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Let N ={1,2,3,...} = {# € Z: > 0}. On N (or more generally on
{n,n+1,n+2,...}), we can:

e define functions by recursion (so that, if A is some set, ¢ € A, and
f: A — A, then there is a unique function k& — a, on N such that
ay = cand, for all k in N, agy1 = f(ag); if also g: Ax N — A, then
there is a unique function k — b; on N such that by = ¢ and, for
all kin N, b1 = g(by, k));

e prove theorems by induction;

e prove theorems by strong induction.

For example, by strong induction, every natural number other than 1 has
a prime factor: For, suppose n € N, and every element of {z € N: 1 <
x < n} has a prime factor. Either n is 1, or n is prime, or n has a factor k
such that 1 < £ < n. In the last case, by the strong inductive hypothesis,
k has a prime factor; but this factor is then a factor of n too.

We have the Euclidean algorithm for finding the greatest common
divisor of two integers (not both of which are 0). If ged(a,b) = d, then
we can also use the algorithm to solve

ax + by = d.



If ged(a,n) = 1, then a-a=* = 1 (mod n) for some number a~!, which
can be found by means of the Euclidean algorithm.

If n | ab and ged(n,a) = 1, then n | b. In particular, if p | ab, but p 1 a,
then p | b. This can be used to prove the Fundamental Theorem of
Arithmetic.

We can solve all linear congruences, that is, congruences of the form
ax =b (mod n).
By the Chinese Remainder Theorem, every linear system
x=a; (mod ny), ce x=ar (mod nyg),

has a unique solution (which we can find) modulo ny - - - nj, assuming the
moduli n; are pairwise coprime. (What if they are not?)

An even number n is perfect, that is, Zd|n = 2n, if and only if
n=2F"1.(2F — 1)
for some k such that 2¥ — 1 is prime.
If n >0, we let
Zn ={0,1,...,n— 1}, L, ={zx € ZLy: ged(z,n) = 1}.

Then by definition
d(n) = [Zn .

The values of ¢ (the Euler phi-function) can be found by two rules:

1. ¢(ab) = d(a) - d(b), if ged(a,b) = 1.
2. ¢(pk+1) — pk+1 *pk — pk+1 . (1 _ l/p).

Euler’s Theorem is
ged(a,n) =1 = a®™ =1 (mod n).

(Fermat’s Theorem is the special case when n = p.) The proof uses
that if ged(a,n) = 1, then

H T = H ax) *a¢(”) H z (mod n).

TELn > TELp > TELn ™



Compare to the proof of Wilson’s Theorem:

(p—1)=-1-2-271...= -1 (mod p).

We now have a method for computing powers modulo n, that is, for

solving a* =  (mod n). If 0 < k < ¢(n), we can find by, ..., b, such
that

0<by < < by, k=2t ... 4 2bm,
and then a* is easily computed as a2” - - a2

Henceforth p is an odd prime. With the usual quadratic formula, we can
solve quadratic congruences

az? +br +c=0 (mod p),

at least if we have a way to find square roots modulo p, when they exist.
If the square root of d modulo p does exist, that is, if 22 = d (mod p) is
soluble, then d is called a quadratic residue of p.

If gcd(a,n) = 1, then a has an order modulo n, namely the least positive
exponent k such that a* = 1 (mod n). We may denote this exponent
by

ord,(a).

Then ord,(a) | ¢(n). For example, by the computations

k 1[2]3] 4] 5] 6] 7[8
28 (mod 17) [2[4[8| -1 2] 4] -8]1

we have ord;7(2) = 8. Likewise, ord;7(3) = 16, by the following.

k 1] 2] 3] 4] 5] 6] 7] 8
3 (mod17) | 3| -8[-7T[—-4] 5[-2]-6]-1

k o[ 10 11] 12] 13] 14] 15] 16
3F (mod17) [ -3| 8] 7] 4|-5] 2] 6] 1

In general, a is called a primitive root of n of ord,(a) = ¢(n). For
example, 3 is a primitive root of 17, but 2 is not. Also, 8 has no primitive



root, since ¢(8) = 4, but 32 = 52 = 72 = 1 (mod 8). When they exist,
primitive roots are found by trial; there is no formula for computing
them.

Suppose a is a primitive root of p. Then

p—1

kY
ordy(a”) = ged(k,p— 1)

This gives us the following from the computations above:

k 0[14] 1]12] 5[15[11[10[ (mod 16)
3F 1) 2] 3] 4] 5] 6] 7] 8] (mod17)
ordy7(3%) 1] 8[16] 4[16[16[16] 8
ged(k,16) [16 ] 2| 1| 4] 1] 1] 1] 2
k+38 8T 6] 9] 4[13] 7[ 3] 2] (mod 16)
3FF8 6[15[14[13[12[11][10] 9| (mod 17)
ord7(3F8) | 2] 8|16] 4|16[16|16| 8
ged(E+8,16) | 8| 2| 1] 4] 1 1] 1] 2

In general, if ged(d,n) =1, let
VYo (d) = [{z € Z,* : ord,(x) = d}|.

For example, from the last table we have the following.

d [1]2]4[8]16
Vir(d) [1]1]2[4]8
o) [1]1[2[4]38

In fact it is always true that*

Yp(d) = d(d).
In particular, since ¢(p — 1) > 1, p must have a primitive root.?

If a is a primitive root of p, then the quadratic residues of p are the even
powers of a (that is, the powers a* such that k is even).

*The proof is that >, 1 ¢(d) =p—1=734,_1 ¥p(d) and Yp(d) < d(d); but we
have not seen all of the details.
2Q0nly 2, 4, p*, and 2pF have primitive roots.



