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CHAPTER III

PROJECTIVE CONFIGURATIONS

In this chapter we shall learn about geometrical facts that can
be formulated and proved without any measurement or comparison
of distances or of angles. It might be imagined that no significant
properties of a figure could be found if we do without measurement
of distances and angles and that only vague statements could be
made. And indeed research was confined to the metrical side of
geometry for a long time, and questions of the kind we shall discuss
in this chapter arose only later, when the phenomena underlying
perspective painting were being studied scientifically. Thus, if a
plane figure is projected from a point onto another plane, distances
and angles are changed, and in addition, parallel lines may be
changed into lines that are not parallel; but certain essential
properties must nevertheless remain intact, since we could not
otherwise recognize the projection as being a true picture of
the original figure.

In this way, the process of projecting led to a new theory, which
was called projective geometry because of its origin. Since the
19th century, projective geometry has occupied a central position in
geometric research. With the introduction of homogeneous co-
ordinates, it became possible to reduce the theorems of projective
geometry to algebraic equations in much the same way that
Cartesian coordinates allow this to be done for the theorems of
metric geometry. But projective analytic geometry is distinguished
by the fact that it is far more symmetrical and general than metric
analytic geometry, and when one wishes, conversely, to interpret
higher algebraic relations geometrically, one often transforms the
relations into homogeneous form and interprets the variables as
homogeneous coordinates, because the metric interpretation in
Cartesian coordinates would be too unwieldy.

The elementary figures of projective geometry are points, straight
lines, and planes. The elementary results of projective geometry

94



§ 15. PRELIMINARY REMARKS ABOUT PLANE CONFIGURATIONS 95

deal with the simplest possible relations between these entities,
namely their incidence. The word incidence covers all the follow-
ing relations: A point lying on a straight line, a point lying in a
plane, a straight line lying in a plane. Clearly, the three statements
that a straight line passes through a point, that a plane passes
through a point, that a plane passes through a straight line, are
respectively equivalent to the first three. The term incidence was
introduced to give these three pairs of statements symmetrical
form: a straight line is incident with a point, a plane is incident
with a point, a plane is incident with a straight line.

The theorems relating to incidence are by far the most important
theorems of projective geometry. However, we use two other
fundamental concepts, which can not be derived from the concept
of incidence. First, we have to distinguish between two different
ways in which four collinear points may be arranged; second, we
need the concept of continuity, which relates the set of all points
on a straight line to the set of all numbers. This completes the list
of the basic concepts of projective geometry.

We shall study a particularly instructive part of projective
geometry—the configurations. This will also reveal certain aspects
of various other geometrical problems. It might be mentioned
here that there was a time when the study of configurations was
considered the most important branch of all geometry.!

§ 15. Preliminary Remarks About Plane Configurations

We define a plane configuration as a system of » points and !
straight lines arranged in a plane in such a way that every point
of the system is incident with a fixed number 1 of straight lines of
the system and every straight line of the system is incident with
a fixed number n of points of the system. We characterize such a
configuration by the symbol (p,1,). The four numbers p, I, =,
and 1 may not be chosen quite arbitrarily. For, by the conditions
we have stipulated, Ap straight lines of the system, in all, pass
through the p points; however, every straight line is counted =
times because it passes through = points; thus the number of
straight lines [ is equal to Ap/n. It is seen, then, that the following

* A comprehensive treatment of the subject is given in the book Geometrische
Konfigurationen by F. Levi (Leipzig, 1929).



96 III. PROJECTIVE CONFIGURATIONS

relation must be true for every configuration:
pAi==1lan.

The simplest configuration consists of a point and a straight line
passing through it; it has the symbol (1,1,). The triangle forms
the configuration next in order of simplicity, (8.3.). Four straight
lines in the plane, no two of which are parallel and no three of
which have a common point, give us six points of intersection
A,B,C, D, E, and F (see Fig. 104). The figure thus obtained,
which is the well-known figure of the complete quadrilateral, is a
configuration with the symbol (6.4;). (Note that the equation
6.2 — 3.4 confirms our general formula.) In this case, as opposed
to the first two trivial cases, not all the straight lines joining points
of the configuration are lines of the configuration; similarly, in the
general case the points at which the straight lines of a configuration
intersect need not all belong to the configuration.

In order to obtain all the straight lines connecting points of
the configuration of Fig. 104, we need to adjoin the diagonals
AD,BE,CF. This also gives us the vertices P, Q, R of the triangle
formed by the diagonals as
additional points of intersec-
tion. One might think that
the continued process of con-
necting points and adjoining
new points of intersection of
straight lines might ultimately
lead to a configuration that
shares the property of the tri-
angle that the straight line con-
necting any two points of the configuration is itself a line belonging
to the configuration and the point of intersection of any two straight
lines of the configuration is itself a point belonging to the configura-
tion. However, it may be proved that, except for the triangle, no
configuration with this property exists. If, starting with a quadri-
lateral, we keep connecting points by straight lines and adjoining
new points of intersection, it can even be shown that there will ulti-
mately be such points of intersection lying as close as we please to
every point of the plane. The figure obtained in this way is called a
Moebius net; it may be used for defining projective coordinates.

F1G. 104



§ 15. PRELIMINARY REMARKS ABOUT PLANE CONFIGURATIONS 97

For the sake of subsequent application, we remind the reader of
the significance of the quadrilateral for the construction of harmonic
sets of points. Four points C, P, F, Q on a straight line are called
a harmonic set—or Q is called the fourth harmonic of P with
respect to C and F—if a quadrilateral can be constructed in which
these points are determined by the same incidence relations as in
Fig. 104. A theorem that is fundamental for projective geometry
says that any three points on a straight line have exactly one fourth
harmonic. According to this theorem,®? we may use the points
C, P, F as starting points for the construction of two different
quadrilaterals but we will come out both times with the same
point Q (see Fig. 105).

In the following pages we shall discuss principally those con-
figurations in which the number of points is equal to the number

Y/

F1c. 105

of lines, i.e. for which p=1. Then it follows from the relation
pi=nl that A==, so that the symbol for such a configuration
is always of the form (p,p,). We shall introduce the more concise
notation (p,) for such a configuration. Furthermore, we shall
make the reasonable stipulation that the configuration be connected
and be not decomposable into separate figures.

The cases 1=1 and 1= 2 are unimportant. i1=1 yields only
the trivial configuration consisting of a point and a straight line
passing through it. For, if a configuration with 1 =1 had several

®Thig theorem is an immediate consequence of the theorem of Desargues
discussed in § 19.
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points, it would necessarily consist of separate parts, since no
straight line of the configuration may contain more than one point.
The case 4 = 2 is realized by ‘the closed polygons in the plane;-and
conversely, the conditions that each point of a configuration (p.)
be incident with two straight lines and each straight line with two
points may be seen to imply that every configuration of the form
(p.) consists of the vertices and sides of a p-sided polygon.

On the other hand, the case 1 = 8 gives rise to many interesting
configurations. In this case the number of points (and straight
lines), p, must be at least seven. For through any given point of
the configuration there pass three lines, on each of which there
must be two further points of the configuration. We shall go into
detail only for the cases where 7 < p < 10.

§ 16. The Configurations (7;) and (8;)

In constructing a configuration with the symbol (p,), the follow-
ing method will be found the simplest: We label the p points with
the numbers 1 through » and label the p straight lines, similarly,
with the numbers (1) through (p). Then we set up a rectangular
scheme of pi points in which the 1 points incident with any given
straight line are arranged in a column; there will be p columns
corresponding to the p straight lines.

In this way, the scheme corresponding to the configuration (7;)
is as follows:

1 @ G @ 6) 6) (1)

In filling in the spaces, the following three conditions must be
satisfied. First, the numbers written in any one column must all
be different to ensure that no less than three points are on any
given straight line. Second, two different columns cannot have two
numbers in common, as this would make the straight lines corres-
ponding to the columns coincide. And third, every number must
occur three times in all, since three straight lines are supposed to
pass through every point. These three conditions are certainly
necessary if a geometrical counterpart for the schematic tdble is
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to exist. On the other hand, they are not sufficient, as we shall
soon. see by some examples. The reason for this is that the geo-
metrical realization of a table also depends on seme geometric or
algebraic considerations which cannot be directly expressed in terms
of the arithmetic scheme. But if a table does represent a configura-
tion, then it admits several alterations that do not affect the con-
figuration in any way. Thus the vertical order of the numbers in
any column may be changed. Also, the order of the columns them-
selves may be changed, as this only corresponds to a renumbering
of the straight lines. And finally, the numbering of the points may
also be changed at will. Since all these alterations in the schematic
representation leave the configuration unchanged, we shall consider
all tables differing only by such transformations as identical.
With this understanding, we may construct one, but only one,
table having the symbol (7;). To begin with, we denote the points
on the first straight line by 1, 2, and 8. Then two more straight
lines pass through the point 1, and they cannot contain the points
2 and 3. Let us denote the points of the second straight line by
4 and 5, and those of the third straight line by 6 and 7. Now all the
points are numbered and the table is partly filled in, as follows:

1 1

[VCR S

5 7

In the remaining columns, each of the numbers 2 and 3 has to
appear two more times, subject to the condition that they be not
both in one column. Hence we complete the first row as follows:

1 1 1 2 2 8 3

[3]

The numbers 1, 2, and 3 are used up, and only 4, 5, 6, and 7 are
available for filling in the remaining eight places. The number 4
has to appear two more times and may not be written under the
same number both times. Thus we may place the 4’s as follows:
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All the other possible arrangements are not essentially different
from this one. Again, 5 has to occur twice, but may no longer
occur under a 4. Thus we may write

The first two of the four remaining places have to be occupied by
6 and 7 because they are the only numbers left and because we
can not use the same one of them in both columns containing a 2.
Interchanging the numbers 6 and 7 would not constitute an essen-
tial modification, and so we may write

The remaining places are necessarily filled in the order 7, 6. Thus
we have indeed obtained just one possibility for the configura-
tion (7;), namely

We have already mentioned earlier that the existence of this
table does not imply the exist-
ence of an actual configura-
tion (7;). Now it will turn
out that such a configuration
is indeed impossible. This may
be seen by trying to find the
equations of the straight lines
of the table by the methods
of analytic geometry, which
leads to an incompatible sys-
tem of equations. We can also demonstrate the non-existence of the
configuration by means of a diagram. To begin with, we draw the
straight lines (1) and (2) of Fig. 106, denote their point of inter-
section by 1 as indicated in the table, and let 2, 3 and 4, 5 be

F1G. 106



§ 16. THE CONFIGURATIONS (7s) AND (8;) 101

arbitrary pairs of points on the lines (1) and (2) respectively.
Then we draw the straight lines (4) and (7) whose positions are
fixed by the pairs of points 2, 4 and 8, 5 and whose point of inter-
section, according to the table, has to be labeled 6. Similarly, the
pairs of points 2, 5 and 8, 4 determine the lines (5) and (6) and
their point of intersection 7. All the points of the configuration
are now determined. But the three points 1, 6, and 7, which are
supposed to be on the remaining straight line (8), are not collinear,
so that the intersection of the lines (17) and (7) gives us an addi-
tional point 6’. It might be imagined that this is due to an un-
fortunate choice of the points 2, 8, 4, and 5. But such is not the
case. For, our figure is a reproduction of the harmonic construc-
tion of Fig. 104; consequently, 6’ is the fourth harmonic of the
point 6 with respect to 8 and 5, and it follows by an elementary
theorem of projective geometry that 6’ cannot coincide with any
of these three points.

We turn to the configuration (8;). By the same method as before,
it can be shown that there is essentially only one possible table,
namely

(1) (2) 3) (4) (5) (6) (7) (8)
1 1 1 2 2 3 3 4
2 4 6 3 7 4 5 5
5 8 7 6 8 7 8 6

The configuration may be interpreted as consisting of two quadri-
laterals 1234 and 5678 each of which is in- 2
scribed in and at the same time circumscribed
about the other (see Fig. 107; see also the
footnote on p. 110). For, the line 12 passes
through the point 5, the line 23 through the
point 6, the line 34 through the point 7, and
the line 41 through the point 8, and at the
same time the sides 56, 67, 78, and 85 are
incident with the points 4, 1, 2, and 3, respec-
tively. Obviously, it is not possible to draw a
configuration of this kind. Applying analytic
methods, we find that the table gives rise to a system of equa-
tions which—while it does not contain a contradiction, as in the

Fic. 107



102 ITI. PROJECTIVE CONFIGURATIONS

case of (7;)—has, however, complex solutions only, and never
any real solutions.

The configuration is nevertheless not without geometric interest
and has an important role in the theory of third-order plane curves
without double points. These curves have nine points of inflection,
but at most three of them can be real. Furthermore, it can be
demonstrated algebraically that every straight line connecting any
two of these points of inflection must pass through a third point of
inflection. No four points of inflection, on the other hand, can ever
be collinear, because a third-order curve cannot meet a straight
line in more than three points. Now, the straight lines connecting
points of inflection form a configuration, and we have for this
configuration p =9, a=38. Also, i=4, which can be seen as
follows: If any point of inflection is selected, the remaining eight
of them are collinear with it in pairs, so that each point is in fact
incident with four straight lines. The formula [l = pi/a gives the
value 12 for I. Thus the configuration is of the type (9.12;). For
the table of such a configuration there is essentially only one
possibility, namely
1)y (2) (3) (4) (5) (7 (8) 9) (@10) (@(11) (@12)
1 2 5 6
3 4 T 8
9 9 9 9

00 i = N
PO SN
A W N
00 -3 o Ot
—_~
S I e
N
0 o e
D N

If the point 9 and the lines passing through it, viz. (9), (10), (11),
and (12), are omitted from this table, what remains is precisely
the same as our table (8;). The configuration (8;) is also obtained
on the omission of any other one of the nine points together with
the four straight lines passing through it. For it is found that all
the points of the configuration (9,12;) are equivalent.

§ 17. The Configurations (9;)

While the cases » = 7 and p = 8 gave rise to only one table each,
neither of which could be realized geometrically, the case p =9
gives rise to three essentially different tables, and all of them repre-
sent configurations of real points and lines.

By far the most important of these configurations, and indeed
the most important configuration of all geometry, is the one known
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as the Brianchon-Pascal configuration. For the sake of brevity
we shall give it the symbol (9;), and use the symbols (9;). and
(9;) ; for the other two configurations of type (9;).

The table for the configuration (9;), may be written as follows:

) (6) (7) (8) (9)

8
4
6
9

W -3 N O
[o I~ I VU )
W Wt W
0 -3

In drawing such a configuration, we begin with the points 8 and
9, which may be chosen arbitrarily (see Fig. 108), and draw the
arbitrary straight lines (4), (6), and (9) through 8, and (5), (7),
and (8) through 9. Six of
the nine resulting points of
intersection belong to the
configuration; in accord-
ance with the table, we
shall designate them by 2,
3, 4,5, 6, and 7. These six
points fix the positions of
the remaining straight lines
(1), (2),and (3). First of & 5 —S
all, we draw the line ‘(1) Fre. 108
through 2 and 8, and the line (2) through 4 and 5. Their point of
intersection has to be labeled 1. The straight line (8) is determined
by the points 6 and 7. According to the table, this line must pass
through 1. Now it is found that this condition is automatically
satisfied despite the arbitrary choice of the points 8 and 9 and of
the three straight lines through each of these points.

The geometric reason for this surprising phenomenon lies in the
theorems of Brianchon, which we shall now study.

Our point of departure is the hyperboloid of one sheet. As we
have seen in Chapter I, the surface contains two families of
straight lines such that every straight line of one family inter-
sects every straight line of the other, while two lines of the same
family never meet. Let us pick three straight lines of one family
(drawn as double lines in Fig. 109) and three of the other (drawn
as heavy single lines in the figure), from which we obtain the
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hexagon ABCDEFA in space, as follows: On a straight line of
the first family we move from A to B; a definite line of the second
family passes through B, and along this we move to a point C; from
C we follow the straight line of the first family passing through
that point to another point D; thence we move to E along a line
of the second family, and finally follow a line of the first family to
that point F' where it intersects the line of the second family that
goes through A. Thus the sides of the hexagon belong alternately
to the first family and the second.

We shall now prove that all three diagonals AD, BE, and CF of
the hexagon have a point in common. We begin with AD and BE.
The sides AB and DE of the hexagon have a common point because
A B belongs to one and DE to the other family of straight lines on

F the hyperboloid. Therefore the four points
A, B, D, E lie in one plane, and so AD and
BE also have a point in common. In exactly
the same way it can be shown that each of the
8 \r other two pairs of diagonals also intersects

/ at a point. But three straight lines that inter-
sect each other in pairs are coplanar, or, if
not, must all pass through a common point.
Now if the three diagonals of the hexagon
ABCDEF were all in one plane, the hexagon
itself would also have to lie in this plane, and any two of its sides
would have a point in common ; this is ruled out, since AB and CD
(to give one example) are straight lines of the same family and
therefore cannot intersect each other. All three diagonals do,
accordingly, pass through one point.

This theorem of the geometry of space leads to the Brianchon
theorems of plane geometry. To obtain them, we look at the hyper-
boloid of one sheet from a point P, which for the time being we shall
assume not to lie on the surface. The contour of the hyperboloid as
seen from this point is a conic section which may be either a hyper-
bola (Fig. 110) or an ellipse (Fig. 111). The area on one side of the
contour appears empty, while the region on the other side appears
doubly covered, what appear to be two layers in the picture being
connected along the conic forming the contour. The straight lines
of the surface are partly visible in the picture, and partly covered.
Thus, they extend from one layer into the other and must therefore

v

F1c. 109



§ 17. THE CONFIGURATIONS (9;) 105

meet the contour. On the other hand, they can not intersect that
curve, since one side of it is empty. Hence our hexagon in space has
become a plane hexagon whose sides are tangent to a conic; this
gives us the following theorem of plane geometry:

The diagonals of a hexagon that is circumscribed about a conic
intersect at one point.

So far we have not proved the theorem except for those conics
that can be obtained as the outline of a hyperboloid of one sheet,
that is, only for certain ellipses and hyperbolas. But we shall
immediately see that the outline can also be a parabola. For, the
lines of sight which give rise to the outline—or, more technically,

F1G. 110 Fic. 111

a central projection—form the tangent cone of the surface with
the vertex P, i.e. a second-order cone (see p. 12) ; but the outline,
or central projection, is the curve in which this cone intersects the
image plane, and this is a parabola if we choose as the image plane a
plane parallel to one of the generators of the cone (see pp. 12, 13, 8).

We shall now go over to the case where the surface is observed
from a point P (the center of projection) that is on the surface
itself. Here, the two straight lines of the surface that pass through
P are seen as two points, while the other straight lines are still
seen as straight lines. And since every line of one family intersects
the line of the other family that passes through the center of pro-
jection, the first family is seen as a pencil of lines whose vertex is
the image of the straight line g of the other family that passes
through P. Similarly, the other family is also seen as a pencil of
lines. The vertices of the twé pencils are distinct, being the images
of two different straight lines passing through P. The following
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theorem is accordingly a consequence of the theorem about the
space hexagon:

The diagonals of a plane hexagon whose sides pass alternately
through two fixed pointls, meet at a point.

These theorems about the tangent hexagons. of one of the three
types of conics or of a
degenerate conic consist-
ing of a pair of points
are called Brianchon’s
theorems, after their
discoverer. The point at
which the three diagonals
meet is called the Brian-
chon point.

Our space construction
does not, to be sure, com-
plete the proof of Brianchon’s theorems, as it might be possible
that not every Brianchon hexagon can be obtained as a projection
of a space hexagon of the type we have considered. It can be proved,
however, that it is indeed possible to start with any hexagon that
satisfies the Brianchon assumptions and construct from it a spatial
figure of the sort we have
been considering.

Now the last of the
Brianchon theorems is
closely connected with the
configuration (9;), and
explains the fact that the
last incidence condition is
automatically satisfied in
the construction of this
Fie. 113 configuration. Indeed we
see that, in the notation of Figs. 112 and 108, the points 2, 4, 6,
8, 5, 7 form a hexagon whose sides pass alternately through the
points 8 and 9, and the straight lines (1), (2), and (8) are the
diagonals 23, 45, and 67 of this hexagon. So (3) must pass through
the point of intersection 1 of the straight lines (1) and (2), and
1 is the Brianchon point of the hexagon:

In our censtruction, the points of the configuration (9;), do not

F16. 112
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all play the same roles: the points 2, 4, 6, 3, 5, 7 form the hexagon;
8 and 9 are the points through which the sides pass; and 1 is the
Brianchon point. But this lack of symmetry is not inherent in
the configuration but is due 4
to an arbitrary choice on
our part. For we may
also assign the role of the
Brianchon point to 8 or 9.
It is sufficient to make this
clear as regards the point 8
(see Fig. 113), since we see
from Fig. 112 that 8 and
9 are alike. Similarly, we
may choose any one of the Fic. 114
points 2, 4, 6, 3, 5, 7 for the role of Brianchon point. Again, it is
sufficient to show this for the point 2 (see Fig. 114), since all the
points 2, 4, 6, 3, 5, 7 are alike in their relation to the rest of the figure.
Owing to this inherent symmetry, (9;), is called a regular con-
figuration. In much the same way as in the study of point systems
and polyhedra, we arrive at the concept of regularity by the study

5
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Jf certain mappings of a configuration into itself which are called
“automorphisms” and are analogous to the symmetry transforma-
tions in the case of point systems and polyhedra. We obtain an
automorphism of a configuration if we can permute its points and
its lines in such a way that no incidence is lost and no new incid-
ence added. It is easy to see that the automorphisms form a group.
‘Now.a configuration is called regular if the group of its automor-
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phisms is ‘“transitive,” i.e. if it contains enough transformations
so that every point of the configuration can be transformed into
every other point of the configuration by one of them.

For the study of the automorphisms of a configuration it suffices
to consider its abstract scheme. In this way it may be shown that

¢ the tables for (7;) and
(8;) are regular. The
same is true for (9.12;)
(see p. 102).

Let us now turn to the
other two configurations
(9;). They are shown in
Figs. 115 and 116. In
order to see what it is that
differentiates the three
configurations of the type
(9;), we may proceed as
follows. Since every point in a configuration (p;) is connected
with exactly six others by lines of the configuration, it follows in
the case p = 9 that for every point of the configuration there are
exactly two others not connected with it. For example, in (9;),
the points 8 and 9 are not connected with 1. Also there is no line
connecting 8 with 9. Hence 1, 8, and 9 form a triangle of uncon-
nected points. Similarly 2, 5, 6 and 3, 4, 7 form such triangles
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(Fig. 117). Let us use the same procedure for (9;). and (9;)s,
combining the paths between unconnected points to form polygons.
In the case (9;). we get a nonagon (Fig. 118), and in (9;); a
hexagon and a triangle (Fig. 119). This tells us, first, that the
three figures 108, 115, and 116 do not merely differ in the positions
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of their points but are essentially different configurations. Further-
more, we may conclude that the configuration (9;); cannot possibly
be regular. For, an automorphism can transform points of the
hexagon only into points of the hexagon, and never into points of
the triangle. In the case (9;);, on the other hand, the regular
arrangement of the unconnected
points leads us to conjecture that
the configuration is regular.
This is confirmed by further
inspection of the table.

We may try to construct the
other two configurations step by 7 6 ¢

. F1c. 120

step in much the same way as

we constructed (9;),. But we then find that the last incidence
condition is no longer satisfied automatically but is satisfied only
if special provisions have been made in the preceding steps. This is
the reason why (9;). and (9,), are not of such fundamental import-
ance as (9;),; they do not express a general theorem of projective
geometry. Fig. 120 illustrates a case in which the last straight
line of (9;). cannot be drawn.

The auxiliary constructions that are necessary to make possible
the construction of (9;).
and (9;); are, however,
distinguished by a special
property: they can be
carried out by means of a
ruler alone, so that all
three of the configurations
(9;) can be constructed
without any instruments
except a ruler This is
expressed analytically by
the fact that all the ele-
ments of the configuration can be determined by the successive
solution of linear equations in which the coefficients of each equa-
tion are rational functions of the characteristic quantities of the
configuration that have already been determined from the preced-
ing equations. It is quite true, of course, that the equations of
straight lines are always linear. But in obtaining the system of

F1c. 121
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equations of a configuration, the coefficients of some of the equa-
tions have to be computed from other equations by elimination,
since some of the straight lines are fixed by the straight lines that
have been constructed before. In the general case, this elimination

7
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gives rise to equations of higher degree; this must be the case
in (8;) since we could not otherwise get any complex elements.
Now the special property of the configurations (9;) is that all the
auxiliary equations are linear, with the result that all three con-

; figurations can be con-
structed in the real plane
and with the sole use of a
ruler.

The arrangement of the
elements in the configura-
tions (9;) may be in-
terpreted in a variety of
different ways. For ex-
9 5 > ample, each of the config-
urations can be considered
as forming three triangles of which the first is inscribed in the
second, the second in the third, and the third in the first.!

! The word “inscribed” is used here in a generalized sense; thus in Fig. 121,
the triangle 468 is said to be inscribed in triangle 157 because 4 is on the straight
line 1B, 6 on the straight line 17, and 8 on the straight line 75, although 4 and 8
are not on the segments 15 and 75 but on their continuations. “Circumscribed”
is used in the corresponding general sense, triangle A being “circumscribed”
about triangle B if triangle B is “inscribed” in triangle A. The same remarks
apply to the use below of “inscribed” and “circumscribed” in reference to general
polygons. [Trans.]
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The triangles 157, 239, 468 of Fig. 121, the triangles 258,
369, 147 of Fig. 122, and the triangles 147, 258, and 369 of
Fig. 123 are examples of such systems of triangles. Similarly
we interpreted (8;) as a pair of mutually inscribed and cir-
cumscribed quadrilaterals (see Fig. 107, p. 101). The three con-
figurations (9;) can also be interpreted as nonagons inscribed in
and circumscribed about themselves; examples of such nonagons
are 2361594872 of Fig. 124, 1627384951 of Fig. 125, and
1473695281 of Fig. 126. In the configuration (9;), we can find
several additional nonagons with the same properties, by applying
suitable automorphisms.

The construction of p-sided polygons that are inscribed in and
circumscribed about themselves necessarily leads to configurations
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of the type (ps;). For, every side of the polygon contains one vertex
of the polygon in addition to the vertices it connects, and every
vertex, likewise, must be incident with three sides of the polygon.
The only assumption needed in this argument was that all the
sides and all the vertices of the polygon play the same role. If this
assumption were not made, one side could centain two or more
extra vertices; but then some other side of the polygon would have
to be empty.

(75) and (8;) may also be interpreted as being p-sided polygons
of this type. In the notation of the configuration tables, the
heptagon 12457361 and the octagon 126584871 are inscribed
in and circumscribed about themselves.

In order to understand another important property of configura-
tions, we must study the principle of duality. It is this prineiple
that confers upon projective geometry its special clarity and
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symmetry. It may be derived in visual terms from the method of
projecting, which we have already used in arriving at Brianchon’s
theorems.

§ 18. Perspective, Ideal Elements, and the Principle of
Duality in the Plane

If we draw the picture of a flat landscape on the blackboard, the
landscape being a horizontal plane and the blackboard a vertical
plane, then the image of the horizontal plane appears to be bounded

Fi1c. 127

by a straight line h, the horizon (see Fig. 127). Two parallel
straight lines in the horizontal plane which are not parallel to the
plane of the blackboard appear in the picture as straight lines that
meet on the horizon. In painting, the point of intersection of the two
lines in the image is called the vanishing point of the parallel lines.

We see, then, that the images of parallel lines under central per-
spective are not usually parallel. We see furthermore that the
mapping effected is not one-to-one. The points of the horizon on
the image plane do not represent any points of the original plane.
Conversely, there are points of the plane which do not have an
image. These are the points of the straight line f that is vertically
below the observer R and parallel to the image plane (Fig. 127).

The description of this phenomenon can be simplified by replac-
ing each point of the plane by the line of sight passing through
the point. Thus we replace every point P of the plane e (Fig. 128)
by the straight line AP = p connecting P with A, the point where
the observer’s eye is located. Then the image of P on an arbitrarily
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placed board ¢ is the point P’ at which the straight line p meets the
board; thus the mapping is determined once P is given. If P
describes a curve in e, then p sweeps out a cone with A as vertex.
The image of the curve on ¢t is the intersection of ¢ and the cone.
In particular, if P moves along a straight line g in e, the cone
becomes the plane y that contains A and g. Thus, while the points
of e become straight lines through A, the straight lines of e give
rise to planes through A. The image on ¢t of the straight line ¢
is the intersection of ¢ and y, i.e. another straight line g’. This
property of transforming straight lines into straight lines is the
most important property of a central perspective.

We have expressed the perspective mapping as the resultant of

A
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two transformations that are of types that may be considered as
the inverses of each other. First the points (P) and straight lines
(g) of a plane are replaced by the straight lines (p) and the planes
(7) passing through A, and then the straight lines and planes
through A are transformed into the points (P’) and straight lines
(9’) of another plane. For reasons of symmetry, it therefore suffices
to study only the first step.

This transformation e > A is fully defined only in the given
direction, not in the reverse direction A — e¢. The transformation
assigns a special role to those straight lines through A that are
parallel to e; they do not correspond to any point of e, while each
of the remaining straight lines through A belongs to a definite
point of e, namely the point at which it intersects e. The straight
lines p, through A parallel to the plane e fill out a plane y,, the
plane through A that is parallel to e (see Fig. 129). Of all the
planes containing A, y, is also the one that plays an anomalous
role in the transformation A —» e¢. For, each of the other planes
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through A is associated with a definite straight line g of e, the
line in which it cuts e, but no such straight line corresponds to the
plane y,, since it does not meet e.

Now it is expedient to eliminate these exceptions conceptually by
assigning additional points P, to the plane e, as “infinitely distant”
or “ideal” points. These “points” are defined by the stipulation that
they shall be the images of the rays p, in the transformation 4 — e.
They are regarded as constituting, in their totality, the image of
the plane y,. In order to divest this plane of its anomalous position
in relation to the other planes passing through A, we have to call
its image a straight line. We therefore say that the infinitely
distant points of e form a straight line g,, the so-called infinitely
distant? or “ideal” line of e. Clearly the mapping of the points and
straight lines of e¢ into the straight lines and planes through A4 is
fully defined and one-to-one once we have supplemented the plane e
in the manner described.

The suitability of the definitions we have introduced becomes
apparent on examining the central perspective of e onto any other
plane £. The plane ¢t must also be supplemented by ideal points
constituting the ideal line of this plane. But unless e and ¢ happen
to be parallel, the plane that goes into the ideal line I, of ¢ under
the transformation A — ¢ is not v, but some other plane 1 through A.
4 meets e in a straight line /. Hence the perspective mapping e > ¢
associates the points of the infinitely distant line of the second
plane with the points of an ordinary straight line in the first plane.
It is only the introduction of the ideal points that makes the central
perspective a one-to-one mapping of the points and straight lines
of one plane into the points and straight lines of another plane. In
this mapping, the infinitely distant points are on a par with the
finite points.

We shall now look into the question of how the concept of in-
cidence between points and straight lines must be extended to
accommodate the ideal elements we have added. As before, we begin
with the transformation e—> A. An ordinary point P and an
ordinary straight line g of e are incident if and only if the cor-
responding p and y are incident. Let us generalize this to cover

! The term “infinitely distant” stems from the fact that the ray from a point
of e to the eye approaches one of the straight lines p. if the point of e recedes
indefinitely in a fixed direction.
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arbitrary points and straight lines of e. An infinitely distant point
P, and a straight line g shall be called incident if the ray p, is
incident with y. If y coincides with y,, i.e. if g is the ideal line of e,
this does not tell us anything new. But if g is an ordinary straight
line, then y and y, intersect in a definite straight line p,. Hence
every ordinary straight line has
exactly one infinitely distant
point, its point of intersection
with g,. If ¢’ and g are parallel,
this means that the plane y’ be-
longing to ¢’ passes through p,
(see Fig.129). Accordingly, two
straight lines are parallel if and
only if they have the same in-
finitely distant point; this is the
meaning of the occasionally used mode of expression ‘“parallels
meet at infinity,” which in itself, and when stated without further
explanation, would be meaningless. At the same time we recognize
the reason for the fact mentioned at the beginning of this section,
that two parallel straight lines
appear to meet at their vanish+ - /
ing point on the horizon. T‘”
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As an example of the way
geometrical notions are simpli-
fied by the introduction of the N
ideal elements, we may cite e \%/

72N
the conics. Since, as we have 4,7
proved in Chapter I, they can P N
be obtained as the plane sec- s \
tions of a circular cone, they N\

may all be regarded as perspec- \z

tive images of a circle. Accord-
ing to whether no projecting
ray, one ray, or two rays are parallel to the image plane, we obtained
an ellipse, a parabola, or a hyperbola, respectively. We may now
formulate this as follows: A conic section is an ellipse, a parabola,
or a hyperbola according to whether it meets the ideal line in no
point, in one point, or in two points, respectively. A central projec-
tion onto another plane transforms the conic under consideration

F1c. 130
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into another conic that either does not meet the horizon, or touches
it, or intersects it in two points, as the case may be. What type of
conic the image will be depends on the position of the image plane.

In other cases too, central projection is an important tool for
getting much more general figures from special figures. For ex-
ample, the complete quadrilateral (p. 96) can always be derived
from the simple construction of the adjoining figure (Fig. 130).

The importance of the ideal elements, however, lies mainly in
the fact that they enable us to modify and considerably simplify
the axiomatic foundation of plane geometry. If we confine our-
selves to the finite points of the plane, the incidence of points and
straight lines is subject to the following axioms:

1. Two distinct points define a straight line with which they
are incident.

2. Two distinct points define only one straight line with which
they are incident.

From the second axiom it follows that two straight lines in a
plane either have one point or no point in common. For if they
had two or more common points, they would necessarily be one and
the same straight line.

The case where two straight lines have no point in common is
elucidated by and subject to the Euclidean axiom of parallels:

If there is given in a plane any straight line ¢ and any point A4,
where a and A are not incident, there is in the plane one and only
one straight line b that passes through A and does not intersect a;
the straight line b is called the parallel to @ through A.

Now if we no longer consider only finite points but enlarge the
plane into the “projective plane” by adding the ideal line, then we
are in a position to use the two following axioms as a basis instead
of the three axioms above.

1. Two distinct points determine one and only one straight line.

2. Two distinct straight lines determine one and only one point.

These two axioms determine the incidence of points and straight
lines in the projective plane. Ideal points and the ideal straight line
are in no way distinguished here from other points and straight
lines. If it is desired to represent the projective plane by a real
structure where the equivalence of all points and of all straight
lines can be recognized visually, we may refer back to the bundle
of straight lines and planes through a fixed point, regarding the
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straight lines as “points” and the planes as “straight lines.” In this
model the validity of the two axioms last mentioned is easily verified.

Now this pair of axioms has the purely formal property of
remaining unchanged if the word ‘“straight line” is replaced by
“point” and the word “point” by “straight line.” On closer inspec-
tion we see that the remaining axioms of plane projective geometry
are also left unchanged when these two words are interchanged.
But the two words must then also be interchangeable in all the
theorems deduced from these axioms. The interchangeability of
points and lines is called the principle of duality in the projective
plane. According to this principle, there belongs to every theorem
a second theorem that corresponds to it dually, and to every figure
a second figure that corresponds to it dually. Under this dual corres-
pondence, the points of a curve correspond to a collection of straight
lines that in general envelop a second curve as tangents. A more
detailed study reveals that the family of straight lines correspond-
ing dually to the points of a conic always envelops another conic.

By the principle of duality we can deduce a number of other
theorems from Brianchon’s theorems. They are called Pascal’s
theorems, after their discoverer. In order to bring out the duality
of the two groups of theorems more clearly, we shall write them
side by side in exactly corresponding forms.

Brianchon Theorems

1, 2, 3. Let there be given a
hexagon formed by six straight
lines that are tangent to a conic
(hexagon circumscribed about a
conic). Then the three lines
joining opposite vertices inter-
sect at one point.

4. Let there be given six
straight lines of which three are
incident with a point A and
three are incident with a point B.
Choose six points of intersection,
which together with the appro-
priate connecting lines form a
hexagon whose sides pass alter-

Pascal Theorems

1, 2, 3. Let there be given a
hexagon formed by six points
that lie on a conic (hexagon in-
scribed ina conic). Then thethree
points of intersection of opposite
sides lie on one straight line.

4. Let there be given six
points of which three are inci-
dent with a straight line @ and
three are incident with a straight
line b. Choose six connecting
lines, which together with the
appropriate points of intersec-
tion form a hexagon whose ver-
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nately through A and B. Then tices lie alternately on @ and b.
the straight lines connecting Then the points of intersection
opposite vertices intersect at one of opposite sides lie on one
point (the Brianchon point of straight line (the Pascal line of
the hexagon). the hexagon).

Evidently the figure corresponding to the last theorem of Pascal
must be the dual of the configuration (9;),. Now the dual figure
of a configuration (p,l.) is always another configuration, and its
symbol is (l.p,). The special configurations we have denoted by
the symbol (p,), and they only, have as duals configurations with
the same symbol. It is conceivable that the configuration of Pascal’s
theorem, i.e. the dual of (9;),, might be one of the other two con-

a
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figurations (9;). It is found, however, that Pascal’s theorem is also
represented by the symbol (9;), (see Fig. 131). This is the reason
why we have called the configuration the Brianchon-Pascal con-
figuration from the very beginning. Thus (9,), is “dually invariant”
or “self-dual.” Just as the Brianchon point could be chosen arbi-
trarily, so we can also choose an arbitrary straight line of the
configuration to serve as the Pascal line.

By using the ideal elements we can arrive at a special case of
the last Pascal theorem which would not otherwise seem to have
any connection with the original theorem. For, by moving the
Pascal line to infinity we get the following theorem (Fig. 132):
If the vertices of a hexagon lie alternately on two straight lines,
and if two pairs of opposite sides are respectively parallel, then the
third pair of opposite sides is also parallel.
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This special case of Pascal’s theorem is called Pappus’ theorem.?
Having seen that (9;), is self-dual, it is easy for us to conclude
that (9;). and (9;); must also be self-dual. For, the only other
possibility would be that the figure obtained from (9;). by applying
the duality principle is (9;);. But since (9;). is a regular con-
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figuration and (9;); is not, neither of these figures can be the dual
of the other.

We shall now take up the configurations (10;). In order to
understand the most important one of these, Desargues’ config-
uration, it is necessary to extend the method of introducing ideal
elements, and the principle of duality, from the plane to three-
dimensional space.

§ 19. Ideal Elements and the Principle of Duality in Space.
Desargues’ Theorem and the Desargues Configuration (10;)

We have arrived at the concept of the projective plane by study-
ing projection in space. Now projective geometry also changes the
space as a whole, by the addition of ideal elements, into “projective
space,” an entity that is in many ways simpler. Only, it is not
possible in this case to justify the procedure in visual terms; it is
purely abstract. To begin with, we introduce the ideal elements
in all the planes of ordinary space according to the principle dis-
cussed earlier. Then it appears reasonable to interpret the entity
formed by all the ideal points and straight lines as a plane, the
“infinitely distant” or “ideal” plane of the space. For, this entity
shares with the ordinary planes in space the property that any
given plane intersects it in a straight line, the ideal straight line

? Frequently the more general theorem, which is called here the fourth Pascal
theorem, is also referred to as Pappus’ theorem. [Trans.]
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of the given plane. Every ordinary straight line has only one point,
its ideal point, in common with the ideal plane, just as it has only
one point in common with any other plane that does not contain
the line. Moreover two planes are parallel if and only if they have
the same ideal line.?

A great many phenomena of the geometry of space are simplified
by this point of view. Thus parallel projection can be regarded as a
special case of central projection in which the center of projection is
an infinitely distant point. Furthermore, to give another example,
the difference between the hyperboloid of one sheet and the hyper-
bolic paraboloid may be characterized by the property that the
hyperboloid intersects the ideal plane in a non-degenerate conic
whereas the paraboloid intersects it in a pair of generating straight
lines of the surface; this distinction amounts to the same thing as
the fact explained on page 15, that three skew straight lines lie on a
paraboloid rather than on a hyperboloid if and only if they are
parallel to a fixed plane; for, this is equivalent to the condition that
the three straight lines meet one ideal line, which consequently lies
on the surface since it has three points in common with it.

It is clear that all planes of projective space must be regarded
as projective planes, so that the principle of duality in the plane
is true for them. But the space as a whole is also governed by a
different principle of duality as well.

To arrive at this, we proceed as in the plane, compiling the list of
axioms by which the incidence of points, straight lines, and planes
in space must be regulated if finite and infinitely distant elements
are treated alike. The axioms may be formulated as follows:

1. Two planes determine one and only one straight line; three
planes that do not pass through a common straight line determine
one and only one point.

2. Two intersecting straight lines determine one and only one
point and one and only one plane.

3. Two points determine one and only one straight line; three
points not on one straight line determine one and only one plane.

This system of axioms remains unaltered if the words “point”
and ‘“plane” are interchanged. (The first axiom is interchanged

! For, the property of two planes being parallel, and also the property of their
having the same ideal line, are each equivalent to the property that parallels to
every straight line of one plane can be drawn in the other.
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with the third, and the second is unchanged.) The set of remaining
axioms of the projective geometry of space is also left unaltered
by this interchange. Thus the point and the plane correspond to each
other dually, and the straight line corresponds to itself. The set
of all points of a surface corresponds dually to the set of all tangent
planes to another surface. As was the case with the conics in the
plane, the second-order surfaces in space are self-dual.

The simplest and at the same time most important theorem of
three-dimensional projective geometry is named after Desargues.
Desargues’ theorem may be stated as follows (see Fig. 133):

Two triangles ABC and A’B’C’ in space being given, let them
be so placed that the lines connecting corresponding vertices pass

N g
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through a single point O. Then the three pairs of corresponding
sides have points of intersection, R, S, and T, and these points of
intersection are, moreover, collinear.

The first part of the theorem is easy to prove. By the second
axiom for space, the two intersecting straight lines AA’ and BB’
define a common plane. The straight lines AB and A’B’ also lie
in this plane, whence it follows, by the second axiom for incidence
in the plane, that these two straight lines have a point of inter-
section R. (R may be a finite or an ideal point.) The existence of
the two other points of intersection, S and T, is proved analogously.

The truth of the second part of the theorem is easy to see in the
case where the triangles are in different planes. In this case the
planes of the triangles determine a common—ordinary or ideal—
straight line of intersection (by Axiom 1 for space). Of every
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pair of corresponding sides of the triangles one lies in one of these
planes and the other lies in the other plane. Since we have seen
that the sides of such a pair intersect, their point of intersection
must be on the straight line that the two planes have in common.
This proves Desargues’ theorem for the general case.

But it is precisely the special case where the triangles are
coplanar that is of particular importance. Here we may apply a
method of proof similar to the proof for Brianchon’s theorem, in
which we project a spatial figure onto the plane. We only need
show that every plane Desargues figure is a projection: of a three-
dimensional Desargues figure. To this end, we connect all the points
and straight lines of the plane Desargues figure with a point S out-
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side the plane of the figure (see Fig. 134). We then pass a plane
through the straight line A C intersecting BS at a point B, distinct
from S, and draw OB,. The straight lines OB, and B’S are co-
planar and therefore have a point of intersection B,’. But now the
triangles AB,C and A’B,/C’ form a three-dimensional Desargues
figure, since all the straight lines connecting corresponding vertices
pass through O. Projecting the line in which the planes of these
triangles intersect from S onto the original plane, we get a straight
line on which the pairs of corresponding sides of the original tri-
angles ABC and A’B’C’ must intersect. This completes the proof
of Desargues’ theorem.

The principle of duality for the plane and the one for space both
lead to interesting consequences of Desargues’ theorem. To begin
with, it is readily seen that the converse of the theorem is also true;
i.e. the existence of a Desargues line containing the points of inter-
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section of pairs of corresponding sides of the two triangles implies
the existence of the Desargues point through which the lines con-
necting corresponding vertices pass. In the case where the triangles
are coplanar, the converse of Desargues’ theorem proves to be the
same as the theorem we obtain from Desargues’ theorem by apply-
ing the principle of duality in the plane. We can elucidate this by
writing the two theorems side by side, as follows:

Let three pairs of points A A’,
BB’, CC’ be given, such that the
three lines determined by the
pairs pass throuygh a common
point. Then the three points
of intersection of the pairs of
straight lines AB and A’B’, BC
and B'C’, CA and C’A’, lie on

Let three pairs of straight
lines aa’, bb’, cc¢’ be given, such
that the points of intersection of
the pairs lie on one straight line.
Then the lines joining the pairs
of points (ab) and (&’'d’), (be)
and (b'c¢’), (ca) and (c’a’), pass
through a common point.

one straight line.

Let us examine the figure (Fig. 135) consisting of the vertices
and sides of two coplanar Desargues triangles together with the
lines joining pairs of corresponding vertices, the points where
pairs of corresponding sides meet, the Desargues point O, and the

0
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Desargues line g. It is a simple matter of counting to see that the
figure is a configuration of type (10;). It is called the Desargues
configuration. This configuration shares with Pascal’s configuration
the property that the last incidence condition is automatically satis-
fied when the figure is constructed step by step from its table.
Furthermore, the Desargues configuration, like Pascal’s, is self-
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dual. This is seen to be true because the configuration represents
both Desargues’ theorem and its converse, and the latter is the

dual of the former.

We next consider the result obtained from the three-dimensional
case of Desargues’ theorem on applying the principle of duality in
space. We get the following juxtaposition:

Let three pairs of points AA’,
BB’, CC’, be given such that the
three lines determined by the
pairs pass through a common
point. Then the three points
of intersection of the pairs of
straight lines AB and A’B’, BC
and B’C’, CA and C’A’, lie on
one straight line.

Let three pairs of planes ad/,
B8, yy', be given such that the
three lines of intersection deter-
mined by the pairs lie in one
plane. Then the three planes con-
taining the pairs of straight lines
(apB) and (o'f), (By) and (§'y’),
(ya) and (y'a’), pass through
one straight line.

Fig. 136 illustrates the theorem that appears in the right-hand
column. In this theorem the two triangles are replaced by two
trihedral angles formed by the
planes a, 8, ¥ and o, §, ¥, re-
spectively. Paralleling what we
have done in the case of the plane
, Desargues figure, we shall now
examine the three-dimensional
figure consisting of the two
Desargues trihedra together with
the planes determined by pairs of
corresponding edges, the lines of
intersection of corresponding

F1c. 136
pairs of faces, the ‘“Desargues plane” (ad’, 88/, yy’ in Fig. 186),

and the “Desargues line” (VW in the figure). The intersection
of this three-dimensional figure with any plane that does not
contain any of the points V, W, X, Y, Z is a plane Desargues
configuration, since the Desargues trihedra intersect the plane in
Desargues triangles. To the planes and straight lines of the space
figure there correspond the straight lines and points of the plane
configuration. However, the three-dimensional figure has an in-
trinsic symmetry that is not reflected in the plane figure. The space
figure consists of all the connecting straight lines and plane of the
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five points V, W, X, Y, Z, and the roles of the five points are com-
pletely equivalent. Conversely, every complete five-point in space
becomes a three-dimensional Desargues figure if two of the vertices
are arbitrarily chosen as vertices of the Desargues trihedra.? From
the fact that all the straight lines and all the planes of the spatial
figure play the same role, it follows that the same is true for the
points and the straight lines of the plane Desargues configuration.
This proves that the Desargues configuration is regular, so that the
choice of the Desargues point or the Desargues line in the con-
figuration can be made quite arbitrarily.?

We shall now represent the Desargues configuration as a pair of
mutually inscribed and circumscribed pentagons. To this end, we
first look for any pentagons at all in the configuration, where it is
required that all the vertices and sides of the polygon be ele-
ments of the configuration and no three consecutive vertices be
collinear. The problem is considerably simplified by going back
to the five-point in space. The vertices of the plane polygon are
associated with the corresponding edges of the five-point in space.
Since it is required that any two consecutive vertices of the plane
polygon lie on a straight line of the configuration, the corresponding
edges must be in one plane and must therefore intersect. To ensure
that no three consecutive vertices are collinear, we need only see to
it that the corresponding edges are not coplanar; this would happen
if and only if three consecutive edges formed a triangle. By passing
through the vertices V, W, X, Y, Z of the three-dimensional five-
point in any order, say in the order in which they are written, we
obtain a closed polygonal path of the kind we need; in the plane

*The only condition the five points must satisfy is that they be in general
position, i.e. that no four of them be coplanar and hence no three of them
collinear.

® By a complete n-point in space we mean the set of all the straight lines and
planes connecting » points in general position in space. As in the case n =35,
the section of the complete n-point, for any value of n, by a plane that does not
pass through any of the vertices is a configuration. These configurations are
=n(n—1)’ y—n—2, g= nin —1) (n —2)

2 ’ 6

It follows that a configuration of the special type where p =1 is only obtained
in the case n = 5. Other regular configurations can be obtained by using n-points

in general position in higher-dimensional spaces. All these configurations are
called “polyhedral.”

regular and of type 2

, #=3.
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configuration it furnishes a pentagon of the required type. But the
edges of the three-dimensional five-point that were not used in this
path constitute a second three-dimensional polygon of the same
kind. For, two unused edges pass through every vertex of the five-
point in space, since every vertex is incident with four edges in all,

F16.137a F1G.137b

two of which were used up for the first path. This second poly-
gonal path corresponds to a second pentagon in the configuration,
and a simple enumeration reveals that this must be inscribed in the
first pentagon. Because of symmetry, the first pentagon is also
inscribed in the second pentagon. Figs. 137a and 137b illustrate

w

Z /4
Fi1c. 138 F1c. 139

the way in which the three-dimensional arrangement and the plane
pair of pentagons are related.

We can also find other types of systems of five edges of the five-
point in space corresponding to pentagons contained in the plane
configuration. An example is given in Fig. 138. But it can be verified
that it is then impossible to arrange the five remaining edges
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cyclically in such a way that any two consecutive edges have a
common point and no three consecutive edges form a triangle.
Hence the construction given in the beginning exhausts all the possi-
bilities. Since an automorphism of the configuration corresponds to
every permutation of the vertices and since the decomposition of the
five-point in space into two polygonal paths is completely determined
by the order of the vertices in the first path, we see that, leaving
aside automorphisms, there is only one possible decomposition of
the Desargues configuration into two mutually inscribed pentagons.

The question of whether, and in how many ways, the Desargues
configuration can be considered as a self-inscribed and self-
circumscribed decagon, can be settled by the same method. It is

¢
F1c. 140

found that the arrangement of edges in space corresponding to
such a decagon can always be chosen as indicated in Fig. 139.
Accordingly there is one way, and except for automorphisms only
one way, of interpreting the Desargues configuration as a ten-sided
polygon inscribed in and circumscribed about itself (Fig. 140).
The figure exhibits a certain regularity ; if we move along the sides
of the decagon from the point 1 to the point 2, from 2 to 3, etc.,
in order, then one vertex is omitted on each side, and the numbers
of the omitted vertices form a sequence in which pairs of successive
numbers differ alternately by 1 and 3 (the vertex 5 is omitted
on side 23, 8 on 34, 7 on 45, 10 on 56, etc.). Another feature of the
decagon revealed by the three-dimensional arrangement is that the
sides belong alternately to two mutually inscribed pentagons.
Desargues’ configuration is nut the only configuration with the
symbol (10;). In fact, there are nine other possibilities for the
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schematic table of such a configuration. One of these tables has
the same property as the table for (7:;), namely that its con-
figuration cannot be realized either in the real plane or in terms
of complex coordinates, because its equations are incompatible. On
the other hand, the remaining eight configurations of the form
(10;), like the configurations (9;), can all be constructed with a
ruler alone. But they are differentiated from the Desargues con-
figuration by the fact that the last incidence condition is not auto-
matically satisfied in their construction. Thus they do not express
a geometrical theorem and are therefore not as important as the
configuration of Desargues. One of these configurations is drawn
in Fig. 141. It also represents a self-inscribed and self-circumscribed
5 s decagon if the points are
taken in the numerical
order given in the figure,
but here the numbers of
the vertices successively
omitted on the sides of
the polygon always differ
by 1. In this arrangement
all the vertices play the
same role, and the sides are
interchangeable with the
vertices. It follows that the configuration is regular and self-
dual.

70 K]
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§ 20. Comparison of Pascal’s and Desargues’ Theorems

We have found Desargues’ theorem and the last of Pascal’s
theorems to be analogous in many ways. Both theorems were
proved by the projection of three-dimensional figures. Both theo-
rems gave rise to configurations, and quite similar configurations
at that, both configurations were regular and self-dual, both could
be constructed with a ruler alone, the last incidence in both
occurred automatically, and both could be regarded as self-
inscribed and self-circumscribed polygons.

Nevertheless there is a fundamental difference between the two
theorems. The space figure used in the proof of Desargues’ theorem
can be constructed on the basis of the given axioms for incidence



§ 20. COMPARISON OF PAscAL’S AND DESARGUES’ THEOREMS 129

in space, without the assumption of any additional axioms. The
Pascal-Brianchon configuration, on the other hand, was obtained
by studying a second-order surface. To be sure, the core of the
proof appears to be purely a consideration of the incidence rela-
tions between the points, straight lines, and planes of a hexagon
in space, but on closer examination it is found that the construction
of such hexagons in space is essentially equivalent to the con-
struction of a ruled surface of the second order and that the
possibility of such a construction cannot be proved from the axioms
of incidence alone.

In the first chapter we introduced the conic sections and
quadric surfaces on the basis of metric considerations. It might
therefore be thought that Pascal’s theorem could not be proved
without comparisons of lengths and angles. But the curves and
ruled surfaces of the second order can also be generated without
the help of metric methods, by using the method of projection. By
this method, the points of a given straight line can be mapped into
the points of any other straight line in such a way that any three
pre-assigned points on the first line go into three pre-assigned
points on the second line and all harmonic sets of points on the
first line become harmonic sets on the second. The first straight
line is then said to be mapped projectively onto the second straight
line. The construction of such a mapping (or “projectivity”)
requires only the axioms of incidence in the plane and in space.
But the proof that the mapping is uniquely determined for all the
points of the straight lines by the two given conditions—that har-
monic sets become harmonic sets and that the mapping of three
points is given—requires more than just these axioms. We need for
this purpose an axiom of continuity which we shall formulate
presently. But once the uniqueness of the projectivity in the given
sense is proved, we can define the most general ruled surface of
the second order as the surface swept out by a variable straight
line that always connects corresponding points in a projectivity of
two fixed skew straight lines. It then follows from the uniqueness
property of the projectivity that a second family of straight lines
also lies on the surface defined in this way. If the straight lines
related by the projectivity are not skew but intersecting, then the
straight line connecting pairs of corresponding points moves in a
plane and envelops a curve of the second order. All the properties
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of the second-order curves that matter in projective geometry can
be derived from this definition.

For the complete comprehension of the concept of continuity,
two different axioms are needed. But only one of these, the
Archimedean axiom, is used in the proof of the uniqueness of the
projective mapping. In arithmetical terms, this axiom is formu-
lated as follows: Let a and A be any two positive numbers; then—
no matter how small ¢ may be and no matter how large A may
be—if we add a to itself a sufficient number of times we can always
reach a point after a finite number of steps where the sum exceeds 4 ;

at+a+a+...+a>A.

This axiom is necessary if it is required to measure one length in
terms of another length; the axiom in this form thus constitutes
an essential part of the foundation of metric geometry. Independ-
ently of metric concepts, we can formulate the axiom as follows:
5 4 Let two parallel straight lines be
_/\\ / \ / \ / \ / \ given (as in Fig. 142) and let
;i P y O and A be two different points
on one of them. Draw the line
connecting O with an arbitrary
point B, on the other straight line, and the line connecting B, with
a point C, lying between O and A on the first straight line. Now
draw the line parallel to OB, through C,, cutting the other line at
a point B;; then draw the line parallel to B,C, through B,, cutting
the first line at a point C,, and in this way continue drawing lines
parallel to OB; and B;C,. The Archimedean axiom then states that
after a finite number of steps a point C, on the straight line OA
will be reached that does not lie between O and A. In this formula-
tion of the Archimedean axiom we have made use of the notion of
a point on a straight line lying between two other points of the
straight line. For statements of this sort to be made more precise
we need another set of axioms, the axioms of order, which we
shall not discuss in detail here. The notion of parallels, on the
other hand, was only used to make possible a more concise and
readily understood formulation of the axiom. For the purposes of
projective geometry it is sufficient that a construction of the kind
indicated by Fig. 143 be possible. The figure is obtained from
Fig. 142 by a central projection onto another plane.

2 o

r

F1c. 142
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The axioms of incidence in the plane and in space, together with
the axioms of order and the Archimedean axiom, are sufficient to
prove the uniqueness of the projectivity that maps three specified
points into specified images, albeit the proof is exceedingly lengthy
and tedious. From the uniqueness of the projective mapping in
the plane we can then prove the last of the theorems of Pascal and
Brianchon listed earlier (and the proof proceeds without the aid
of any constructions in space).

Desargues’ theorem can be proved in space by using only the
axioms of incidence. But in order to prove the two-dimensional

FIG. 143

form of the theorem without three-dimensional constructions, even
the axioms of incidence combined with the Archimedean axiom and
the axioms of order will not suffice. On the other hand, the axioms
of incidence in the plane together with the axioms of order and the
axioms of congruence will do, and we can dispense with the
Archimedean axiom.

Omitting the axioms of incidence in space affects Pascal’s theorem
in the same way as it does Desargues’, making the plane axioms of
incidence, order, and congruence necessary for the proof. Never-
theless a significant difference between the two theorems can also
be observed in the plane without the aid of spatial constructions.
Pascal’s theorem can not be proved from the axioms of incidence
together with the validity of Desargues’ theorem in the plane.
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But Desargues’ theorem can be proved from the axioms of incidence
in the plane together with Pascal’s theorem. We shall prove this
for the special case where the Desargues line is the ideal line of
the plane. As in the statement of the Archimedean axiom, this
additional assumption only serves to make the formulation of the
proof shorter and more readily comprehended. Thus we assume
the following (see Fig. 144) :

The three straight lines AA’, BB’, CC’ pass through a single
point O. Furthermore AB||A’B’ and AC||A’C’. 1t is to be proved
by means of Pascal’s last theorem that BC||B’C’ follows.

In proof, let us draw the parallel to OB through A, intersecting
A’C’ at a point L and OC at a point M. Let the straight lines LB’
and A B intersect at N. We shall apply Pascal’s theorem three times

; to this figure, always using the special
form referred to as Pappus’ theorem on
page 119. First of all, ONALA'B’ is a
- Pascal hexagon since the six points lie
alternately on two straight lines. Also
NA||A’B’ by assumption, and AL||B’O
by construction. Hence it follows from
Pappus’ theorem that the third pair of
Frc. 144 opposite sides of the hexagon is also

) parallel, i.e. that ON||AC. Next we

(From Grundlagen der Geometrie by .
D Hilbert, 7th ed., & . English consider the Pascal hexagon ONMACB.
€.

translation in prep. (Chelsea Publish-

ing Company).) Here ON||AC as we have just proved,
and MA|| OB by assumption. It follows by Pappus’ theorem that
NM||CB. Finally, we consider the Pascal hexagon ONMLC’B’.
In this hexagon, ON||LC’ and ML||B’'O, and it follows as before
that NM||C’'B’. And since we have just proved in the previous
step that NM||CB, the proof of our assertion that BC||B'C’ is
complete.

Any theorems concerned solely with incidence relations in the
plane can be derived from the theorems of Desargues and Pascal.
And we have now seen that Desargues’ theorem is a consequence
of Pascal’s. Therefore we may say that Pascal’s theorem is the
only significant theorem on incidence in the plane and that the
configuration (9;), thus represents the most important figure in
plane geometry.

0 Y A Iz
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§ 21. Preliminary Remarks on Configurations in Space

The concept of a configuration can be generalized from the plane
to three-dimensional space. A set of points and planes is called a
configuration in space if every point is incident with the same num-
ber of planes, and every plane with the same number of points.
A simple example of such a configuration is furnished by the three-
dimensional Desargues theorem. Here we use the same ten points
as we did in the corresponding plane configuration. As planes of
the configuration we use the two planes of the triangles and the
three planes containing the Desargues point and pairs of corres-
ponding sides of the triangles. Then three planes pass through
each point, and six points lie on each plane. For the same reason
as for plane configurations, the four characteristic numbers for this
configuration satisfy the equation 5 X 6 =10 X 3.

Apart from configurations of points and planes, we can also
consider configurations in space which, like plane configurations,
consist of points and straight lines, each point being incident with
the same number of lines and each line with the same number of
points. These two different points of view are often applicable to
the same figure. Thus the three-dimensional Desargues figure we
have just been considering gives rise to a combination of points and
straight lines in space that is essentially identical with the plane
Desargues configuration. Analogously, many of the more compli-
cated configurations of points and planes give rise to configurations
of points and straight lines consisting of some of the lines in which
the planes intersect, together with the points of the original con-
figuration ; conversely, a configuration of points and straight lines
can often be converted into a configuration of points and planes by
adding to it some of the planes common to the intersecting straight
lines of the configuration.

In analogy to what we did in the plane, we shall at first confine
our attention to configurations in which the number of points equals
the number of planes, so that we are dealing with a configuration
of p points and p planes. If every point is incident with » planes
it follows for the same reason as before that every plane of the
configuration must also be incident with » points. We shall denote
such a configuration by the symbol (p.).

In order to exclude the trivial cases, we must take n to be at
least 4. For p =17, a configuration (p,) cannot exist. But for
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p =8, five different tables can be set up, and all of them can be
realized geometrically. One of these configurations (8.), the so-
called Moebius configuration, is geometrically important because
it satisfies the last incidence condition automatically and thus ex-
presses a geometric theorem. This configuration consists of two
mutually inscribed and circumscribed tetrahedra.

Going on to higher configurations, the number of possibilities
keeps growing, and it soon becomes impossible to get an over-all
view of them. Thus there are no less than 26 configurations of the
type (9,) that can be realized geometrically. Accordingly, we shall
examine in greater detail only two three-dimensional configurations
that are particularly important and play a role in other parts of
mathematics as well. These are Reye’s configuration and Schaefli’s
double six.

§ 22. Reye’s Configuration
y g

Reye’s configuration consists of twelve points and twelve planes.
It embodies a theorem of projective geometry, so that the last in-
cidence always follows automatically, regardless of the positions
of the points and planes. For the time being, however, we shall
arrange the points in a special symmetrical order, so as to facilitate
the visualization of the configuration.

We shall use as points of the configuration the eight vertices of
a cube together with the center of the cube and each of the three
ideal points where four parallel edges of the cube meet (Fig. 145).
As planes of the configuration we shall use the planes of the six
faces and each of the six diagonal planes passing through a pair
of opposite edges. In the figure defined in this way, there are six
points lying on each plane: four vertices and two ideal points on
each of the planes containing a face of the cube, and four vertices,
the center of the cube, and an ideal point on each of the diagonal
planes. There are six planes through each point: the six diagonal
planes pass through the center of the cube, three face planes and
three diagonal planes through each vertex, and four face planes and
two diagonal planes through each of the ideal points. Thus we
have indeed constructed a configuration of points and planes, and
its symbol is (12;).

But the construction may also be interpreted as being a configura-
tion of points and straight lines. To this end, we select some of the
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straight lines of intersection of the planes, namely the twelve edges
and the four diagonals of the cube. There are three points of the
configuration on each of these straight lines: two vertices and one
ideal point on each edge, two vertices and the center on each
diagonal. Furthermore, there are four straight lines through each
point: three edges and one diagonal through each vertex, four
diagonals through the center of the cube, and four edges through

A

o

=

S

R

Fic. 145

each ideal point. Hence the points and straight lines of Reye’s
configuration form a configuration of the type (12,16.).

We can also see, if we count them, that three planes pass through
each of the lines and that four lines lie on each plane. The straight
lines on any one of the planes together with the six points of the
configuration lying in the plane constitute a complete quadrilateral.

Reye’s configuration appears in various geometrical contexts. An
example is the system of centers of similitude of four spheres,
which we shall now study.
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The term centers of similitude of two circles or spheres denotes
the two points that divide the line joining the centers of the circles
or spheres in the ratio of their radii. The point on the segment
that lies between the centers is called the internal center, the one

on the extension of

the segment the

external center of

similitude. If we

o are dealing with
@ circles, and each of

. them lies outside
the other, the inter-
nal center of simili-
tude is the point of
intersection of the two straight lines tangent to the circles on oppo-
site sides, and the external center of similitude is the point of inter-
section of the straight lines tangent to the circles on the same side

F1G. 146

F16. 147

(see Fig. 146). By rotating this figure about the straight line con-
taining the centers we get an analogous property relating the
centers of similitude of two spheres with common tangents to the
spheres. (But in addition the spheres have many common tangents
that do not pass through a center of similitude.) We shall use the
symbols (ik) and (k") respectively for the external and internal
centers of similitude of two circles or spheres ¢ and k.

Let us now consider three circles or spheres, 1, 2, and 3. They
have three internal centers of similitude and three external centers
of similitude, making six in all. We shall assume that the centers
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of the circles or spheres are not collinear but form a triangle; no
two of the centers of similitude can then coincide, and the six can
not all be collinear. By a theorem of Monge, the three external
centers of similitude, (12), (28), and (31), are collinear, and each
external center of similitude is collinear with the two internal
centers of similitude that belong to different pairs of circles or
spheres, e.g. (81) with (12)’ and (23)’ (see Fig. 147).! Accord-
ingly, all the centers of similitude lie on four straight lines, which
are called the axes of similitude of 1, 2, and 3. Monge’s theorem
may be summarized by saying that the centers of similitude and
axes of similitude constitute the six points and four lines of a com-
plete quadrilateral in which the centers of 1, 2, and 3 form the
diagonal triangle. We shall denote the axes of similitude by the
following symbols: (128) for the straight line containing the ex-
ternal centers of similitude, (1’23) for the straight line on which
(23), (12)’, and (13)’ lie, etc.

With this preparation we turn to the consideration of four
spheres 1, 2, 8, 4 whose centers are not all in one plane, so that,
moreover, no three of the centers can be on one straight line
(cf. Fig. 148, p. 140). We shall see that all the centers of simili-
tude and axes of similitude of these spheres collectively constitute
the points and straight lines of a Reye configuration. Since six
different pairs can be selected from the spheres 1, 2, 3, 4, and since
each pair gives rise to an external and an internal center of simili-
tude, there are twelve centers of similitude in all. Also we have the
right number, 16, of axes of similitude, for there are four different
ways we can select three out of the four spheres, and each set of
three spheres gives rise to four different axes of similitude, e.g.
(1238), (1’28), (12’8), and (1238’). Each axis is incident with
three points, e.g. (123) is incident with (12), (23), and (13).
Similarly, every point is incident with four different axes, e.g. (12)

* Proof: Let the radii of 1, 2, and 8 be equal to 7., 7., and 7, respectively.
Then the external centers of similitude divide the sides of the triangle formed
4 7. 4
by the centers in the ratios — ;: —’—:» —;: . The product of these ratios
is — 1, and it follows by a theorem of Menelaus that the external centers of
similitude are collinear. If two of the external centers of similitude are replaced
by the corresponding internal centers of similitude, two of the ratios change
their sign. The product is therefore still — 1, so that we once more have three

collinear points.
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is incident with (123), (128’), (124), and (124’), and (12)’ with
(1’28), (12'8), (1’24), and (12'4).

We thus see that the centers and axes of similitude do indeed
form a configuration and that its type is (12,, 16,). To see that
it is identical with Reye’s configuration, we need to find twelve suit-
able planes. First we take the four planes containing the centers
of three spheres each. The points and axes lying on any one of
these planes form a complete quadrilateral, as in Reye’s configura-
tion. To get eight more planes with this property, we simply take
all the remaining planes spanned by any two axes that intersect at
a point of the configuration. Two axes of this kind must certainly
belong to different number triples, for, any two axes associated with
the same set of three numbers, e.g. (128) and (1’23), define the
plane containing the centers of three spheres (1, 2, and 3 in our
case), so that nothing new is obtained. Let us begin with two axes
containing only external centers of similitude, e.g. (123) and
(124). They span a plane that contains (12). In addition, this
plane contains the other four points of those axes, i.e. (13), (23),
(14), and (24). But (23) and (24) also lie on the axis (234)
which contains as well the remaining external center of similitude
(384). Hence all six external centers of similitude lie on the single
plane we have been considering. This plane also contains the
remaining “external” axes (134) and (234); thus it is incident
with six points and four straight lines, as it should be. We proceed
to the case of two intersecting axes one of which is “external” and
one “internal” and which are associated with two different number
triples. Since their point of intersection must be an external center
and since all the numbers play the same role, we may pick the axes
(123) and (124’) as a representative pair. Apart from their point
intersection, (12), these axes contain the points (13), (23),
(14)’, and (24)’. By the same reasoning as before, we see that
the axes (134’) and (234’) and the point (34)’ are also in the
plane of (128) and (124’). Thus the three internal centers of
similitude defined by the sphere 4 together with the three other
spheres are in a single plane with the three external centers of simili-
tude of the spheres 1, 2, and 3. There must be altogether four
planes of this kind. Only the case based on two intersecting internal
axes of similitude remains to be considered. Of course the last plane
considered above contains three internal axes which intersect in
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pairs; but the points of intersection are always internal centers of
similitude, so that the case of two axes intersecting at an external
center of similitude is still open. Let us begin, then, with two
internal axes, say (128’) and (124’), which intersect at an ex-
ternal center of similitude—(12) in this case. Apart from the
point of intersection, the plane of these axes contains the points
(13)’, (28)’, (14)’, and (24)’. Hence this plane also contains the
axes (1’34) and (2’34) and the point (34). Thus there are four
internal axes of similitude in this plane, and it meets the opposite
edges 1, 2 and 3, 4 of the tetrahedron 1, 2, 3, 4 at the external centers
of similitude and the remaining edges at the internal centers of
similitude. There are three planes of this type, since a tetrahedron
has three pairs of opposite edges. Thus we have obtained altogether
1+ 4 + 3 = 8 planes.

For the sake of clarity, we shall set up the two tables that give
the incidence relations between the points and the planes and
between the points and the lines, respectively. The faces of the
tetrahedron are labelled I, II, III, and IV, where I is the face oppo-
site the point 1. The plane of the external centers of similitude is
called e,, the four planes containing three external and three in-
ternal centers are called e, e,, e, e, respectively, according to the
number of the exceptional sphere, and the three remaining planes
are denoted by (12,34), (13,24), and (14, 23) respectively,
according to the exceptional pair of opposite edges of the tetra-
hedron. For the sake of brevity, parentheses are omitted in the
notation for points and straight lines.

Planes

rlunlm|w|eal|lal|lal|al|ea |o230us2eue2

23 {13 |12 112 |12 |23 |13 |12 |12 | 12 | 13 | 14
24 |14 |14 |13 | 13 |24 |14 |14 |13 | 34 | 24 | 23
34 |34 (24 (23 |14 |34 |34 (24 |23 | 13" | 12" | 12’
2371137 | 127 |12 | 23 | 12" [ 12" | 13" [ 14" | 14" | 14" | 13
24" | 14" | 147 | 13" | 24 |13 | 23" |23 | 24" | 23" | 23" | 24’
347|347 | 247 | 23" | 34 | 147 | 247 | 34" | 34" | 24" | 34" | 34

Points

Planes

I I nr | I eq e e e e |(12,34))(13,24)((14,23)

234 |134 (124 [123 | 123234134 |124 |123 |123"[12"3]|1’23
27341734124 (1723124 1/23[12/3 (123 [124"| 124" | 1724 12"4
23’4(13’4|12°4|12"3| 134 1724|12°4(13’4|134"|1734|134’| 134
234'(134":124’{123"|234|1734(2"34(2374(234"| 234 |23'4| 234"

Lines
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The configuration is depicted in Fig. 148.2 That this configura-
tion is identical with that of Fig. 145 becomes manifest on moving
the three points (12), (12)’, and (34) to infinity in mutually perpen-

dicular directions; the three points then assume the positions of the
1

FiG. 148

ideal points of the configuration given in Fig. 145. The eight points
(13), (14), (23), (24), (138)’, (14)", (23)’, and (24)’ become
the vertices of the cube, and (34)’ becomes the center of the cube.
But the points 1 and 2 also move to infinity. In order to find the
four spheres belonging to

m /-\ Fig. 145 it is consequently

? V3G j S Decessary to extend the
w U definition of center of simi-
Frc. 149 litude by the addition of

’ limiting cases. First, the
external center of similitude of two equal circles or spheres must

be defined as the ideal point on the line connecting the centers (see
Fig. 149). Furthermore, the centers of similitude of a sphere k

*Viewed as a plane figure, Fig. 148 represents a plane configuration of type
(12,16;) consisting of the centers and axes of similitude of four coplanar circles.
The centers of the circles are also at 1, 2, 3, and 4, and the radii may be chosen
to be the same as in the three-dimensional case.
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and a plane e (Fig. 150) must be defined as the extremities (ke)
and (ke)’ of the diameter of % that is perpendicular to e. For, if
e is replaced by a family of spheres K tangent to e¢ at the point P
where the extension of the diameter meets ¢, it is seen that the
centers of similitude of k¥ and K approach (ke) and (ke)’ as the
diameter of K increases to infinity. Finally we consider the case
of two planes ¢ and f intersect-

ing in a straight line g (Fig.

151). The centers of similitude

must be defined in this case as

the ideal points having direc- R

tions that are perpendicular to (ke) - )’
g and bisect the two angles

formed by e and f. This defini- # ¢
tion too may be justified by a
limiting process, as follows:
Replace g by the circle of inter-
section of two congruent spheres tangent at a fixed point of g to e
and f respectively, and then let the radius of the spheres increase
to infinity.

With these definitions, we are in a position to interpret Reye’s
configuration in its original version also, as a system of centers of
similitude. Let the spheres 3 and 4 have
their centers at the midpoints of the front 1
and back faces of the cube in Fig. 145. e
Let the radii-be equal and of such length
that each sphere goes through the four
corners of the face on which its center lies.
Let 1 and 2 be any two planes that are
respectively perpendicular to the two
diagonals of the faces under consideration.
Then the points of the configuration are the centers of similitude
of 1, 2, 3, and 4, arranged in the same order as in Fig. 148.

Instead of this limiting case, we may consider the configuration
based on four equal spheres with their centers at the vertices of a
regular tetrahedron. Here the external centers of similitude must
be at the ideal points of the six edges of the tetrahedron, so that the
ideal plane belongs to the configuration and constitutes, in our nota-
tion, the plane ¢,. The internal centers of similitude are the mid-

F16. 150

@
4

F16. 151
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points of the edges; they form the six vertices of a regular octa-
hedron (see Fig. 152). All the face-planes of the octahedron belong
to the configuration, being the face-planes I, II, III, and IV, of the
tetrahedron and the planes called e,, e., e;, and e, in our notation.
The three remaining planes of the configuration are the three planes
of symmetry of the octahedron. The straight lines of the configura-
tion are the four ideal lines of the face-planes of the tetrahedron

(external axes of similitude) and the twelve edges of the octahedron
(internal axes of similitude).

In the second chapter we have already pointed out how the cube
and the octahedron are related. In accordance with § 19, we may
say that the cube and the octahedron correspond dually to each
other. Similarly, it can be shown more generally that the points
and planes of Fig. 1562 correspond dually to the planes and points
ofi Fig. 145; the vertices and faces of the cube correspond to the
faces and vertices respectively of the octahedron, the center of the
cube and the six planes through it correspond to the ideal plane
and the six points on it in Fig. 152, and the three ideal points
associated with the cube correspond to the three planes of symmetry
of the octahedron.® It follows that Reye’s configuration of points

* This correspondence is produced by a polarity with respect to the inscribed
sphere of the cube.
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and planes is self-dual. Of course the two dual Reye configurations
obtained from the cube and octahedron look quite different, but for
the purposes of projective geometry, all Reye configurations must
be considered as identical.*

We shall now show that Reye’s configuration also has the other
important property of symmetry that we observed in some plane
configurations, viz., that it is regular. This is by no means evident
from the foregoing discussion. Indeed, the planes belong to four
different classes relative to the system of centers of similitude, and
in the realization of the configuration either by a cube or an octa-
hedron, both the points and the planes play different sorts of roles.
In the following section, we shall obtain Reye’s configuration by a
method that reveals the equivalence of all the elements. To this
end, we need to learn more about the regular polyhdra of three-
dimensional and four-dimensional space. For, the figures of four-
dimensional space can be projected into three-dimensional space in
the same way that the figures of three-dimensional space can be
projected into a plane, and a suitable projection of one of the four-
dimensional figures gives us Reye’s configuration.

§ 23. Regular Polyhedra in Three and Four Dimensions,
and their Projections

In Chap. II we listed the five regular polyhedra of three-
dimensional space. Among these, the tetrahedron plays an anoma-
lous role in that it is self-dual, whereas the four remaining polyhedra
are mutually dual in pairs—the octahedron with the cube, and the
dodecahedron with the icosahedron. Possibly this singularity of
the tetrahedron is connected with a second phenomenon that dis-
tinguishes it from the other polyhedra; the others are symmetrical
with respect to a point, which means that the vertices come in pairs
that are symmetrical about the center, and the same is true for the
edges and the faces (e.g. the straight line connecting any vertex
of a cube with the center meets the cube at a second vertex). The
tetrahedron, however, is not symmetrical with respect to a point,
(does not have “central symmetry”) ; the straight line connecting

*We obtain a projective generalization of the octahedron by starting with
any system of projective coordinates in space; in every case the unit points on
the six coordinate axes and the six points of intersection of these axes with the
unit plane are the points of a Reye configuration.
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a vertex with the center cuts the tetrahedron at the midpoint of
one of its faces.

A study similar to the one made at the end of the second chapter
proves that the number of regular polytopes! that are possible in
four-dimensional space is also finite and is equal to six.? Of course
the boundary of such a polytope comprises three-dimensional
regions (called cells) in addition to points, edges, and plane faces.
Just as we stipulated for regular polyhedra that the faces be
regular polygons, so we must stipulate for the regular polytopes
in four dimensions that the boundary cells be regular polyhedra.
The polytope is called an n-cell if it is bounded by n polyhedra. The
essential data for the regular polytopes of four-space are given
in the following table:

4-Dimensional Space

Bomtes Foly e Nt Duality
1. 5-cell 5 Tetrahedra 5 self-dual
2. 8-cell 8 Cubes 16
3. 16-cell 16 Tetrahedra 8 } mutually dual
4. 24-cell 24 Octahedra 24 self-dual
5. 120-cell 120 Dodecahedra 600
6. 600-cell 600 Tetrahedra 120 } mutually dual

The duality relations listed in the last column can be readily
deduced from the table. For in four-space, points correspond dually
to three-dimensional spaces and straight lines to planes.

We see from the table that the 5-cell is analogous to the tetra-
hedron, while the 8-cell, 16-cell, 120-cell, and 600-cell take the place
of the cube, octahedron, dodecahedron, and icosahedron, respec-
tively. The 24-cell has a singular role; it is not only self-dual but
also centrally symmetric, while the other self-dual polytope, the
regular 5-cell, shares the property of its analogue, the regular tetra-
hedron, of having no symmetry about a point.

* The polyhedra of n-dimensional space for n = 4 are called polytopes (or, in
the earlier literature, polyhedroids). [Trans.]

2 Cf. the book Die Vierte Dimension by H. de Vries (Leipzig and Berlin, 1926).

Cf., also, Regular Polytopes by H. S. M. Coxeter (Methuen & Co. Ltd., London,
1947) and the last chapter of Geometry of Four Dimensions by H. P. Manning
(MacMillan, New York, 1914). [Trans.]
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Analogous studies have also been made for spaces of higher
dimensionalities. Here we find a greater simplicity and regularity,
as only three regular polytopes can be found in any such space.
We again give the most important data in the form of a table.

n-Dimensional Space, n = 5

Number and T f Bound: Number of .
=15 Dimensional Cells a Vertices Duality
1. (n+41)-cell n+1 n-cells n+1 self-dual
2. 2n-cell 2n (2n—2)-cells 2n
3. 2n-cell 2n n-cells 2n mutually dual

The three-dimensional polyhedra corresponding to these three
types of polytopes are the tetrahedron, the cube, and the octahedron
(n+1=4, 2n =26, 2» = 8). The four-dimensional analogues are
the 5-cell, the 8-cell, and the 16-cell. Thus the dodecahedron and
the icosahedron of three-space as well as the 24-cell, 120-cell, and
600-cell of four-space have no analogues in spaces of higher
dimensionality.

We shall now study the projections of the regular polyhedra and
polytopes into spaces whose dimensionality is smaller by one than
that of the spaces in which the polyhedra and polytopes lie. We
begin with the projections of the regular polyhedra into a plane.
Of course, the appearance of these projections will vary greatly
with the choice of the center of projection and of the image plane.
In Figs. 95 through 99 of page 91 we used parallel projections,
i.e. projections with the center at an ideal point. This has the
advantage of representing parallel lines by parallel lines. But it
has the disadvantage of making pieces of faces overlap. The
disadvantage can be eliminated by moving the center of projection
to a point very close to one of the faces. For the sake of symmetry
we move it to a point at a small distance from the center of one
of the faces and project into the plane of that face. In this way
the five regular polyhedra give us the projections drawn in Figs.
153 through 157. This is the way we see the polyhedra when we
remove one of the faces and look at the interior through the hole.

If the center of projection is located on the surface of the poly-
hedron, the faces passing through it appear as straight lines, so
that the image becomes quite unsymmetrical.
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If the center of projection is located inside the polyhedron, the
image is significantly altered; then it must extend to infinity irre-
spective of the choice of the image plane. This is so because every
plane through the center of projection intersects the polyhedron.
This applies, in particular, to the plane going through the center

Fi16.153 TETRAHEDRON

F1G. 156 DODECAHEDRON

F1G6.154 CUBE

F1G6. 155 OCTAHEDRON F16.157 ICOSAHEDRON

which is parallel to the image plane and which therefore gives rise
to the ideal points of the projection (cf. p. 114). Nevertheless, this
type of projection leads to a phenomenon of geometric interest in
the special case where the center of projection is at the center of the
polyhedron. For, in this case—and in this case only—the bundle
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of rays through the center is arranged symmetrically. As was
already noted on page 116, the bundle of rays can be looked on as a
model of the projective plane by interpreting the straight lines of
the bundle as “points” and the planes of the bundle as ‘“straight
lines.” Thus the regular polyhedra induce regular partitions of the
projective plane. But only in the /

case of centrally symmetric poly- /
hedra can this partition cover the ¢z

projective plane simply ; in the case
of the tetrahedron, every straight
line through the center yields two
different image points correspond-
ing to the two points where it meets
the surface of the polyhedron. so
that the projective plane is covered
twice. But on all other regular
polyhedra every pair of diametric-
ally opposite elements produces
one single piece of the projective
plane. If we consider the intersec-
tion of the bundle of rays with a /
plane, i.e. if a projection in the
proper sense is under consideration, we cannot preserve all the
symmetry. The image is particularly simple, however, if its plane
is chosen so as to contain a vertex of the polyhedron and to be per-
pendicular at that vertex to the line con-
necting the vertex with the center (see
Fig. 158 for the octahedron). Figs. 159
through 163 show the five projections
obtained in this way. One of the regions
extending to infinity is shaded in each
diagram. In the projection of the tetra-
hedron, the image plane is covered twice.
In the remaining figures, every polygon in  FIG. 169 TETRAHEDRON
the image plane represents exactly two diametrically opposite
faces of the polyhedron.

Another series of simple figures is obtained from the symmetrical
polyhedra by using a face plane as image plane, as shown in Fig.
164 for the cube. (For the tetrahedron this does not give us a new

F1G. 158
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figure.) The projections are shown in Figs. 165 through 168.2
Using analogous methods of projection, we can depict the regular
polytopes of four-space by figures in three-space. Parallel projec-

FI1G6. 160 OCTAHEDRON FI1G. 162 DODECAHEDRON

F1G6. 161 CuUBE l F1G6. 163 ICOSAHEDRON

tion is not found to be suitable, as it represents the boundary poly-
hedra of the polytopes by polyhedra in space which partly overlap
and intersect each other. On the other hand, the procedure followed
in obtaining Figs. 153 through 157 can be used to give us clear

® In this case, the projection of the octahedron is equivalent to the division of
the plane into four triangles by a projective coordinate system.
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pictures of the four-dimensional polytopes. The boundary poly-
hedra of the polytope are represented by a set of polyhedra in space

(NI

¢
I

FI16. 165 OCTAHEDRON

F16. 167 DODECAHEDRON
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of which one plays a special role and is filled up simply by the
others. If these models are in turn projected into the plane, we get

F1G. 168 ICOSAHEDRON

four pictures as shown in Figs. 169 through 172. In Fig. 172 it
may be ascertained, though somewhat laboriously, that the large
octahedron is filled by 23 smaller octahedra (which are of four
different forms) making 24 poly-
hedra in all. The figures for the
120-cell and the 600-cell would get
too confusing.

/
1
\

I

A
7 S

B3

D

/

F16. 169 5-CELL F1c. 170 8-CeELL

If the center of projection is moved to the center of the polytope,
the result has to be a regular partition of the projective space.
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We cannot produce a model for the projective space that is as sym-
metrical as the bundle of lines representing the projective plane;
for, this would involve consideration of a four-dimensional figure.
It is necessary, therefore, to single out a particular three-space as
image space, and some of the symmetry is lost in the process. But
in order to preserve part, at any rate, of the symmetry, we let the
image space assume positions analogous to those of the image plane
in the case where the dimensionality is one less: either we use one
of the boundary spaces, in analogy to the arrangement of Fig. 164,

F16.171 16-CELL

or we choose a space passing through one of the vertices of the
polytope and having the position corresponding to that of the image
plane in Fig. 158. In the first case, the boundary polyhedron we select
will be reproduced without any distortion, because it is in the image
space to begin with ; in the second case, the projection is symmetrical
with respect to the chosen vertex, which is its own image. First
we shall consider the pictures of the 16-cell and the 8-cell obtained
by these two methods of projection (Figs. 173 and 174).* Here
the space is partitioned into eight and four parts respectively,
and each part corresponds to two diametrically opposite bound-
ary cells of the polytope. In Fig. 173a, the three-dimensional seg-

* This method of projection is not suitable for the 5-cell, as this polytope does
not have central symmetry.
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ments that extend to infinity are of two different forms. Four of
them have one boundary face (e.g. 1, 8, 4) that is wholly confined
to the finite part of space and from which they extend across the
ideal plane to the opposite vertex (e.g.2). On the other hand, three

F16.172 24-CELL

of the regions have a pair of opposite edges that are finite (e.g. 1, 2,
and 3, 4), but no faces that do not extend across infinitely distant
elements. In Fig. 173b, the ideal plane itself is a boundary plane.
We note that the 16-cell leads to familiar partitions of space—the
division into octants by a projective or a Cartesian coordinate
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system. In the representation of the 8-cell shown in Fig. 174a, all
the regions that extend to infinity are of the same form. In Fig.

Fi6.173a 16-CELL

]

y

%/‘#én%m

F1G6.178b 16-CELL

174b, arrows marks off the edges of the region that corresponds to
the finite cube of Fig. 174a; the edges of this region include the
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finite edges containing the point 1 with the exception of the edge 1, 6.

We next apply the same two methods of projection to the 24-cell.
The results are shown in Figs. 175 and 176. We thus get a partition
of the space into twelve octahedra, all of which, with the exception

F16.174b 8-CELL

of the octahedron in the center of Fig. 175, extend to infinity. It is
seen that Figs. 175 and 176 reproduce the two symmetrical forms
of Reye’s configuration that we studied in the preceding sec-
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tion.> We see from the finite octahedron in Fig. 175 that the planes
of the configuration serve both as the boundary planes and as the
planes of symmetr of the twelve octahedra. A closer study reveals
the underlying reason for this; a complete quadrilateral divides the
projective plane into three
quadrangles and four tri-
anges (in Fig. 177, the
quadrangles 1, 2, 3 and the
triangles I, 11, III, IV). In
Reye’s configuration the
straight lines partition each
of the planes in this way;
4 and since the faces of the
octahedra are triangles,

I
/ . \ N while the planes of sym-
2 3

metry intersect the octa-
hedra in quadrangles, it is
seen that each plane of
the configuration serves
as symmetry plane in three octahedra and as common boundary in
2+4 octahedra, while one of the twelve octahedra is not incident
with it; thus the ideal plane is a configuration plane in Fig. 175,
and one of the octahedra is located in the finite part of the space.®

F16. 177

* We had seen there that the two figures are related by a polarity with respect
to a sphere. Now we see them as projections of one and the same four-

/\ dimensional figure each of which can be
changed into the other by moving the
/ \ three-dimensional image space.

®In analogy to the three planes of
symmetry of the octahedron which pass
through the center and intersect the
boundary in a square, the 24-cell has
twelve three-dimensional spaces of sym-
metry that pass through its center and
intersect it in a cubo-octahedron. (The
cubo-octahedron is illustrated in Fig.
178; a cubo-octahedron is also marked
out in Fig, 172.) In the projection we
Fic. 178 are studying, the spaces of symmetry,
like all spaces containing the center of the polytope, become planes. And these
planes are precisely the planes of the Reye configuration. The three diametrically
opposite pairs of squares and the four diametrically opposite pairs of equilateral
triangles of the cubo-octahedron correspond to the three quadrilaterals and four
triangles in each plane of Reye’s configuration.
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Fig. 176 is simpler than Fig. 175 in that only two different kinds
of octahedra occur in Fig. 176 (where six octahedra are congruent
with the octahedron 1, 2, 3, 4, 5, 10 and the other six with 2, 5, 6,
9, 10, 11) while three different kinds of octahedra are present in
Fig. 175—here one of the octahedra is regular, in three of them
the ideal plane is a plane of symmetry (e.g., 1, 6, 7, 8, 9, 10), and
in eight of them the ideal plane belongs to the boundary (e.g.,
3,4,17, 8,10, 11).

From this approach to the configuration the assertion made at
the end of the last section follows immediately: Reye’s configuration
s regular.

The foregoing discussion suggests the idea of projecting the
n-dimensional regular polytopes onto a space of the lowest possible
dimensionality, i.e. onto a straight line. Let us study the projection
of the n-dimensional cube onto one of its principal diagonals by the
method of orthogonal parallel projection. The extremities A and B
of such a diagonal are projected into themselves. Let us call the
images of the other vertices of the cube V,, V,, ... in the order of
their positions on A B beginning with the point nearest to A. From
A there emanate n edges, all forming the same angle with AB;
hence all their endpoints must be projected into the point V, on
AB. Furthermore, every edge of the cube is parallel to one of the
edges through A, and it follows that the distance V;V;,, between
consecutive points is always equal to the distance AV, and is thus
constant. Accordingly, the principal diagonal is divided into equal
segments. It can be shown that there are exactly n of these seg-
ments and that the point V, is the image of ,C; vertices for all &
between 1 and n — 1, where ,C; is the well-known symbol denoting
the binomial coefficients. For, V, is the image of all those vertices,
and only those, that can be connected with A by k, but not by less

—than k, edges of the cube, and we see, by counting, that there are
exactly ,C; such vertices. In the case of the square and of the ordi-
nary (three-dimensional) cube, these facts can be readily verified.

§ 24. Enumerative Methods of Geometry

The last three-dimensional configuration that we shall consider
is Schléfli’s double-six. The study of this configuration leads us to
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a special geometrical method called enumerative geometry. We
shall discuss the method first, because we wish to avoid interrupting
the study of the double-six and also because the enumerative
methods are of great intrinsic interest.

The plane contains infinitely many straight lines and infinitely
many circles. In order to characterize the multiplicity of all straight
lines in the plane, we begin by fixing a Cartesian coordinate system
in the plane. Then a straight line is in general completely deter-
mined by the sign and magnitude of its two intercepts with the
coordinate axes. Hence any straight line—with exceptions we shall
mention presently—can be analytically defined by two numbers.
The straight lines that are parallel to one of the axes can also be
included in this scheme by assigning the value infinity to the
appropriate intercept. On the other hand, all the straight lines
through the origin, and they only, are not defined by the intercepts;
all of them give us the same data, namely zero, for both intercepts.

The straight lines that do not pass through the origin are said
to form a two-parameter family; this means that every member
of the family is determined by two numbers (the ‘“parameters” of
the family) and that a continuous change in the parameters is
accompanied by a continuous change in the entity defined by them.
According to this definition, the straight lines through the origin
form a one-parameter family, as they can be determined by the
angle that they form with one of the axes. Now it is usual to think
of a two-parameter family as being, roughly speaking, not signi-
ficantly enlarged by the addition of a one-parameter family which
can be continuously imbedded into the first family. In this sense
the set of all straight lines in the plane is also called a two-parameter
family. We shall soon recognize the usefulness of this point of view.

The straight lines in the plane can also be determined in a variety
of other ways, e.g., by a point through which they pass and the
angle they make with an arbitrary fixed straight line. Since it
takes two coordinates to define a point in the plane, we need alto-
gether three parameters to characterize a straight line in this
manner. However, the defining point may be picked arbitrarily on
the straight line, and the points of a straight line obviously form
a one-parameter family. We find much the same phenomenon when
we define a straight line by two of its points. We need four para-
meters in this case, but a two-parameter family of pairs of points
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defines one and the same straight line. To get the correct number
of parameters it will therefore be necessary to subtract two para-
meters in the latter example, or one parameter in the former ; then
we find, as we did by the first method, that the straight lines of the
plane form a two-parameter family. This procedure, which is only
sketched here, can be given a precise analytic formulation, and it
can then be proved that the number of parameters associated with
a family of geometrical figures is independent of the way in which
the parameters are chosen. By using the symbol « we can write
this kind of argument more concisely. We shall say that there
are «oZ straight lines in the plane, «* points on a straight line, and
«? pairs of points on a straight line. In this way, enumeration
becomes analogous to dividing one power of a number by another;
to get the correct ‘“number” «? of straight lines in the plane, we
must “divide” the “number” «* of pairs of points in the plane by
the “number” «?2 of pairs of points on a straight line.

Let us apply the procedure to the characterization of the size of
the family of all circles in the plane. A circle is defined by its
center and radius, i.e. by three numbers, and at the same time
only one such number-triple is associated with every circle. The
plane thus contain «3 circles. Since the family of all straight lines
in the plane has only two parameters and every straight line may
be considered as a limiting case of a circle, the family of all circles
and straight lines also has three parameters. This is in accord
with the fact that through any three points of the plane one circle
or one straight line can be drawn, as there are «* triples of points,
and any one curve contains «? of them. Similarly, it can be shown
that in any n-parameter family there is always a curve that passes
through an arbitrarily chosen n-tuple of points of the plane but,
in general, none that passes through n + 1 arbitrary points of the
plane. This is only true, however, if all the limiting cases are
included in the family, just as a unique correspondence between
circles and number-triples becomes possible only on including
straight lines as limiting cases in the family of circles. To make a
rigorous formulation of these statements possible, analytic and
algebraic methods are necessary, and in particular it is necessary
to consider the imaginary elements along with the real ones.

Let us find the “number,” in the above sense, of all the conics.
An ellipse is defined by its two foci (four parameters) along with
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the constant sum of the distances from these points, i.e. by five
parameters, and every ellipse is associated with only one such set
of five numbers. Hence there are «? ellipses in the plane. Similarly
it is shown that there are «? hyperbolas in the plane. The ellipses
can also be fixed by the lengths of the two axes along with the
position of their center and the direction of the major axis; this
makes five parameters again, consonant with the general theory.
It follows that the family of all parabolas in a plane has four para-
meters, for, by the construction given on page 4, we get the parabolas
from the ellipses by a limiting process in which a one-parameter
family of ellipses always determines a single parabola and each
ellipse belongs to finitely many—two, to be specific—of the families.

If the values given for the lengths of the two axes of an ellipse
are equal, we get a circle. At this point it would be easy to come to
the erroneous conclusion that there are «* circles, rather than o3,
for if the axes are to be equal, we are still left with the choice of
four numbers. The contradiction is resolved on noting that the
equality of the axes makes it unnecessary to know the directions
of the axes, since any given pair of perpendicular diameters of a
circle can be regarded as constituting the limiting case of the axes
of ellipses.

The above discussion does not entitle us to expect that we can
always draw an ellipse through an arbitrary set of five points in
the plane. At best, this might be the case if the ellipses are supple-
mented by inclusion of their limiting cases, the parabolas and the
circles. It is found, however, that the hyperbolas must be included
as well. The totality of all the conics in the plane, i.e. the set of all
hyperbolas, parabolas, ellipses, circles, pairs of straight lines, and
doubly-counted straight lines, constitutes a single family in the
sense of enumerative geometry. In accordance with the above, this
must be a five-parameter family; for, each of the different types
of conics belongs to a family with five parameters or less. For the
totality of conics it is indeed true that a member of this family
passes through any set we may choose of five points of the plane.
A closer study by methods outside the realm of enumerative
geometry reveals that the conic is uniquely determined by the five
given points except when four of them are on a straight line. In
this exceptional case it is clear that the conic is not uniquely defined ;
through four points lying on one straight line ! and a fifth point P
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we can draw <! special conics consisting of the pair of straight
lines I and m where m is an arbitrary straight line passing through P.
If, in addition, P is also on I we can even draw o«? pairs of straight
lines, since the choice of the straight line m is then completely
arbitrary.

We proceed to the application of enumerative methods to three-
dimensional figures. By characterizing a plane by its three inter-
cepts in a fixed coordinate system in space, we see that the space
contains «? planes; for, the only planes that can not be defined by
their intercepts are the planes that pass through the origin, and
these latter are only a two-parameter family. By the method of
enumeration we verify the elementary theorem that a plane ca
be found which passes through any three given points in space;
indeed, there are «°® triples of points in space and «°® such triples
on every plane, so that the triples of points in space define “«?/«¢,”
i.e. «3, planes.

In determining a straight line by means of two points, we find
that in space there are «* straight lines; for, there are «¢ pairs
of points in space and «? on a straight line.

The spheres can be characterized by their center and radius. It
follows thst there are «* spheres in space. Adding the planes as
limiting cases to the family of spheres, we can use enumeration
to verify the well-known fact that a sphere or plane can be drawn
through any four points in space. Just as in the case of the conics,
the determination of the sphere is not always unique although it
is unique if—and only if—the four points are not on a common
straight line or circle. Analogous conditions govern the general
case. If an n-parameter family of surfaces is defined so as to be
sufficiently inclusive (like the family of all conics as opposed to the
family of ellipses, in the plane), then there is a surface of the
family through every set of » points in space. The surface is not
always uniquely defined by the » points. It is, however, uniquely
defined if the points are “in general position,” i.e. if they do not
satisfy certain geometrical relations whose nature depends on the
given family of surfaces.

A ruled surface of the second order is defined by three skew
straight lines. Space contains «¢'3 —= w2 triples of straight lines.
But since every straight line on a ruled quadric is a member of a
one-parameter family, «? triples of straight lines define the same
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surface. Hence there are «* ruled quadrics.

Likewise there are «® general ellipsoids. This follows from the
fact that we get every ellipsoid once, and only once, by varying the
choice of the center (three parameters), the lengths of the axes
(three parameters), the direction of the major axis (two para-
meters), and—the minor axis lying in the plane through the center
perpendicular to the major axis—the direction of the minor axis
within that plane (one parameter).

From analytic considerations we learn that there are «? quadrics
altogether. We have, for this family, the theorem that every set of
nine arbitrary points in space lies on a surface belonging to the
family. In order that the definition of a quadric by nine points be
unique, i.e. that the position of the points be sufficiently general
for the family of quadrics, it is necessary to stipulate that the points
shall not lie on certain space curves of the fourth order; for, these
can be obtained as the curves of intersection of pairs of quadrics,
so that naturally it would be impossible that any number of points
on such a curve could define a quadric uniquely.

We shall now establish the plausibility of the fact that there are
infinitely many straight lines on every second-order surface. To
this end we begin with the fact, immediately deducible from the
analytic definition of second-order surfaces, that every straight
line having three points in common with such a surface is wholly
embedded in it. Evidently there are «¢ triples of points on a quadric
(and, for that matter, on any surface). Let us select only those
triples of points that are collinear. Enumerative geometry yields
the result that there are «* of them, i.e. that two parameters are
lost. For, it takes two analytic relations to express the incidence
of one of the points with the straight line defined by the other two;
and there is a general theorem that the number of parameters
associated with a family is diminished by n if we select only the
members satisfying a certain set of n independent relations (where
n relations are called independent if they cannot be replaced by less
than » equivalent relations). Hence it is true that «* triples of
collinear points lie on any given quadric. And it was pointed out
before that every straight line that is incident with such a triple
of points must lie on the surface. But there are «3 triples of points
on a straight line. Hence the triples of collinear points on a second-
order surface lie on «! straight lines belonging to the surface.
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On the ellipsoid, the elliptic paraboloid, and the hyperboloid of two
sheets, these straight lines are imaginary.

In conclusion, we add a few remarks on the third-order surfaces,
since these surfaces are intimately connected with the properties
of Schléfli’s double-six to be studied in the next section. Analytically,
the third-order surfaces are characterized by the property of having
an equation of the third degree in Cartesian coordinates. Now, the
general third degree equation in three unknowns has twenty co-
efficients, and they are determined up to a common factor by the
surface associated with the equation. It follows that there are «®
third-order surfaces and that through any set of 19 points arbitrarily
chosen in space there passes a surface of the family. It is necessary
here, however, to include certain degenerate cases in the family of
third-order surfaces, e.g. a second-order surface and a plane, taken
together.

In general, a straight line has three points in common with a
third-order surface, and a straight line having four points in com-
mon with such a surface must lie on the surface. This is easily
deduced from the fact that the surface has an equation of third
degree. We shall show by enumeration that the most general third-
order surface can only contain a finite number of straight lines.
On every surface there are «? quadruples of points. It takes four
conditions to insure that such a quadruple of points be collinear—
two conditions for the third point and two for the fourth point to
lie on the straight line common to the first two points. Hence there
are «* collinear quadruples of points on a general third-order
surface. Every straight line containing such a quadruple lies on
the surface and contains «* other such quadruples. The existence
of an infinity of straight lines on the surface would imply that
more than «¢ quadruples of collinear points could be found on it.

But the third-order surfaces also include a great many ruled
surfaces. These surfaces, then, contain «® or even more quad-
ruples of collinear points. Accordingly, the equation of a ruled
surface of the third order must have the special property that this
equation together with the four conditions for the collinearity of
four points can be replaced by an equivalent system of fewer equa-
tions. It may be shown that such a reduction is possible only if
the twenty coefficients of the third-degree equation satisfy certain
special relations. This also shows the truth of the statement that
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the general third-order surface contains at most a finite number
of straight lines.!

An enumeration similar to the above shows that the general sur-
faces of order higher than the third do not in general contain any
straight lines.

§ 25. Schlafli’s Double-Six

We begin with some simple considerations concerning the possible
positions of straight lines in space. Three skew straight lines a,
b, and ¢ define a hyperboloid H. In general, an arbitrary fourth
straight line d intersects H at two points, although it may also be
tangent to H or lie on H. In the general case, each of the points at
which d and H intersect is incident with a straight line lying on H
that does not belong to the same family as a, b, ¢ and therefore
intersects a, b, and ¢. Conversely, every straight line that intersects
a, b, ¢, and d, is on H and is incident with one of the points at
which d intersects H. Hence there are in general two, and not more
than two, straight lines that intersect four given straight lines.
In the case where d is tangent to H there is only one (double)
straight line that intersects a, b, ¢, and d. If, on the other hand,
there are more than two straight lines that intersect a, b, ¢, and d,
then d must lie on H, and then there are infinitely many straight
lines intersecting @, b, ¢, and d. In this case we say that the four
straight lines are in a hyperboloidal position.

In the construction of Schlidfli’s double-six we start with any

7.2 3 4 5 ¢ straightlinelanddraw , , ; , ; ,

three mutually skew _ p

T~ 2’ gtraight lines intersect- _| »
# ing 1, which we shall ¥
1 # call 2/, 8/, and 4’, for »
5 reasons that will be- 5
-—6¢ come apparent later —
! (see Fig. 179). Then we '
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draw another straight
line 5’ through 1, which is to have the most general possible posi-
tion relative to 2/, 8’, and 4’: 5’ will not intersect any of the straight

* E.g., there is no straight line on the surface xyz =1 which passes through
a finite point of the surface.
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lines 2’, 8", and 4’, and there will be besides 1 just one straight line—
we shall call it 6—that intersects 2, 8’, 4’, and 5. Finally we draw
a straight line 6’ through 1 which must not intersect 6, 2, 3’, 4/,
or 5/, and which must furthermore be such as to make the positions
of the quadruples 2’8'4’6’, 2’3’5’6, 2’4’5’6, and 3’4’5’6’ as general
as possible. Then there is exactly one straight line 5 in addition

O

Fic. 181

to 1 which intersects 2’, 8’, 4/, and 6, and the straight lines 4, 3,
and 2 are defined analogously (e.g. 4 is distinct from 1 and inter-
sects 2, 8, 5, and 6/, etc.). In this way we obtain the system of
intersections represented schematically in Fig. 179. It is easily
seen that our choice of the straight lines 2’, 8’, 4/, 5/, 6’ precludes
the possibility of additional intersections. Turning now to the four
straight lines 2, 3, 4, and 5, we shall show that they cannot be in a
hyperboloidal position. For if they were, every straight line that
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intersects three of them would also intersect the fourth, and in
particular, this would apply to each of the straight lines 2’, 3, 4/,
and 5/, according to our scheme. Then these four straight lines
would also be in a hyperboloidal position, contradicting the condi-
tions of our construction. Thus there are at most two straight lines
that meet 2, 3, 4, and 5. But according to our construction, 2, 3, 4,
and 5 all intersect 6’. Let us denote the second straight line that
intersects 2, 3, 4, and 5, by 1’; we assert that 1’ does not coincide
with 6’ and that it cuts 6. Pending the proof of this assertion (to
be given below), we may supplement the arrangement represented
by Fig. 179, changing it into that of Fig. 180. The latter scheme
represents the double-six. It is immediately seen that we are dealing
with a regular configuration of points and straight lines whose
symbol is (30,12;). A particularly clear and symmetrical form of
the double-six can be constructed by suitably choosing one of the
straight lines of each set of six on each face of a cube. The arrange-
ment should be apparent from Fig. 181 (cf. also Fig. 102, p. 93).

We must now prove the assertion made above that there is a
straight line 1’ distinct from 6’ which meets 2, 3, 4, and 5, and that
this 1’ must meet 6. Let us tentatively assume that the first part
is already proved and prove on the basis of this assumption that
1’ intersects 6. To this end, we select four points on the straight
line 1 and three points on each of the straight lines 2’ to 6’, making
sure that none of the points of intersection of the lines under
consideration are included among the nineteen points thus chosen.
According to the argument of the last section, a third-order surface
F; can be drawn through these nineteen points. Now F;, having
four points in common with the straight line 1, must contain the
entire straight line. Furthermore, F'; has four points in common
with each of the straight lines 2’ to 6’—the three points chosen in
the beginning and the point (distinct from these) where the line
meets 1; thus F; contains 2’ to 6’ as well. From this it follows
in turn that F, also contains the straight lines 2 to 6, as each of
them intersects four straight lines lying on the surface. And finally,
F; contains 1’ for the same reason. Supposing now that 1’ did not
intersect 6, let us consider the straight line I which, like 5’, inter-
sects 2, 3, 4, and 6. As in the construction of 1/, we shall rule out
for the time being the case where [ coinicides with 5’. I cannot co-
incide with 1/, since it was assumed that 1’ does not meet 6. Since [
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meets four straight lines lying on F;, namely 2, 3, 4, and 6, [ itself
lies on F;. By our construction, each of the four straight lines
l, 1, 5, 6" meets 2, 3, and 4. Hence the four straight lines are in
a hyperboloidal position. Then the entire associated hyperboloid
must be a part of F';; this follows directly from the fact that every
straight line that intersects [, 1/, 5%, and 6’, lies on F';, while the set
of all such straight lines covers the hyperboloid.

Now, it is easy to prove algebraically that a third-order surface
that contains all the points of a second-order surface must consist
of the second-order surface and a plane: If G=0 and H =0 are
the equations of the third-order and second-order surface respec-
tively, the polynomial G of the third degree must be divisible by
the polynomial H of the second degree, and this can only be the
case if G is the product of H and a linear expression. From the
conclusion that the surface F; defined by our nineteen points must
be a degenerate case of this sort, we can easily deduce a contra-
diction. For, no four of the straight lines 2’, 8’, 4/, 5/, 6’ have a
hyperboloidal position; hence at most three of them could be on
the hyperboloid that forms a part of F,. Hence at least two would
have to be on the plane that constitutes the other component of F,
and these two would therefore have a point of intersection, in
contradiction to our construction.

If we admit the possibility, previously excluded, that 1’(2345)
may coincide with 6’ or 1(2846) with 5’, the proof is not essentially
changed. In this case, too, we can conclude that the hyperboloid
defined by 2, 3, and 4 would have to be a part of F,. But the limit-
ing process by which this case is derived from the general case can
not be justified without the use of algebraic methods.

In the proof of the last incidence relation (1’6) of the double-six
we used the fact, interesting in itself, that there is always a third-
order surface F'; that contains this configuration. It is easy to
supplement the configuration with several additional straight lines
which also lie on F;. Consider, for instance, the plane spanned by
the intersecting straight lines 1 and 2’ and the plane spanned by
1’ and 2 and let (12) denote the line in which the two planes inter-
sect. Then (12) meets the four straight lines 1, 1/, 2, and 2’, all
of which lie on F;; hence (12) also lies on F;. In all there are
fifteen straight lines that bear the same relation to the double-six
as (12) and therefore lie on F'; as well. For, fifteen different pairs
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can be chosen from the numbers from 1 to 6. We have thus found
2 X6 + 15 =27 straight lines all lying on F;.

Among the straight lines of the enlarged configuration that we
have obtained in this way there are further incidence relations.
In fact, it may be shown that all those pairs of the straight lines
denoted by two numbers whose symbols have no number in com-
mon, and those only, will have a point of intersection. The proof
can be based on the same idea as our proof that 1’ and 6 intersect,
and we shall only give an indication of it. For reasons of symmetry
it suffices to show that (12) meets (84). To this end, we consider
the three straight lines 1, 2, (84), and note that 3’ and 4’ intersect
them. If (12) did not intersect (34), there would be a straight
line a that would meet the four lines 1, 2, 1/, and (34), and a straight
line b that would meet 1, 2, 2/, and (34). b would necessarily be
distinct from a, for if they were one and the same straight line,
this would meet the four lines 1, 2, 1/, 2/, and would therefore be
identical with (12) and yet meet (34), whereas we are assuming
for the time being that (84) does not meet (12). Similarly a and b
would have to be distinet from 8’ and 4’; for if, say, a coincided
with 8’, then 8’ would intersect 1/, in contradiction to our construc-
tion. Now a and b, like 3’ and 4’, would have to lie on F, and
because all of them meet the triple 1, 2, (84), the four straight
lines would be hyperboloidal. But we have already seen that it is
impossible for F'; to contain a set of four straight lines in the hyper-
boloidal position. It follows that (12) does meet (34). For the
same reasons it must meet (35), (836), (45), (46), and (56). Since
(12) also meets 1, 2, 1/, and 2/, it follows that (12) intersects ten
straight lines of the enlarged configuration, and does every one of
the straight lines we denoted by two numbers. The same is true
for the straight lines of the double-six itself; 1, for example, inter-
sects the five lines 2’ to 6’ and the five lines (12), (13), (14), (15),
(16). Accordingly, the configuration consisting of the 27 straight
lines on F'; together with their points of intersection has the symbol
(185,27,,). The fact that there are exactly 135 points follows
from the equation 135 X 2 =27 X 10. It can be shown, moreover,
that the configuration is regular, and that many different double-
sixes can therefore be found in it. Considering in addition the
planes spanned by intersecting pairs of lines of the configuration,
we can verify by referring to the incidence table that every such
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plane contains a third line of the configuration. This can also be
seen by the following simple algebraic argument. Every plane
necessarily intersects F', in a third-order curve. If the plane con-
tains two straight lines of the configuration, this curve is bound
to contain them, and 1t can be deduced algebraically that the curve
must then consist of these two straight lines and a third straight
line. It is easy to check by counting that five of our planes pass
through each of the twenty-seven straight lines and that the planes
number forty-five in all. Thus we see that the configuration is not
self-dual, although the double-six, being built up on the self-dual
relation of the incidence of two straight lines, is self-dual. The
double-six can easily be extended to a configuration that is the dual
of the configuration we have just constructed. To this end, we
need to add a different set of straight lines [7k] instead of the
straight lines (ik), where, for example, [12] passes through the
points at which 1 intersects 2’ and 1’ intersects 2. The configura-
tion obtained in this way has the symbol (45,27;).

Let us return to the original configuration of twenty-seven
straight lines. We shall show by enumerative methods that there
is such a configuration K on every third-order surface F,. Here,
as in all enumerative considerations, the cases where K is partly
imaginary or degenerate must also be taken into account. The proof
begins with the enumeration of the family of all double-sixes.
According to our construction, the choice of the straight line 1 is
completely free, and thus involves four parameters; the points
where 1 intersects the straight lines 2’ to 6’ depend on another five
parameters, and each of the lines 2’ to 6’ can assume «? positions
once its point of intersection with 1 is fixed (thus accounting for
ten more parameters). Since the straight lines 1, 2/, 3/, 4/, 5/, and 6’,
uniquely define the double-six, we see that there are «!? double-sixes
(19=4 + 5+ 10). The family of configurations K has the same
number of parameters; for, each configuration of this type is defined
by one of the double-sixes in it, and obviously there is only a finite
number of double-sixes in any one configuration K. Now we have
given a construction for passing an F; through any given K; it
follows either that the family of the surfaces F', constructed in this
way comprises «!° surfaces or, should there be fewer surfaces, that
at least «! configurations K lie on the same F';, i.e. that F; would
have to be a ruled surface of the third order. It can be shown, how-
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ever, that there are less than «® ruled surfaces of the third order;
hence the F'; we constructed would have to contain at least « 2 double-
sixes. But since it was already demonstrated that the F, do not
contain a hyperboloid and since any ruled surface of order higher
than the second contains only one family of straight lines, such an
F'; cannot possibly carry «2? double-sixes. Therefore our surfaces
cannot in general be ruled surfaces, and it follows that our con-
struction accounts for not less than «* surfaces. On the other
hand, as we have mentioned in the last section, there are only «®
third-order surfaces. From this, the algebraic nature of the figures
under consideration being borne in mind, the truth of our assertion
that every third-order surface contains a configuration of the type K
can be rigorously deduced.



