H2(K) and A2(K), every automorphism preserves right
angles, because it preserves the diagram in Fig. ..

We shall not know till §. that automorphisms of H2(K)
preserve parallelism.
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 Plane

. Axioms

Hilbert’s axioms for hyperbolic geometry (strictly, hyper-
bolic plane geometry) are as follows. (The naming and numer-
ation are his, not the exact words.)

I. Incidence.

, . Two points lie on exactly one line.
. For every line, at least two points lie on it, but one

does not.
II. Order.

. If B lies between A and C, then
• all three are distinct points of one line, and
• B lies between C and A.

. Between any two points lies a third.
. Of three points of a line, no more than one lies be-

tween the other two.
. If ABC is a proper triangle, a line crossing AB crosses

either AC or CB (if not C itself).
III. Congruence.

. On a given line, on either side of a given point (this
uses order), we can mark off a segment congruent
to a given segment.

. Congruence of segments is transitive.
. Sums of congruent segments are congruent.





. A given ray can always serve as the side of an angle
congruent to a given angle.

. Side-Angle-Side.
IV. Parallels. For any line b and point A not on it, there are

two rays emanating from A that do not cut b, but form
an acute angle, inside of which, any ray from A cuts b.

In the Parallel Axiom, any point of b divides it into two rays,
each parallel to one of the rays emanating from A. According
to Hilbert, that parallelism is symmetric and transitive “fol-
lows immediately.” Apparently this does not mean the proofs
are trivial. For symmetry, a note refers to “a method due to
Gauss. Cf. Bonola-Liebmann, Die nichteuklidische Geometrie
(Leipzig,  and )” and Bonola [, pp. –] (Hilbert
himself gives no page references). Gauss’s proof has two cases;
Lobachevski’s [], with one, seems simpler.

. Ends

A ray and the rays parallel to it compose an end. (This is
consistent with the usage initiated in §..) A point A and
an end α determine the ray Aα. A line with ends α and β is
unique; we shall denote such a line by

{α, β},
since the ends of a line have no intrinsic order. However,
Hilbert calls the line (α, β). We shall construct this line in
Lemma ., using Lemma ., which needs Lemma .. (The
lemmas are Hilbert’s, along with Lemmas . and .; the
labelling of theorems as such is our addition.)

Lemma .. Lines making equal alternate angles with a third
are not parallel in any direction.
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Figure .: Common perpendicular

Proof. If parallel in one direction, then in the other, by sym-
metry (which can be spelled out).

Lemma .. Two lines, as AP and BB′ in Fig. ., that nei-
ther intersect nor are parallel have a common perpendicular,
MN .

Proof. The construction and demonstration is as follows (read-
ing by columns):

AB, PB′ ⊥ BB′,

B′P > BA = B′A′,

B′A′Q = BAQ′,

AQ′ = A′Q,

QR ⊥ BB′,

BR′ = B′R,

B′A′QR ∼= BAQ′R′,

Q′R′ = QR,

and we let MN join the midpoints of RR′ and QQ′. In the
simpler case, where B′P = BA, then MN joins the midpoints





α β

C

D

O

A

B

E

F

Figure .: Line with given ends

of B′B and PA. Otherwise, the point Q exists on AP because
the parallel to A′Q from B′ must cut PA, because that parallel
neither cuts nor, by Lemma ., is parallel to the parallel to
PA drawn from B.

We shall use now an infinitary version of Side-Angle-Side: if
AB = A′B′, and BAα and B′A′α′ are equal as angles, then so
are ABα and A′B′α′.

Lemma .. For any distinct ends α and β as in Fig. ., the
line {α, β} is the common perpendicular EF of the bisectors
of angles CAα and CBβ, where OA = OB.

Proof. We shall show

) the bisectors neither intersect nor are parallel;
) EF lies on {α, β}.
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To establish the latter claim, we observe (usually by symme-
try)

αOB ∼= βOA,

OBC = OAC,

αAE = αBF,

AE = BF,

αAE ∼= αBF,

so the rays from E and F respectively having end α make the
same angle with EF , and therefore they coincide with EF by
Lemma ..

Suppose if possible the angle bisectors meet at a point M .
Then AM = BM and αAM = αBM , so

αAM ∼= αBM,

and in particular αMA = αMB, which is absurd.
Suppose if possible the angle bisectors have the common end

µ. If DB′, equal to DA, is marked off along DB, then

αAD ∼= µB′D,

and so µB′D = αAD = µBD, which is absurd by Lemma
. unless B′ coincides with B. In this case we have another
absurdity,

DAB = DBA = CBA = CAB.

. Euclidean Field

Now let us denote
• some particular end by ∞,





1

∞

−1

0

O

(a) Disk model

∞

−1 10

O

(b) Half-plane model

Figure .: Line of ends

• the set of remaining ends by K,
• a particular element of K by 0,
• a particular point on {0,∞} by O,
• one end of the perpendicular to {0,∞} at O by 1.

We shall make K into a Euclidean field, as suggested by Fig.
..

.. Ordering

On the set of all ends, we define a quaternary relation Q so
that Q(α, β, γ, δ) if and only if {α, γ} crosses {β, δ}. If α, β,
γ, and δ are distinct ends, then

Q(α, β, γ, δ) ⇐⇒ Q(α, β, δ, γ),

and also

Q(α, β, γ, δ) ⇐⇒ Q(ασ, βσ, γσ, δσ),
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where σ is an even permutation of the set {α, β, γ, δ}. We use
Q to order K by defining

α < 0 ⇐⇒ Q(α, 0, 1,∞).

If neither of α and β is 0, we define α < β if and only if one
of the following holds:

α < 0 & Q(∞, α, β, 0),

α < 0 & 0 < β,

0 < α & Q(0, α, β,∞).

The positive ends are those finite ends α for which 0 < α.

.. Addition

Our definition of addition on K will be motivated by an anal-
ogy. In C, when α ∈ R, we can define rα as reflection about
z + z = 2α, so that

rα(z) = α− (z − α) = 2α− z.

Then

rαr0rβ(z) = rαr0(2β − z)

= rα(z − 2β)

= 2α + 2β − z

= rα+β(z).

In our hyperbolic plane, when α in K, we define rα to be
reflection about {α,∞}, so that, if

rα(P ) = P ′

this means either





O B
A

∞

α

∞

β

∞

γ

∞

δ

∞

Figure .: Parallel perpendicular bisectors

• P is on {0,∞}, and P ′ = P , or
• {0,∞} is the perpendicular bisector of PP ′.

Theorem .. Reflection about a line is an automorphism of
the hyperbolic plane.

Proof. We have to show that reflection preserves lengths and
angles. This follows from Side-Angle-Side.

The following corresponds to Lobachevski’s Theorem  and
is illustrated by Fig. ..

Lemma .. In any triangle AOB, if the perpendicular bisec-
tors of AO and OB are parallel, then they are parallel to that
of AB.
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Proof. Hartshorne [] improves on the proofs of Lobachevski
and Hilbert by using Lemma ., as follows. If the perpendic-
ular bisectors of AO and AB
meet, that of OB meets them at the same point, by the usual

proof;
neither meet nor are parallel, the perpendiculars dropped

to their common perpendicular from O, A, and B are
equal, so the perpendicular bisector of OB must also be
perpendicular to that common perpendicular;

are parallel, OB can only be parallel to them.

Lemma .. If α, β, and γ belong to K, then for some δ in
K,

rβrγrα = rδ.

Proof. Hilbert has three cases, but we need only two, by the
method of Hartshorne. (Hartshorne omits the easier case.)

. If the three finite ends are distinct as in Fig. ., let O be
a point on {γ,∞}, and let

rαO = A, rβO = B.

The perpendicular bisector of AB is {δ,∞} for some δ, by
Lemma .. The operation

rδrβrγrα

fixes A and the line through it with end ∞; being also the
product of an even number of reflections, the operation is the
identity.

. If the three ends are not distinct, the only possibility that
is not completely trivial is that α and β coincide. In this case,
we let

δ = rαγ.





We can now define addition in K by the rule

rαr0rβ = rα+β. (.)

Theorem .. The addition just defined makes K an ordered
abelian group.

Proof. Addition is
• associative, since composition is associative;
• commutative, since composition of automorphisms hav-

ing order 2 is commutative.
The additive inverse −α is defined so that the image of {α,∞}
under r0 is {−α,∞}. That the sum of positive ends is positive
can be read from Fig. . when γ = 0, so that δ = α + β.

For a finite end α we define

∞+ α = ∞ = α +∞.

It is not now clear whether an automorphism of the hyper-
bolic plane must preserve parallelism and therefore induce a
permutation of the ends. However, some automorphisms do
this.

Theorem .. Addition of a finite end α is a permutation of
K ∪ {∞} induced by an automorphism of the plane.

Proof. That automorphism is rα/2r0.

.. Multiplication and Inversion

The choice of O on {0,∞} makes the points of this line into an
abelian group under addition. We make the positive ends into
a multiplicative abelian group isomorphic to this one under
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the map that takes α to the point where {α,−α} intersects
{0,∞}; the intersection is at right angles. If A is a point on
{0,∞} corresponding to a positive end α, then the segment
OA has a midpoint B, corresponding to a positive end β, and
in this case

β =
√
α.

We extend the multiplication to all of K r {0} by the usual
rules of signs. We extend multiplication partially to K ∪ {∞}
as in (.) in §..

Theorem .. . Multiplication by a positive end is a per-
mutation of K∪{∞} induced by an automorphism of the
plane.

. Multiplication by −1 is induced by r0.
. Inversion of ends is induced by reflection about {−1, 1}.

Proof. Multiplication by a positive end γ is induced by the
automorphism such that, as in Fig. ., O ·γ is the intersection
of {0,∞} and {γ,−γ}, and if Q is the foot of the perpendicular
from a point P dropped to {0,∞}, then Q ·γ is the foot of the
perpendicular from P ·γ dropped to {0,∞}, and, as segments,

(P · γ)(Q · γ) = PQ, Q(Q · γ) = O(O · γ).
As a special case of (.),

rα·γ+β·γ = rα·γr0rβ·γ.

Applying the automorphism of Theorem . to (.), we obtain

rα·γr0rβ·γ = r(α+β)·γ .

Thus multiplication distributes over addition on K.
Given a hyperbolic plane, we have obtained an ordered field

K. It is straightforward that, as Hartshorne shows [, ., p.
–],





0 1 γ−1−γ

O

C

Q

Q′

P

P ′

∞

Figure .: Automorphism

) K is independent (up to isomorphism) of the choice of
(∞, 0, 1), since an automorphism of the plane will take
one choice to another;

) two hyperbolic planes with isomorphic fields are them-
selves isomorphic, since an isomorphism of lines deter-
mines an isomorphism of points.

. Coordinates

Having obtained an ordered field K from a hyperbolic plane
and a choice of ends denoted respectively ∞, 0, and 1, we shall
describe the plane in terms of K. First we note which lines
pass through O.

Theorem .. In the hyperbolic plane,
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) the line {ξ,∞} contains O if and only if

ξ = 0,

) the line {ξ, η}, neither end infinite, contains O if and
only if

ξ · η = −1.

Proof. . Clear.
. Reflection of the plane about {−1, 1}, and then {0,∞},

fixes
• O, and only this, of all points of the plane;
• {α,−α−1}, and only this, of all lines {α, β}, whenever
α ∈ K r {0}.

Since the line does cross {0,∞}, it must cross at the point.

Theorem .. The point O · α lies on {0,∞} and on every
line {−α · ω, α · ω−1}, but no other line.

Proof. The point is, by Theorem ., the intersection of {0,∞}
and {−α, α}. The rest follows also from Theorem ..

We want to know which lines pass through an arbitrary point
P . For this, we seek an automorphism of the plane that takes
O to P .

Theorem .. In the hyperbolic plane, a line {ξ, η} that is
not {0,∞} contains the intersection of {−ν, ν} and {µ,∞} if
and only if the point

(ξη, ξ + η)

in K2 lies on the line defined by

x− µy + ν2 = 0. (.)





0 µ ν

O · α
O · α + µ

O · ν

∞∞

Figure .: Lines through an arbitrary point

Proof. We show first that the intersection is O ·α+µ for some
α, as in Fig. .. By applying the automorphisms of Theorems
. and . to Theorem ., we know that any point O ·α+ µ
is the intersection with {µ,∞} of no other line, but every line

{−α · ω + µ, α · ω−1 + µ}.

To find which of these is orthogonal to {0,∞}, we solve

−(−α · ω + µ) = α · ω−1 + µ,

α · ω2 − 2µ · ω − α = 0,

ω =
µ±

√

µ2 + α2

α
, ω−1 = ω − 2µ

α
.

Thus O · α + µ is the intersection of {µ,∞} and

{−
√

µ2 + α2,
√

µ2 + α2}.
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Again by Theorem ., O · α + µ lies on {ξ, η} if and only if

ξ − µ

α
· η − µ

α
= −1,

ξη − µ(ξ + η) + µ2 + α2 = 0.

Three lines {α, β}, different from {0,∞}, have a common
point if and only if the three points (αβ, α + β) are collinear
in K2. Thus we recover the hyperbolic plane from K.

Every line defined by an equation (.) corresponds to a
point of the hyperbolic plane, provided

−ν < µ < ν.

Hilbert refers to
(

ξη, (ξ + η)/2
)

as the coordinates of the
line {ξ, η}, and he concludes,

Having seen that the equation of a point in line coordinates
is linear it is easy to deduce the special case of Pascal’s The-
orem for a pair of lines and Desargues’ Theorem for per-
spectively situated triangles as well as the other theorems of
projective geometry.

“Pascal’s Theorem for a pair of lines” is Pappus’s Theorem,
which, along with Desargues’s Theorem, holds in the projec-
tive plane over K. Therefore the duals also hold, and so the
theorems themselves hold in the hyperbolic plane.

Hilbert continues:

The familiar formulas of Bolyai-Lobachevskian geometry can
then also be derived with no difficulty and the development
of this geometry has been thus completed with the aid of
Axioms I-IV alone.

Hartshorne remarks [, p. ],





we have found that calculations seem to work out better if
we continue to think of a line as given by coordinates . . .
and a point as given by an equation. This is the opposite of
the analytic geometry we are used to . . .

He derives the construction of parallels in the next section,
and some formulas, though without discussing Pascal and De-
sargues, as far as I can tell, except for a brief mention of the
former [, p. ],

) as proved by Hjelmslev in the projective plane, in which
he embeds an arbitrary Hilbert plane;

) as shown by Hilbert to be equivalent to commutativity
of the field of segment arithmetic.

This is in the context of an historical sketch of doing geome-
try without continuity, which “reached its modern form in the
book of Artin [].”

. Bolyai’s Parallel Construction

We establish a ruler-and-compass construction of parallels, as-
suming they exist.

Theorem .. In the hyperbolic plane, if
• perpendiculars PS and QR to PQ are erected,
• the perpendicular dropped from R to PS meets this at S,
• the parallel to QR from P meets SR at T ,

then
PT = QR.

Proof. Since PQ ⊥ PS, we may assume, as in Fig. .,

PQ = {0,∞}, PS = {−1, 1}, P = O.
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a b

∞

0 1−a−1 b−1−1−a

R

Q

P

S

T

Figure .: Parallel construction

Since also PQ ⊥ QR, for some finite end a,

QR = {−a, a}.

Since PS ⊥ RS, for some finite end b,

RS = {b, b−1}.

Then finally, since PT passes through O and is parallel to QR,
by Theorem .,

PT = {−a−1, a}.

Rotation of the plane about P so that a goes to 0 is effected
by the automorphism

x 7→ x− a

ax+ 1
,





since
−x−1 − a

−ax−1 + 1
= − 1 + ax

−a + x
.

First translating Q to P , then rotating about P so that 1 goes
to 0, is effected by the automorphism

x 7→ x− a

x+ a
.

These send {b, b−1} to lines that cross PQ at the same point,
since the products of their ends are the same:

x− a

ax+ 1
· x−1 − a

ax−1 + 1
=

x− a

ax+ 1
· 1− ax

a + x

=
x− a

a+ x
· 1− ax

1 + ax
=

x− a

x+ a
· x

−1 − a

x−1 + a
.

According to Hartshorne, by the classification of Hilbert
planes (satisfying Axioms I–III) by Pejas, the construction
must work in any such plane satisfying Archimedes’s Axiom
and also the axiom of intersection of two circles (they intersect
if each encircles a point of the other).
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