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Introduction

The geometry presented in the thirteen books of Euclid’s Elements
is founded on five postulates; but the arithmetic in Books vII, VIII,
and IX makes no explicit use of postulates. Nonetheless, Euclid
proves rigorously, in the first half of Book vii, the commutativ-
ity of multiplication in any ordered ring whose positive elements
are well ordered. More generally, in every ordinal number that
is closed under ordinal addition and multiplication and on which
this addition is commutative, the multiplication is also commuta-
tive. Euclid’s main tool for proving this is a theory of proportion
founded on what we call the FEuclidean Algorithm. Such is the
main mathematical burden of this work, discharged in the last two
chapters.

Those chapters are so long, and they preceded by two other chap-
ters, because Euclid, if he is going to be read at all, deserves to be
read with more care than we often read anything today. We may
not need to read our contemporaries so carefully, because of some
common understandings that we can take for granted. It is not so
with Euclid.

The foregoing can be said briefly, as I have just done; showing
it is what I try to do in the whole work. It is true that somebody
who is in a hurry to see Euclid’s mathematics in modern terms can
turn directly to §4.2 (p. 125). All of the chapters and their sections
might be summarized as follows.

Chapter 1. The study of Euclid is an instance of doing history. As
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such, the study can both benefit from, and illustrate, the phi-

losophy of history developed by R. G. Collingwood in several

of his books.

§1.1. Studying the Elements is like studying an ancient build-
ing, such as the Hagia Sophia in Istanbul: it is a kind of
archeology. Archeology is in turn a kind of history. His-
torical inference resembles mathematical inference; but
the way to understand this is by actually doing history
and mathematics—which we do by studying Euclid.

§1.2. The present study of Euclid is motivated by such ques-
tions as: Can students today learn number theory from
Euclid? Does Euclid correctly prove such results as the
commutativity of multiplication and “Euclid’s Lemma”?
I am going to pursue my questions, making use of some
scholarship that I know of, overlooking (of course) the
scholarship that I do not know.

§1.3. We cannot decide whether a particular statement or ar-
gument of Euclid is correct or incorrect without first
understanding what it means. The meaning is not al-
ways obvious.

§1.4. In studying Euclid, we have to re-enact his thoughts, as
best we can.

§1.5. In reading Euclid (or any philosopher), we cannot just
say that he is wrong (if we think he is), without also
offering a correction that (in our best judgment) he (or
she) can agree with.

Chapter 2. Mathematicians used to learn mathematics from Eu-
clid. Since this no longer commonly happens, we may be
better able now to understand Fuclid properly. Nonethe-
less, some students do still learn mathematics from Euclid.
Among those students are undergraduates in my own math-



ematics department in Istanbul. Reading with them brings
out certain features of Euclid.

§2.1.

§2.2.

§2.3.

§2.4.

Dedekind did not learn his construction of the real num-
bers from Euclid. Unlike some of his contemporaries,
he understood Euclid well enough to see that what he
was doing was different.

Looking back at Euclid’s Greek (for the sake of trans-
lating this into Turkish) brings out some misleading
features of the standard English translation by Heath.
Heath aids the reader by typographical means; but this
may cause us to think wrongly that Euclid’s proposi-
tions are like modern theorems. Euclid may have estab-
lished a pattern for modern mathematical exposition;
but this does not mean he is obliged to follow it.
Contrary to modern mathematical practice, FEuclid’s
equality is not sameness or identity. Thinking about
what equality really means, one can see that Euclid’s
Proposition 1.4, the “Side Angle Side” theorem of trian-
gle congruence, is a real theorem.

According to Hilbert, Euclid’s Fourth Postulate, the
equality of all right angles, is really a theorem. Examin-
ing Hilbert’s proof of this theorem shows how different
is his way of thinking of geometry from Euclid’s.

Chapter 3. We turn to Book viI of Euclid’s Elements and to the
specific investigation of questions raised earlier.

§3.1.

§3.2.

The definition of unity may well be a late addition to
this book.

By definition, if a number is of a second number the
same part or parts that a third number is of a fourth,
then the four numbers are proportional. Whatever else
this means, a proportion is not an equation of ratios,
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but an identification of them.

§3.3. Euclid’s numbers are finite sets of two (or possibly one)
or more elements. Euclid distinguishes between dividing
numbers into parts and measuring numbers by num-
bers. It so happens that for infinite sets, being divisible
into two equipollent subsets is logically stronger than
being measurable by a two-element set.

§3.4. If a number is parts of a number in Euclid’s sense, this
does not mean that the one number is a fraction of the
other.

§3.5. When the numbers in Euclid’s diagrams appear as line
segments, one may think of these as lyre strings. The
ancient musical treatise called Sectio Canonis suggests
a way of thinking about numerical ratios that is useful
for understanding the Elements.

§3.6. Lying behind the notion of a ratio is the alternating
subtraction or anthyphaeresis used in the Euclidean Al-
gorithm.

§3.7. Proposition VII.4, that the less number is either part
or parts of the greater, should be understood as an ex-
planation of what being the same parts means in the
definition of proportion: it means that application of
the Euclidean Algorithm requires the same pattern of
alternating subtractions in either case.

§3.8. With this understanding, the proof of the commutativ-
ity of multiplication, Proposition viI.16, unfolds logi-
cally.

§3.9. So does the proof of “Euclid’s Lemma,” Proposition
VII.30.

Chapter 4. We consider Euclid’s mathematics in the modern sym-
bolic fashion.



§4.1.

84.2.
§4.3.
§4.4.
§4.5.

§4.6.

Precisely because it must be understood in this fashion,
The last proposition (39) of Book vII may be a late
addition to the Elements.

Euclid’s proof of the commutativity of multiplication is
summarized.

Euclid works in a structure (N, 1, 4, X, <).

There is a list of axioms that Euclid uses implicitly.
There are some redundancies on this list, though there
is no reason to think Euclid recognized them.
Commutativity of multiplication is derived from the ax-
ioms, as closely to Euclid as possible.



1 Philosophy of History

1.1 Archeology

We are going to investigate foundational aspects of Euclid’s arith-
metic, as presented in Books Vi1, VIII, and 1X of the thirteen books
of the Elements. Our investigation might be called archeology,
though it will require no actual digging. We want to know some-
thing about the Elements, and in particular its theory of numbers;
however, we have no first-hand testimony about what Euclid was
doing, or trying to do. We just have the Elements itself. As for
the earlier tradition that Euclid came out of, we have only traces
of it. We have later works about Euclid, especially Proclus’s Com-
mentary on the First Book of Fuclid’s Elements. We shall make
some use of this commentary, but it was written centuries after the
Elements.

Euclid himself does not provide testimony about what he is do-
ing; he just does it. If proper history requires such testimony,* then
we cannot make an historical study of Euclid’s arithmetic. We can
still make an archeological study. We can read the Elements itself,
for evidence of what Euclid was trying to do there. In the same way,
one might read the Church of St Sophia in Constantinople, for ev-
idence of the aims of its master builders, Anthemius of Tralles and

*A Wikipedia article requires testimony in a stricter sense. Because of the
rule of No Original Research, a Wikipedia article about a book should be
based on the testimony of published sources other than the book itself.

10
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Isidore of Miletus: the basilica itself can still be visited in Istanbul.

Concerning this basilica, called the Hagia Sophia or Ayasofya,
we do also have some written testimony. Procopius saw the church
constructed in the sixth century, at the command of Emperor Jus-
tinian, after an earlier church had been destroyed in the so-called
Nika Insurrection. Justinian spared no expense to build a new
church, says Procopius,

so finely shaped, that if anyone had enquired of the Christians
before the burning if it would be their wish that the church should
be destroyed and one like this should take its place, shewing them
some sort of model of the building we now see, it seems to me they
would have prayed that they might see their church destroyed
forthwith, in order that the building might be converted to its
present form. [8o, L.i.22, p. 11]

We might infer that Anthemius and Isidore did actually show Jus-
tinian a model of the basilica that they planned to build. Like this
model, or like the old church that the new Hagia Sophia would re-
place, some kind of mathematics came before the Elements as we
have it now; but we have only hints (as in Plato’s Meno) of what
this was like. About the construction of the Hagia Sophia itself,
from Procopius we know

it was not with money alone that the Emperor built it, but also
with labour of the mind and with the other powers of the soul, as
I shall straightway show. One of the arches which I just now men-
tioned (l6ri the master-builders call them), the one which stands
towards the east, had already been built up from either side, but
it had not yet been wholly completed in the middle, and was still
waiting. And the piers (pessoi), above which the structure was
being built, unable to carry the mass which bore down upon them,
somehow or other suddenly began to crack, and they seemed on
the point of collapsing. So Anthemius and Isidorus, terrified at
what had happened, carried the matter to the Emperor, having
come to have no hope in their technical skill. And straightway the
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Emperor, impelled by I know not what, but I suppose by God (for
he is not himself a master-builder), commanded them to carry the
curve of this arch to its final completion. “For when it rests upon
itself,” he said, “it will no longer need the props (pessoi) beneath
it.” And if this story were without witness, I am well aware that
it would have seemed a piece of flattery and altogether incredible;
but since there were available many witnesses of what then took
place, we need not hesitate to proceed to the remainder of the
story. So the artisans carried out his instructions, and the whole
arch then hung secure, sealing by experiment the truth of his idea.
Thus, then, was this arch completed. [8o, 1.1.68—74, pp. 29-31],

We have no such contemporary account of the Elements. Nobody
who knew Euclid can tell us, for example, of Euclid’s discovery
of the Fifth or Parallel Postulate, as being needed to prove such
results as the equality of an exterior angle of a triangle to the two
opposite interior angles. Nobody can testify that, since the Parallel
Postulate is phrased in terms of right angles, Euclid figured he
needed another postulate, according to which all right angles are
equal to one another, and thus arose the Fourth Postulate. We
have no testimony that Euclid’s thoughts proceeded in this way;
we can only infer it (or something like it) from the edifice of the
Elements as it has come down to us.

By some accounts then, there can be no properly historical study
of the Elements, but only a “prehistorical” or archeological study.
However, I am going to agree with the philosopher and historian
R. G. Collingwood (1889-1943) that archeology is history. It is
hard to say that we know more about the construction of the Hagia
Sophia than of the Elements, simply because we have Procopius’s
fanciful story about how the Emperor saved a partially erected arch
from collapse. That story might after all be true; but it can hardly
be credited without independent reason for thinking it plausible.
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I shall make use of Collingwood’s ideas about history, because I
know them and find them relevant. The Hagia Sophia is relevant as
being, like the Elements, one of the great structures of the ancient
world.? After the Turkish conquest of Constantinople, nine centuries
after the construction of the Hagia Sophia, this edifice and espe-
cially its great dome became a model for Ottoman Imperial mosques
[39]. Euclid’s Elements became a model for mathematics, even as

it is done today.

As for Collingwood, though some of his books have remained
in print or been brought back into print, he is little known today.
After speculating on why this is, in a review of a biography, Simon
Blackburn concludes,

A lucky life, then, rather than an unlucky one, is the explana-
tion for Collingwood’s unattractive features—unless, as Aristotle
thought, we cannot even call men lucky when they die, since we
can be harmed after our death. I do not know whether Aristotle
was right, but if he was wrong, then in most respects the neglect
of Collingwood’s thought may be our tragedy rather than his. [11]

In Blackburn’s judgment, “Collingwood was the greatest British
philosopher of history of the twentieth century” [10]. In her own
assessment of Collingwood, Mary Beard argues,

it is surely crucial that he was a product of the old Oxford ‘Greats’
(that is, classics) course, which focused the last two and a half
years of a student’s work on the parallel study of ancient history
on the one hand, and ancient and modern philosophy on the other.
Most students were much better at one side than the other . . . In

?One might classify the Hagia Sophia as medieval rather than ancient. The
edifice at least symbolizes the ancient mathematical world, in that the mas-
ter builder Isidore also compiled texts of Archimedes with the commentaries
of Eutocius, and he is mentioned in the extant manuscripts of these texts

[2, p. 368, n. 750].
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the context of Greats, Collingwood was not a maverick with two
incompatible interests. Given the educational aims of the course,
he was a rare success, even if something of a quirky overachiever;
his combination of interests was exactly what Greats was designed
to promote. (8]

Collingwood’s combination of interests does not seem to have in-
cluded mathematics especially. Nonetheless, he was aware of it and
talked about it, as will be seen below. His sense of what it means to
do history will help us as we bring our own interest in mathematics
to the reading of Fuclid.

In directing actual archeological excavations, Collingwood found
himself “experimenting in a laboratory of knowledge,” as he reports
in An Autobiography of 1939 |20, p. 24|. The study of Euclid can
likewise serve as a laboratory of ideas about history. Collingwood
likens history to mathematics in The Idea of History, posthumously
edited and first published in 1946:

One hears it said that history is ‘not an exact science’. The mean-
ing of this I take to be that no historical argument ever proves
its conclusion with that compulsive force which is characteristic
of exact science. Historical inference, the saying seems to mean,
is never compulsive, it is at best permissive; or, as people some-
times rather ambiguously say, it never leads to certainty, only to
probability. Many historians of the present writer’s generation,
brought up at a time when this proverb was accepted by the gen-
eral opinion of intelligent persons (I say nothing of the few who
were a generation ahead of their time), must be able to recollect
their excitement on first discovering that it was wholly untrue,
and that they were actually holding in their hands an histori-
cal argument which left nothing to caprice, and admitted of no
alternative conclusion, but proved its point as conclusively as a
demonstration in mathematics. [21, pp. 262-3]

These words were originally intended for The Principles of History
[23, p. 18|, whose extant manuscripts were rediscovered in 1995,
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having been thought discarded after being (severely) edited to form
part of The Idea of History. 1 do not know whether historians gen-
erally agree with Collingwood on the subject of historical inference.
According to one archeologist’s explanation of his field,

Since nobody knows what happened in the past (even in the re-
cent historical past), there will never be an end to archaeological
research. Theories will come and go, and new evidence or discov-
eries will alter the accepted fiction that constitutes the orthodox
view of the past and which becomes established through general
repetition and widespread acceptance. As Max Planck wrote, ‘A
scientific truth does not triumph by convincing its opponents and
making them see the light, but rather because its opponents die
and a new generation grows up that is familiar with it.’

Archaeology is a perpetual search, never really a finding; it is
an eternal journey, with no true arrival. Everything is tentative,
nothing is final. [5, p. 7]

We shall return later (in §1.4, p. 33) to Paul Bahn’s skepticism
here. His reference to “accepted fiction” calls to my mind Gore
Vidal’s 1993 Introduction to his 1964 historical novel Julian [87].
Vidal quotes one historian describing another as being “The best
in the field. Of course he makes most of it up, like the rest of us.”
Speaking for himself, Vidal says,

Why write historical fiction instead of history? Because, when
dealing with periods so long ago, one is going to make a lot of it up
anyway, as Finley blithely admitted. Also, without the historical
imagination even conventional history is worthless. Finally, there
is the excitement when a pattern starts to emerge.

An emerging pattern in history is the opportunity for the flights
of fancy that Vidal takes in novels like Julian and Creation [88|.
Vidal does however admit a difference between fiction and history,
as when he says,
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as every dullard knows, the historical novel is neither history nor
a novel . . . I personally don’t care for historical novels as such
('m obliged to read history in order to write stories set in the
past).

In any case, our present topic is not history as such, but Euclid.
The editors of The Principles of History lament that, when declar-
ing the compulsive force of historical inference, Collingwood does
not give “at this point an example of historians actually reasoning
to certain conclusions” |23, p. xxix|. But one should be able to
supply one’s own examples. FEuclid will be our example, and in
a footnote, the editors supply theirs. They report that, in a 1927
article, Collingwood said, “it is more certain than ever that the
forts [on Hadrian’s Wall| were built before the stone Wall.” This
conclusion is now held to be incorrect.

Collingwood’s supposed historical mistake does not disprove his
ideas of historical inference, any more than mathematical mistakes
dispel our belief that mathematical correctness is possible. I sup-
pose every mathematician has had the pleasure and excitement of
discovering a theorem, only to find later that it was not a theorem
after all. We may then give up mathematics, or we may simply
return to it with more care.

Again, if Collingwood does not give examples of historical infer-

ence in The Principles of History, it is because he expects readers
to come up with their own. He has already said,

Like every science, history is autonomous. The historian has the
right, and is under an obligation, to make up his own mind by the
methods proper to his own science as to the correct solution of
every problem that arises for him in the pursuit of that science . . .
There is no need for me to offer the reader any proof of this
statement. If he knows anything of historical work, he already
knows of his own experience that it is true. If he does not already
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know that it is true, he does not know enough about history to
read this essay with any profit, and the best thing he can do is to
stop here and now. [21, p. 256] [23, pp. 11—2]

Actually, the best thing the reader could do would be to do some
history—which is just what we are going to do with Euclid.

1.2 Questions

In his own experiments in the historical or archeological “laboratory
of knowledge,” Collingwood was

at first asking myself a quite vague question, such as: ‘was there a
Flavian occupation on this site?’ then dividing that question into
various heads and putting the first in some such form as this: ‘are
these Flavian sherds and coins mere strays, or were they deposited
in the period to which they belong?’ and then considering all the
possible ways in which light could be thrown on this new question,
and putting them into practice one by one, until at last I could say,
‘There was a Flavian occupation; an earth and timber fort of such
and such plan was built here in the year a = b and abandoned for
such and such reasons in the year = +y.” Experience soon taught
me that under these laboratory conditions one found out nothing
at all except in answer to a question; and not a vague question
either, but a definite one. |20, p. 24|

Concerning Euclid’s number-theory, my own vague initial question
is, “Can Books VII-IX of the Elements serve as a text for undergrad-
uates today, as Book I can?” Book I is indeed a text for students
in my own mathematics department, as will be discussed in §2.2
(p- 48). In the number-theory books, Euclid proves several famous
results that students should also learn:

e the efficacy of the “Euclidean Algorithm” for finding greatest

common divisors (VIL.1, 2);
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e “Kuclid’s Lemma,” that a prime divisor of the product of two
numbers divides one of the numbers (VII.30);3

e that the set of prime numbers is unbounded (1X.20);

e that if the sum >}, 2F of consecutive powers of two (starting
from one) is a prime p, then its product p - 2" with the last
term in the sum is a perfect number (1X.36).

Towards formulating a more precise question than whether Euclid
is suitable as a textbook, I note a certain unsuitability in the text-
books of today. There is a common foundational error of assuming
that recursive definitions of number-theoretic functions are justified
by induction alone. Thus if we say 1! = 1 and (k+1)! = k!- (k+1),
it may be thought that (1) we have defined n! when n = 1, and
(2) if we have defined n! when n = k, then we have defined it when
n = k + 1; therefore, “by induction,” we have defined n! for all
natural numbers n. Actually cannot define it by induction alone.
We have made a recursive definition, and this requires k + 1 to
uniquely determine k, and 1 not to be of the form k£ + 1. Clari-
fication of this point leads to insight, as I have argued elsewhere
[74]. It so happens that induction is enough to justify the recursive
definitions of addition and multiplication, as Landau shows tacitly
in The Foundations of Analysis [54]. Therefore congruence of in-
tegers with respect to a particular modulus respects addition and
multiplication, since induction is valid on integers considered with
respect to a modulus.4 One can then use induction to prove asso-

3The result is called Euclid’s Lemma by Burton [14, p. 24] and by Wikipedia;
Hardy & Wright [42, p. 3, Thm 3] call it Euclid’s First Theorem (the Second
being, “The number of primes is infinite”).

4The phrase “with respect to the modulus m” is, in Gauss’s Latin, secundum
modulum m [36, §2]. For reasons unknown to me, the English translation
[37] sticks to Latin, but drops the preposition secundum and puts modulus
in the dative or ablative case, as in “modulo m.”
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ciativity and commutativity of addition and multiplication, as well
as distributivity of the latter over the former. The proofs of these
results can be exercises for students today. Euclid himself estab-
lishes commutativity of multiplication in Proposition VviI.16 of the
Elements. A more definite question for the present investigation
is then, “Does Euclid give a valid proof of the commutativity of
multiplication?”

Another question is whether Euclid gives a valid proof of “Euclid’s
Lemma.” The question is investigated by Pengelley and Richman
[72] and then by Mazur [59]; the former also review earlier, albeit
still modern, investigations. Such investigations can be inhibited
by the modern notion of a fraction. In the Elements, there are
two definitions of proportion, to be quoted in full in §3.2 (p. 73):
there is a clear definition of proportion of magnitudes at the head
of Book v, and an unclear definition of proportion of numbers at
the head of Book vil. By the latter definition, is A to B as C to
D, just in case the fractions A/B and C/D are equal? To answer
this, we should ask what question Fuclid was trying to answer in
his writing.

I shall propose that Euclid’s question is, “Can we simplify the
anthyphaeretic definition of proportion, that is, the definition based
on the method of finding greatest common divisors [the Euclidean
Algorithm|?” T think this proposal is at least hinted at by David
Fowler in The Mathematics of Plato’s Academy [34], which is all
about anthyphaeresis, although the book does not say a great deal
about Euclid’s arithmetic as such.

I am aware of other writing on Euclid and his theory of numbers;
there may be much more of which I am not aware. As an apology
for just going ahead anyway, and saying what I have to say, I cite
Robert Pirsig, who coins a useful word in his philosophical novel
Lila |77, ch. 26, pp. 370—2| and defines it by an analogy:
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Philosophology is to philosophy as musicology is to music, or as
art history and art appreciation are to art, or as literary criticism
is to creative writing.

One might add two more terms to the analogy, namely history of
mathematics and mathematics itself. And yet, as has already been
suggested, you cannot properly study the history of mathematics
without already being something of a mathematician. The point
for now is that, according to Pirsig, philosophologists put

a philosophological cart before the philosophical horse. Philosoph-
ologists not only start by putting the cart first; they usually forget
the horse entirely. They say first you should read what all the
great philosophers of history have said and then you should decide
what you want to say. The catch here is that by the time you’ve
read what all the great philosophers of history have said you’ll be
at least two hundred years old.

Some questions about Euclid have arisen in the course of my own
mathematical life, and here I take them up. In the next chapter,
I shall consider the question of how Richard Dedekind and David
Hilbert (and my own students) read Euclid. One could raise the
same question about every earlier mathematician, since just about
all of them must have read Euclid. But one has only so much time.
One should also have something one is looking for: this was said
by Collingwood above, and it is said by Pirsig, or more precisely
by his persona, called Phaedrus:

Phaedrus, in contrast, sometimes forgot the cart but was fas-
cinated by the horse. He thought the best way to examine the
contents of various philosophological carts is first to figure out
what you believe and then to see what great philosophers agree
with you. There will always be a few somewhere. These will be
much more interesting to read since you can cheer what they say
and boo their enemies, and when you see how their enemies attack
them you can kibitz a little and take a real interest in whether
they were right or wrong.
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It is unfortunate that Pirsig thinks of intellectual life as an arena
for attack and defense; but apparently he has reasons for this.

1.3 Evidence

We can read Euclid as if he were a contemporary mathematician.
Then we may think that we understand him if we have translated
his mathematics into our own terms. This is the approach that E.
C. Zeeman takes and defends in an article (originally a talk) on
Euclid:

In our discussions we found ourselves following the traditional op-
posing roles of historian and mathematician. The historian thinks
extrinsically in terms of the written evidence and adheres strictly
to that data, whereas the mathematician thinks intrinsically in
terms of the mathematics itself, which he freely rewrites in his
own notation in order to better understand it and to speculate on
what might have been passing through the mind of the ancient
mathematician, without bothering to check the rest of the data.

[92, p. 16]

The person given the role of historian here is the late David Fowler,
mentioned above; but he was a mathematician as well. Zeeman
seems to suggest that the mathematician has an advantage over
the historian, because an understanding of mathematics can take
a researcher places where a lack of evidence prevents the historian
from going.

Though we have seen (or at least seen it argued by Collingwood)
that mathematics is similar to history, the two disciplines are still
different. Collingwood suggests this himself in The Principles of
History [23, p. 5]. Mathematics and history are sciences; but

anything that is a science at all must be more than merely a
science, it must be a science of some special kind. A body of
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knowledge is never merely organized, it is always organized in
some particular way.

There are sciences of observation, like meteorology; there are sci-
ences of experiment, like chemistry. There is mathematics, not
named as such by Collingwood here, but described as being

organized not by observing events at all, but by making certain
assumptions and proceeding with the utmost exactitude to argue
out their consequences.

History is not like this. In meteorology and chemistry, the aim
is “to detect the constant or recurring features in all events of a
certain kind.” In being different from this, history does resemble
mathematics, but only to a certain point:

It is true that in history, as in exact science, the normal process of
thought is inferential; that is to say, it begins by asserting this or
that, and goes on to ask what it proves. But the starting-points
are of very different kinds. In exact science they are assump-
tions, and the traditional way of expressing them is in sentences
beginning with a word of command prescribing that a certain as-
sumption be made: ‘Let ABC be a triangle, and let AB = AC.” In
history they are not assumptions, they are facts, and facts com-
ing under the historian’s observation, such as, that on the page
open before him there is printed what purports to be a charter by
which a certain king grants certain lands to a certain monastery.
The conclusions, too, are of different kinds. In exact science, they
are conclusions about things which have no special habitation in
space or time: if they are anywhere, they are everywhere, and if
they are at any time they are at all times. In history, they are
conclusions about events, each having a place and date of its own.

Collingwood appears to have the view of mathematics described by
Timothy Gowers in Mathematics: A Very Short Introduction [38,
pp. 39-40|. Gowers recognises it as a twentieth-century view. It is
a view that has its place in history:
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[T]he steps of a mathematical argument can be broken down into
smaller and therefore more clearly valid substeps. These steps
can then be broken down into subsubsteps, and so on. A fact
of fundamental importance to mathematics is that this process
eventually comes to an end . . .

What I have just said in the last paragraph is far from obvious:
in fact it was one of the great discoveries of the early 20th century,
largely due to Frege, Russell, and Whitehead. This discovery has
had a profound impact on mathematics, because it means that
any dispute about the validity of a mathematical proof can always
be resolved. In the 1gth century, by contrast, there were genuine
disagreements about matters of mathematical substance. For ex-
ample, Georg Cantor, the father of modern set theory, invented
arguments that relied on the idea that one infinite set can be ‘big-
ger’ than another. These arguments are accepted now, but caused
great suspicion at the time.

Cantor’s arguments are accepted now, and one might say this is
because they can be worked out in a formal system based on the
Zermelo—Fraenkel theory of sets. Does Gowers mean to suggest
that any dispute about the validity of a proof in Fuclid can now
be resolved? I do not know; but I myself would say that today’s
mathematics does not automatically give us a good criterion for
assessing Euclid. Though Euclid may have inspired the formal sys-
tems alluded to by Gowers, Euclid himself is not using a formal
system, or at least he is not obviously using one, even though it
may well be possible to retrofit the Elements with a formal system,

as is done by Avigad, Dean, and Mumma [4].
Mathematics can be held up as an example of the peaceable
resolution of disputes. Gowers finds it to be unique in this way [38,

p. 40|:

There is no mathematical equivalent of astronomers who still be-
lieve in the steady-state theory of the universe, or of biologists who
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hold, with great conviction, very different views about how much
is explained by natural selection, or of philosophers who disagree
fundamentally about the relationship between consciousness and
the physical world, or of economists who follow opposing schools
of thought such as monetarism and neo-Keynesianism.

And yet, if all mathematical disputes are resoluble in principle, this
is only because we accept the principle. Collingwood finds the same
principle at work in history. “History,” he says [23, p. 7],

has this in common with every other science: that the historian is
not allowed to claim any single piece of knowledge, except where
he can justify his claim by exhibiting to himself in the first place,
and secondly to anyone else who is both able and willing to follow
his demonstration, the grounds upon which it is based. This is
what was meant, above, by describing history as inferential.

Mathematics is inferential in the same way. Now, can the grounds
of an inference be accepted by one person, yet rejected by another?
Practically speaking, it is less likely in mathematics than elsewhere.
Nonetheless, it can happen anywhere, because one can always be
faced with a skeptic, whom Collingwood goes on to distinguish from
a proper critic:

a critic is a person able and willing to go over somebody else’s
thoughts for himself to see if they have been well done; whereas a
sceptic is a person who will not do this; and because you cannot
make a man think, any more than you can make a horse drink,
there is no way of proving to a sceptic that a certain piece of
thinking is sound, and no reason for taking his denials to heart.
It is only by his peers that any claimant to knowledge is judged.

Mathematical disputes are resoluble in principle. In practice, they
may not be resoluble; but in this case, we may say of the parties
to the dispute that one is a skeptic in Collingwood’s sense. This is
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possible in any dispute, be it in mathematics or history or anywhere
else.

According to Zeeman as quoted above, “The historian thinks ex-
trinsically in terms of the written evidence and adheres strictly
to that data,” although this is admittedly a “traditional” view. It
sounds like the obsolescent view of history that distinguishes history
from archeology and that is described by Collingwood as “scissors
and paste”™

It is characteristic of scissors-and-paste history, from its least crit-
ical to its most critical form, that it has to do with ready-made
statements, and that the historian’s problem about any one of
these statements is whether he shall accept it or not: where ac-
cepting it means reasserting it as a part of his own historical
knowledge. [23, p. 30]

We can take an example from Euclid. Among the “definitions” at
the head of Book Vil of the Elements, there are the following two
statements, numbered 3 and 4 in the Greek text established by
Heiberg [30], and hence so numbered in translations like Heath’s

[31]:

Mépos éoTiv dp1Buods &piBuol 6 éAdoowy Tol peilovos,
OTav KaToueTpf] TOV peilova.
Mépn 8¢, Otav ut) KaToueTpf).
A number is part of a number, the less®> of the greater,
when it measures the greater.
But parts, when it does not measure.

In the body of Book VviI, Proposition 4 has the following enuncia-
tion.

5Etymologically, “less” is a comparative form, although we seem not to have
retained a positive form of its root, but we take “little” for the positive form
[83]. The second S in “less” can be considered to stand for the R of the usual
comparative suffix “-er.” The word “lesser” is thus a double comparative, as
“greaterer” would be, if there were such a word.
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Atras dp1Buds TovTods &piBuol 6 EAdoowy ToU peilovos
fjTol pépos éoTiv 1) pépm.
Every number is of every number, the less of the greater,
either a part or parts.

If the first two statements are really definitions, then the last state-
ment follows immediately from them; but Euclid gives a nontrivial
proof anyway. Suppose we think of geometry as a body of knowl-
edge consisting of, definitions, axioms, and the theorems that they
entail; and suppose we are, as it were, historians of this geometry.
If we are scissors-and-paste historians, then we are going to reject
at least one of the three ready-made statements of Euclid, because
they cannot all be respectively definitions and theorem.

In fact we are going to reject none of the statements out of hand;
nor shall we just accept them as definitions and theorem respec-
tively. We shall do something like what Collingwood goes on to
describe:

Confronted with a ready-made statement about the subject he is
studying, the scientific historian never asks himself: ‘Is this state-
ment true or false?’, in other words ‘Shall I incorporate it in my
history of that subject or not?” The question he asks himself is:
‘What does this statement mean?’ And this is not equivalent to
the question ‘What did the person who made it mean by it?’, al-
though that is doubtless a question that the historian must ask,
and must be able to answer. It is equivalent, rather, to the ques-
tion ‘What light is thrown on the subject in which I am interested
by the fact that this person made this statement, meaning by it
what he did mean?’

Our ultimate interest is in our own statements, as mathematicians
and historians of mathematics. Collingwood describes these state-
ments on his next page:

A statement to which an historian listens, or one which he reads,
is to him a ready-made statement. But the statement that such
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a statement is being made is not a ready-made statement. If he
says to himself ‘I am now reading or hearing a statement to such
and such effect’, he is himself making a statement; but it is not
a second-hand statement, it is autonomous. He makes it on his
own authority. And it is this autonomous statement that is the
scientific historian’s starting-point . . .

If the scientific historian gets his conclusions not from the state-
ment that he finds ready made, but from his own autonomous
statement of the fact that such statements are made, he can get
conclusions even when no statements are made to him.

Thus the mathematician’s activity described by Zeeman, the rewrit-
ing of Euclid’s mathematics in one’s own notation, the better to
understand it —this would seem to be an activity of the scien-
tific historian, in Collingwood’s terms. “In scientific history” says
Collingwood |23, p. 36],

anything is evidence which is used as evidence, and no one can
know what is going to be useful as evidence until he has had
occasion to use it.

Thus the mathematics that we work out can serve as evidence of
what Euclid was doing. And yet it must be used with care, since
its use will be based on the presupposition of a kind of unity of
mathematics—the presupposition about mathematical truths that,
as Collingwood said above, “if they are anywhere, they are every-
where, and if they are at any time they are at all times.”

In the study of Euclid at least, it is desirable to question this pre-
supposition. In his article [65] on the International Congresses of
Mathematics, David Mumford’s theme is that the unity of mathe-
matics (as reflected in the very existence of the Congresses) cannot

Since we shall look briefly at Euclid’s use of the definite article in §2.2 (p.
48), let us note that the word “the” in “the better” here is not the usual
definite article descended from the Old English pe. It is rather a descendent
of this pronoun’s instrumental case, spelled as py and pon [47].
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be taken for granted, but must be worked for, and will not be
achieved by forcing all of mathematics into the same mold. This is
especially true when the mathematics under consideration is spread
out over more than two thousand years.

1.4 Re-enactment

In a quotation above from The Principles of History, Collingwood
distinguishes between what a statement means and what the per-
son who made the statement means. We want to understand the
mathematics thought about by Euclid, and we want to understand
what Euclid thought about the mathematics; but these are differ-
ent. Collingwood does not seem so concerned with the distinction
in An Autobiography; but he does establish there that all history
is the history of thought. He distinguishes history from pseudo-
history, the latter meaning

the narratives of geology, palaeontology, astronomy, and other
natural sciences which in the late eighteenth and the nineteenth
centuries had assumed a semblance at least of historicity . . .
History and pseudo-history alike consisted of narratives: but
in history these were narratives of purposive activity, and the
evidence for them consisted of relics they had left behind (books
or potsherds, the principle was the same) which became evidence
precisely to the extent to which the historian conceived them in
terms of purpose, that is, understood what they were for. [20, pp.

107-9]

Thus we shall ask of Euclid’s “definitions” of part and parts of a
number, and of his propositions about the same: what are they
for?

I expressed this new conception of history in the phrase: ‘all
history is the history of thought.” You are thinking historically, I
meant, when you say about anything, ‘I see what the person who
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made this (wrote this, used this, designed this, &c.) was thinking.’
Until you can say that, you may be trying to think historically but
you are not succeeding. And there is nothing else except thought
that can be the object of historical knowledge. Political history
is the history of political thought: not ‘political theory’, but the
thought which occupies the mind of a man engaged in political
work: the formation of a policy, the planning of means to execute
it, the attempt to carry it into effect, the discovery that others
are hostile to it, the devising of ways to overcome their hostility,
and so forth. [20, p. 110]

As historians of mathematics, and in particular of Euclid’s math-
ematics, we study what Euclid was thinking while composing the
Elements.

We should acknowledge at some point that the author of the
Elements, whom we call Fuclid, was not necessarily one person.
This should remind us that, if different parts of the Elements, or
even of one of its thirteen books, do not seem to fit together, it
may be because different hands put them together. Then again,
we can decide the question of the value of the Elements for us,
without knowing whether Euclid was one person or many. This is
a point made by Collingwood in The Principles of Art of 1938 [18,

pp. 318-9|:

Individualism would have it that the work of a genuine artist is
altogether ‘original’, that is to say, purely his own work and not
in any way that of other artists . . . All artists have modelled their
style upon that of others, used subjects that others have used, and
treated them as others have treated them already . . .

The individualistic theory of authorship would lead to the most
absurd conclusions. If we regard the [liad as a fine poem, the
question whether it was written by one man or by many is au-
tomatically, for us, settled. If we regard Chartres cathedral as a
work of art, we must contradict the architects who tell us that
one spire was built in the twelfth century and the other in the
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sixteenth, and convince ourselves that it was all built at once.

If the Elements is a fine work of mathematics, its authorship is not
necessarily singular; if not, not necessarily multiple.

For Collingwood in An Autobiography, our study of Fuclid is not
only history, but typical or exemplary history. We want to under-
stand the thoughts expressed in the Elements, and to do this, since
they are mathematical thoughts, we have to be mathematicians:

the historian must be able to think over again for himself the
thought whose expression he is trying to interpret. If for any rea-
son he is such a kind of man that he cannot do this, he had better
leave that problem alone. The important point here is that the his-
torian of a certain thought must think for himself that very same
thought, not another like it. If some one, hereinafter called the
mathematician, has written that twice two is four, and if some one
else, hereinafter called the historian, wants to know what he was
thinking when he made those marks on paper, the historian will
never be able to answer this question unless he is mathematician
enough to think exactly what the mathematician thought, and
expressed by writing that twice two are four. When he interprets
the marks on paper, and says, ‘by these marks the mathematician
meant that twice two are four’, he is thinking simultaneously: (a)
that twice two are four, (b) that the mathematician thought this,
too; and (¢) that he expressed this thought by making these marks
on paper. I will not offer to help a reader who replies, ‘ah, you are
making it easy for yourself by taking an example where history
really is the history of thought; you couldn’t explain the history
of a battle or a political campaign in that way.” I could, and so
could you, Reader, if you tried.

This gave me a second proposition: ‘historical knowledge is the
re-enactment in the historian’s mind of the thought whose history
he is studying.” |20, pp. 111—2]

Re-enactment is not discussed in The Principles of History, as we
have the text; but re-enactment is discussed in some preliminary
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notes that Collingwood made for the book [23, pp. 239—40]:

all genuine historians interest themselves in the past just so far as
they find in it what they, as practical men, regard as living issues.
Not merely issues resembling these: but the same issues . . . And
this must be so, if history is the re-enactment of the past in the
present: for a past so re-enacted is not a past that has finished
happening, it is happening over again.

People have been quite right to say that the historian’s business
is not to narrate the past in its entirety . . . but to narrate such
of the past as has historical importance . . . historical importance
means importance for us. And to call a thing important for us
means that we are interested in it, i.e. that it is a past which we
desire to re-enact in our present.

We are studying Euclid for the sake of doing mathematics today.
Re-enacting Fuclid means doing his mathematics. There are things
called re-enactment that are not what Collingwood has in mind.
It does not mean dressing in period costumes and aping archaic
manners. Thus, the passage from An Autobiography mentioning
political history continues:

Consider how the historian describes a famous speech. He does
not concern himself with any sensuous elements in it such as the
pitch of the statesman’s voice, the hardness of the benches, the
deafness of the old gentleman in the third row: he concentrates his
attention on what the man was trying to say (the thought, that
is, expressed in his words) and how his audience received it (the
thoughts in their minds, and how these conditioned the impact
upon them of the statesman’s thought). [20, p. 110]

Treating the Flements historically does not mean just reading it, or
reproducing its propositions in lectures delivered at a blackboard.
It does involve understanding those propositions somehow. Histor-
ical study of Euclid does not even require learning Ancient Greek,
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though this does seem to be of value, and I shall usually quote
Euclid in Greek as well as English. Euclid’s Greek is easy, being
formulaic and having a small lexicon, many of whose words can be
seen in the mathematical language of today.

Proper re-enactment of the past is nonetheless a grand project.
Many years before writing the books quoted so far, Collingwood
engaged in another grand project, in Speculum Mentis of 1924 [17,

p. 9]:

This book is the outcome of a long-growing conviction that the
only philosophy that can be of real use to anybody . . . is a critical
review of the chief forms of human experience . . . We find people
practicing art, religion, science, and so forth, seldom quite happy
in the life they have chosen, but generally anxious to persuade
others to follow their example. Why are they doing it, and what
do they get for their pains? This question seems, to me, crucial
for the whole of modern life . . .

After using the bulk of the book to review the “forms of experience”
called art, religion, science, history, and philosophy, Collingwood
sums things up:

We set out to construct a map of knowledge on which every
legitimate form of human experience should be laid down, its
boundaries determined, and its relations with its neighbors set
forth . . .

Such a map of knowledge is impossible . . .

Beginning, then, with our assumption of the separateness and
autonomy of the various forms of experience, we have found that
this separateness is an illusion . . .

The various countries on our initial map, then, turn out to
be variously-distorted versions of one and the same country . . .
What, then, is this one country? It is the world of historical fact,
seen as the mind’s knowledge of itself. [17, pp. 306—9]
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I would read the emphasis on historical fact as follows. To know a
theorem, such as Fermat’s “Little” Theorem, means knowing that
it is true, and this means knowing, as historical fact, that one has
worked through a proof of the theorem and verified its correctness.
One may have established a proof by induction, having noted that

1) 17 =1 (mod p), and

2) if a? = a (mod p), then (a+1)P =a”? +1=a+1 (mod p).
One can then file the proof away. Asserting the theorem as true
does not require reopening the file; but it requires summoning up
the historical fact of the proof’s having been placed in the file.

One may find this “historical fact” inadequate; for, in the words
of Paul Bahn quoted earlier (§1.1, p. 15), “nobody knows what
happened in the past (even in the recent historical past).” If these
words are to be taken seriously, then the memory of having proved
a theorem does not suffice to provide knowledge that the theorem
is true. Maybe we made a mistake when we proved the theorem
yesterday. Maybe as students we accepted a teacher’s proof, but
had not yet acquired sufficient mathematical skepticism to find the
gaps in the proof.

We may then try to ensure that the stating of a theorem includes

within itself an actual proof. I think this is Mazur’s “self-proving
theorem principle” [59, p. 229], namely:

if you can restate a theorem, without complicating it, so that
its proof, or the essence of its proof, is already contained in the
statement of the theorem, then you invariably have

e a more comprehensible theorem,
e a stronger theorem, and
e a shorter and more comprehensible proof!

For Mazur, the self-proving formulation of the Euclidean Algorithm
is,
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Suppose you are given a pair of numbers A and B with A greater
than B. Any common divisor of A and B is a common divisor
of B and A — B; and conversely, any common divisor of B and
A — B is a common divisor of A and B.

This formulation gives us a key part of the theorem; but it omits
that the process of continually replacing the greater of two numbers
with the difference of the two numbers must eventually come to
an end. That the natural numbers are well ordered must still be
summoned up somehow.

Collingwood seems to have anticipated our difficulty. As we were
reading him in Speculum Mentis, he was speaking of a country,
namely “the world of historical fact”:

Can we, then, sketch this country’s features in outline?

We cannot. To explore that country is the endless task of the
mind; and it only exists in its being explored. Of such a country
there is no map, for it is itself its own map . . .

There is and can be no map of knowledge, for a map means an
abstract of the main features of a country, laid before the traveller
in advance of his experience of the country itself. Now no one can
describe life to a person who stands on the threshold of life. The
maxims given by age to youth are valueless not because age means
nothing by them but because what it means is just its own past
life. To youth they are empty words. The life of the spirit cannot
be described except by repeating it: an account of it would just
be itself.

The bare statement of a theorem, without a reiteration of its proof,
is thus a valueless maxim given by age to youth. This would ap-
pear to be so, even if “age” here is our former, younger self. As
Wordsworth wrote in “My Heart Leaps Up” |91, p. 85],

The child is the father of the man;

And T could wish my days to be
Bound each to each by natural piety.
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The child, or younger person, passes along a theorem to the man,
or older person; but how can the older person properly receive this
legacy? How can one day be remembered in the next, without being
simply relived? To give a proper account of Euclid would seem to
require us to repeat him; not to parrot him, but, as it were, to be
him.

The same goes for Collingwood too, by the way. If I parrot him
here, in the sense of just quoting him, it is because I think his words
need little translation, but usually make good-enough sense as they
are. Further sense will come, if it comes at all, from applying them

to one’s own experience, such as the experience of reading Euclid.
What Serge Lang says of mathematics |55, p. v| is true for any
of Collingwood’s “forms of human experience”

Unfortunately, a book must be projected in a totally ordered way
on the page axis, but that’s not the way mathematics “is,” so
readers have to make choices how to reset certain topics in parallel
for themselves, rather than in succession.

Thoughts projected on the axis of time become totally ordered; but
sometimes a different ordering is needed for understanding them.
My present anthology of quotations of Collingwood (and others) is
intended to offer such an ordering. In any case, our main purpose
is to understand Fuclid; Collingwood is here to serve that purpose.
On the other hand, if that purpose is served, this in turn will
illuminate Collingwood.

There is a certain pessimism or futility in Speculum Mentis: the
old—Euclid—can give nothing to the young—us—, but we must
go over everything thoroughly for ourselves. And yet progress is
possible:

In the toil of art, the agony of religion, and the relentless labour
of science, actual truth is being won and the mind is coming to
its own true stature. [17, p. 312]
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Progress of a sort is possible:

This process of the creation and destruction of external worlds
might appear, to superficial criticism, a mere futile weaving and
unweaving of Penelope’s web, a declaration of the mind’s inability
to produce solid assets, and thus the bankruptcy of philosophy.
And this it would be if knowledge were the same thing as informa-
tion, something stored in encyclopaedias and laid on like so much
gas and water in schools and universities. But education does not
mean stuffing a mind with information; it means helping a mind
to create itself, to grow into an active and vigorous contributor
to the life of the world. The information given in such a process
is meant to be absorbed into the life of the mind itself, and a
boy leaving school with a memory full of facts is thereby no more
educated than one who leaves table with his hands full of food is
thereby fed. At the completion of its education, if that event ever
happened, a mind would step forth as naked as a new-born babe,
knowing nothing, but having acquired the mastery over its own
weaknesses, its own desires, its own ignorance, and able therefore
to face any danger unarmed. [17, p. 316]

How does the mind “create itself,” with the help of education?
Collingwood continued to work on this question. The pessimism
of Speculum Mentis did not lead to despair. Collingwood contin-
ued to think, as the mathematician continues to think after finding
an error in a supposed proof.

The answer given in An Autobiography is summarized in three
“propositions,” two of which we have seen: history is history of
thought, and historical knowledge is re-enactment of thought. Then
there is

my third proposition: ‘Historical knowledge is the re-enactment
of a past thought incapsulated in a context of present thoughts
which, by contradicting it, confine it to a plane different from
theirs.’
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How is one to know which of these planes is ‘real’ life, and
which mere ‘history’? By watching the way in which historical
problems arise. Every historical problem ultimately arises out
of ‘real’ life. The scissors-and-paste men think differently: they
think that first of all people get into the habit of reading books,
and then the books put questions into their heads. But am not
talking about scissors-and-paste history. In the kind of history
that I am thinking of, the kind I have been practising all my
life, historical problems arise out of practical problems. We study
history in order to see more clearly into the situation in which we
are called upon to act. Hence the plane on which, ultimately, all
problems arise is the plane of ‘real’ life: that to which they are
referred for their solution is history. [20, p. 114]

To the question how we know which plane of life is real, and which
history, I am not sure whether Collingwood’s answer is any clearer
than saying, “We just do know, at least if we are paying attention.”
Collingwood works through the example of Admiral Nelson, on the
deck of the Victory, wondering whether to remove his decorations so
as to become a less conspicuous target to snipers on enemy ships.
To understand Nelson’s answer, as apparently Collingwood tried
as a boy, we have to understand what Nelson thinks about the
question; and yet we still know that the question does not actually
arise in our own lives. Nonetheless, young Collingwood may have
had a personal interest in the question, knowing that Nelson had
a friend and colleague bearing the name of Collingwood, who took
command at the Battle of Trafalgar after Nelson’s death [51].

We are interested in Euclid now, and difficulties in reading him
arise precisely when the questions that underlie what he tells us are
not our own questions. We must make them our own questions, and
this will be re-enacting them. But the very difficulty of doing this
will tell us that we are doing history. This is how I understand
Collingwood’s “third proposition.”
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1.5 Science

Before continuing with Euclid, I want to note again that, for Col-
lingwood in The Principles of History, history is a science. This
classification agrees with the general account of science given in An
Essay on Metaphysics of 1940:

The word ‘science’, in its historical sense, which is still its proper
sense not in the English language alone but in the international
language of European civilization, means a body of systematic or
orderly thinking about a determinate subject-matter. This is the
sense and the only sense in which I shall use it. [22, p. 4]

And yet earlier, in An FEssay on Philosophical Method of 1933,
Collingwood distinguished history from science:

Historical thought concerns itself with something individual, sci-
entific thought with something universal; and in this respect phi-
losophy is more like science than history, for it likewise is con-
cerned with something universal: truth as such, not this or that
truth; art as such, not this or that work of art. In the same way
exact science considers the circle as such, not this or that individ-
ual instance of it; and empirical science considers man as such,
not, like history, this man as distinct from that. [24, p. 26]

In An Autobiography |20, p. 117|, Collingwood described An Essay
on Philosophical Method as

my best book in matter; in style, I may call it my only book, for
it is the only one I ever had the time to finish as well as I knew
how, instead of leaving it in a more or less rough state.

Did Collingwood nonetheless change his mind about science later?
The passage from An Essay on Metaphysics continues:

There is also a slang sense of the word [‘science’], unobjectionable
(like all slang) on its lawful occasions, parallel to the slang use of
the word ‘hall’ for a music-hall or the word ‘drink’ for an alcoholic
drink, in which it stands for natural science.
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In the earlier Fssay on Philosophical Method, was Collingwood us-
ing the word “science” in its slang sense? Does the term “natural
science” in the later Fssay encompass both empirical and exact
science? These questions are not of great importance for us, but
provide an opportunity to note the grand theme of the earlier Fs-
say, which is the “overlap of classes™

The specific classes of a philosophical genus do not exclude one
another, they overlap one another. This overlap is not excep-
tional, it is normal; and it is not negligible in extent, it may reach
formidable dimensions.

Thus in The Principles of Art of 1938, Collingwood will be at pains
to distinguish art from craft, although, for example,

The distinction between planning and executing certainly exists
in some works of art, namely those which are also works of craft
or artifacts; for there is, of course, an overlap between these two
things, as may be seen by the example of a building or a jar, which
is made to order for the satisfaction of a specific demand, to serve
a useful purpose, but may none the less be a work of art. But
suppose a poet were making up verses as he walked . . . [18, p. 21]

The poem may be unplanned, and so not be craft, but nonetheless

be a work of art; yet other things are both craft and art.
The overlap of classes has a practical result [24, p. 105]. First:

On a matter of empirical fact it is possible, when asked for example
‘where did I leave my purse?’ to answer ‘not in the taxi, I am sure’,
without having the least idea where the purse was actually left . . .

Likewise, when asked, “Is this proof correct?” we may answer “No,”

without having the least idea of a correct proof, if indeed there is
a correct proof. Nonetheless,

In philosophy this is not so. The normal and natural way of
replying to a philosophical statement from which we dissent is
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by saying, not simply ‘this view seems to me wrong’, but ‘the
truth, I would suggest, is something more like this’, and then
we should attempt to state a view of our own . . . This is not
a mere opinion. It is a corollary of the Socratic principle (itself
a necessary consequence of the principle of overlapping classes)
that there is in philosophy no such thing as a transition from
sheer ignorance to sheer knowledge, but only a progress in which
we come to know better what in some sense we know already.

Euclid’s Elements is not philosophy; and yet perhaps the best rea-
son for reading it is philosophical: to deepen our understanding of
mathematics as we already know it. In this case, if we detect what
we think are errors in Euclid, we ought to be prepared to correct
them, and correct them in a way that Euclid himself would agree
with.

Mathematics is not philosophy; but there is an overlap. After
writing An Essay on Philosophical Method, with its doctrine of the
overlap of classes, Collingwood applied the method to nature; the
resulting lectures were posthumously published in 1945 as The Idea
of Nature. What Collingwood says at the beginning about natural
science applies as well to mathematics:

The detailed study of natural fact is commonly called natural
science, or for short simply science; the reflection on principles,
whether those of natural science or of any other department of
thought or action, is commonly called philosophy. Talking in these
terms, and restricting philosophy for the moment to reflection on
the principles of natural science, what I have just said may be
put by saying that natural science must come first in order that
philosophy may have something to reflect on; but that the two
things are so closely related that natural science cannot go on for
long without philosophy beginning; and that philosophy reacts
on the science out of which it has grown by giving it in future
a new firmness and consistency arising out of the scientist’s new
consciousness of the principles on which he has been working.
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For this reason it cannot be well that natural science should be
assigned exclusively to one class of persons called scientists and
philosophy to another class called philosophers. [19, p. 2]

Collingwood saw the need for a bridge between science and philos-
ophy, and thought himself not alone in this:

In the nineteenth century a fashion grew up of separating natu-
ral scientists and philosophers into two professional bodies, each
knowing little about the other’s work and having little sympathy
with it. It is a bad fashion that has done harm to both sides,
and on both sides there is an earnest desire to see the last of it
and to bridge the gulf of misunderstanding it has created. The
bridge must be begun from both ends; and I, as a member of the
philosophical profession, can best begin at my end by philosophiz-
ing about what experience I have of natural science. Not being
a professional scientist, I know that I am likely to make a fool of
myself; but the work of bridge-building must go on. [19, p. 3]

Why build bridges? Collingwood had seen the great destructive
folly of the First World War, albeit from a desk in London at the
Admiralty Intelligence Division |20, p. 29].

The War was an unprecedented triumph for natural science.
Bacon had promised that knowledge would be power, and power
it was: power to destroy the bodies and souls of men more rapidly
than had ever been done by human agency before. This triumph
paved the way to other triumphs: improvements in transport, in
sanitation, in surgery, medicine, and psychiatry, in commerce and
industry, and, above all, in preparations for the next war.

But in one way the War was an unprecedented disgrace to the
human intellect . . . nobody has ever supposed that any except
at most the tiniest fraction of the combatants wanted it . . . I
seemed to see the reign of natural science, within no very long
time, converting Europe into a wilderness of Yahoos. [20, pp.

90-1]
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Collingwood saw salvation in history, pursued scientifically in the
sense described earlier, and not by scissors and paste.

It was suggested earlier that a kind of salvation from conflict lay
in mathematics, where all disputes could be resolved amicably. And
yet, strictly speaking, what can be so resolved are disputes about
mathematics that can be expressed in formal systems. Mathemat-
ics, and number theory in particular for its relevance to encryption,
can no longer be distinguished from other sciences as Hardy distin-
guished it in 1940 by saying,

science works for evil as well as for good (and particularly, of
course, in time of war); and both Gauss and less mathematicians
may be justified in rejoicing that there is one science at any rate,
and that their own, whose very remoteness from ordinary human
activities should keep it gentle and clean. [41, §21, p. 121]

The Elements is an old book, and certain old books have been, and
continue to be, the nominal causes of bloody disputes. Euclid is
different. There have been no wars in his name. There may still
be academic disputes about him. If history has the potential that
Collingwood saw in it, Euclid may be as good a place as any for a
mathematician, at least, to try out the possibilities.



2 Euclid in History

2.1 Dedekind and Hilbert

Today we may be better able to learn Euclid’s mathematics, pre-
cisely because the Elements is not commonly used as a textbook.
We can approach Euclid more easily now, without assuming that
he is doing just what we are doing when we do mathematics.

In the preface of his 1908 translation of the Elements [31, v. I,
p. vii], Thomas Heath said,

no mathematician worthy of the name can afford not to know
Euclid, the real Euclid as distinct from any revised or rewritten
versions which will serve for schoolboys or engineers.

I do not know why engineers and schoolchildren, boys and girls,
do not also deserve to know the real Euclid; but in any case, I
suppose mathematicians of Heath’s day did know Euclid. Whether
they knew him more directly than through the “revised or rewritten
versions” that Heath refers to, I do not know. However, a few
years before Heath, David Hilbert introduced his Foundations of
Geometry [46, p. 1] by saying,

Geometry, like arithmetic, requires for its logical development only
a small number of simple, fundamental principles. These funda-
mental principles are called the axioms of geometry. The choice of
the axioms and the investigation of their relations to one another
is a problem which, since the time of FEuclid, has been discussed
in numerous excellent memoirs to be found in the mathematical

43
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literature. This problem is tantamount to the logical analysis of
our intuition of space.

Presumably Hilbert had actually read Euclid, at least in some form.
Thus he could disagree explicitly with Euclid on whether the con-
gruence of all right angles is an axiom or a theorem [46, p. 13].
On the other hand, this disagreement may represent a somewhat
careless reading of Euclid; I shall discuss this point in §2.4 (p. 66).

A few years before Hilbert, Richard Dedekind |25, pp. 39—40]
complained about critics who thought that his theory of irrational
numbers could be found already in the Traité d’Arithmétique of
Joseph Bertrand. According to Dedekind, the theory in Bertrand’s
work had already been present in Fuclid’s work; but his own the-
ory was different. Dedekind traced his own definition of irrational
numbers to the idea that

an irrational number is defined by the specification of all rational
numbers that are less and all those that are greater than the num-
ber to be defined . . . That an irrational number is to be considered
as fully defined by the specification just described, this conviction
certainly long before the time of Bertrand was the common prop-
erty of all mathematicians who concerned themselves with the
irrational . . . [I|f, as Bertrand does exclusively in his book (the
eighth edition, of the year 1885, lies before me,) one regards the
irrational number as the ratio of two measurable quantities, then
is this manner of determining it already set forth in the clearest
possible way in the celebrated definition which Euclid gives of the
equality of two ratios (Elements, V., 5).

In the 1849 edition of his Traité [g] (the one that I was able to find),
Bertrand indeed defines irrational square roots and other irrational
numbers as measures of quantities with respect to a predetermined
unit. Thus he writes:

267. Lorsqu’un nombre N, n’est le carré d’aucun nombre entier
ou fractionnaire, la définition de sa racine carrée exige quelques
développements.
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On dit qu'un nombre est plus grand ou plus petit que v/N suiv-
ant que son carré est plus grand ou plus petit que N; d’apreés cela,
pour définir les grandeurs dont /N est la mesure, supposons, par
exemple, qu’aprés avoir adopté une certaine unité de longueur on
regarde tous les nombres comme exprimant des longueurs portées
sur une meéme ligne droite & partir d’une origine donnée. Une
portion de cette ligne recevra les extrémités des longueurs dont la
mesure est moindre que v/N, et une autre portion celles des lignes
dont la mesure est plus grande que v/N; entre ces deux régions, il
ne pourra évidemment exister aucun intervalle, mais, seulement,
un point de démarcation. La distance a laquelle se trouve ce point,
est, par définition, mesurée par v/N.

That is, if N is not a square, we define v/ N by saying first z > VN
if 22 > N, and z < VN if 22 < N, where implicitly the z are
rational. If such z are taken to measure lengths along a straight
line from a given origin, a unit length having been chosen, then the
extremities of the lengths measuring less than v/ N will be separated
from the extremities of the lengths measuring more than v'N by a
single point, whose distance from the origin is v/N.

Dedekind seems right in saying that Euclid had “already set forth
in the clearest possible way” the approach that Bertrand would
take. Thus, suppose A and B are magnitudes that have a ra-
tio to one another in the sense of Definition v.4 of the FElements.
This means some multiple of either magnitude exceeds the other.
Though Euclid has no such notation, we can understand a multiple
of A as

At + A,
—_—

n
where n belongs to the set N of positive integers; and then we may
write the multiple more simply as

A-n.
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I am writing the multiplier n on the right, in accordance with the
modern convention for ordinal arithmetic; but one could just as
well write nA. In either case, the meaning is “A, n times,” or “n
times A.” Here m is not a thing in itself. But if A and B are
magnitudes which are numbers of units, then A x B will have to be
distinguished from B x A. See p. 81 and especially p. 102.

Implicitly, if the arbitrary magnitudes A and B have a ratio to
one another, but are unequal, then the greater exceeds the less by
some magnitude, and this magnitude has a ratio to A and B. Thus,
in our terms, A and B are positive elements of an archimedean
ordered group.® We derive from these magnitudes the set

{m/n: B-m < A-n} (2.1)

consisting of positive rational numbers; here m and n range over
N. The set (2.1) determines the ratio of A to B, in the sense that,
if C' and D are also magnitudes having a ratio to one another, then
they have the same ratio that A and B have, provided

{m/n: B-m<A-n}={m/n: D-m<C-n}.

Such is Euclid’s Definition v.5, in modern form. I suggested in
§1.2 (p. 19) that fractions were problematic; but in the present
context, it makes no difference if we replace m/n with the ordered
pair (m,n).

Dedekind’s insight was that a set of the form {m/n: B-m < A-n}
had properties that could be specified without reference to magni-
tudes like A and B; and then the sets of rational numbers with those

'If A < B, then Euclid requires the difference B — A to have a ratio to A
and B, in order to prove that A and B cannot have the same ratio to
another magnitude. In the paper [92]| discussed earlier (p. 21), Zeeman
shows that, for the proof, B — A need not be defined, but it is enough to
assume A - (n 4+ 1) < B - n for some positive integer n.
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properties could be used to define the irrational numbers. In the
Geometry [26], Descartes had justified algebraic manipulations ge-
ometrically, by showing how the product of two line-segments could
be understood as another segment, once a unit length was chosen.
Essential to Descartes’s work was a geometric theory of propor-
tion, and specifically Proposition Vvil.2 of Euclid’s Elements, that
a straight line parallel to the base of a triangle cuts the sides pro-
portionally.? Bertrand, for one, seems to have continued the tradi-
tion of finding the ultimate foundation of mathematics in geometry.
Dedekind saw that arithmetic also could serve as a foundation of
mathematics, even a better foundation. This was a significant ad-
vance, not always appreciated by Dedekind’s contemporaries, who
were perhaps too strongly attached to ideas traceable to Euclid.

Or did Dedekind perhaps understand Euclid more clearly than
others did? Dedekind showed that we need not assume that the
number line is continuous; we can make it continuous. He observed
[25, p. 38| that if all of the points M of a plane have algebraic
coordinates (according to some coordinatization),

then is the space made up of the points M, as is easy to see, every-
where discontinuous; but in spite of this discontinuity, and despite
the existence of gaps in this space, all constructions that occur in
Euclid’s Elements, can, so far as I can see, be just as accurately
effected as in perfectly continuous space; the discontinuity of this
space would not be noticed in Euclid’s science, would not be felt
at all. If any one should say that we cannot conceive of space as
anything else than continuous, I should venture to doubt it and
to call attention to the fact that a far advanced, refined scientific
training is demanded in order to perceive clearly the essence of
continuity and to comprehend that besides rational quantitative
relations, also irrational, and besides algebraic, also transcenden-
tal quantitative relations are conceivable.

My article [73] has some model-theoretic developments from Descartes’s idea.
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Mathematicians had drifted away from the rigor of Euclid without
realizing it. They worked with kinds of numbers never contem-
plated by Euclid, while still founding their ideas of such numbers
in geometric intuition. For Dedekind, this would not do. There is
more to the story; but the point for now is that when there has
been a continuous tradition of building up mathematics from Eu-
clid, the tradition may lose sight of what FEuclid actually did. Now
that we no longer have this tradition, we may be better able to do
what Dedekind could do, and understand what Euclid really did
do.

2.2 From a course of Euclid

Some students do still learn mathematics from FEuclid. My own
mathematics department in Turkey now has a first-semester under-
graduate course based on the first book of the Flements. Students
go to the board and demonstrate propositions, more or less on the
pattern of my own alma mater, St. John’s College in the United
States |75]. However, they use a Turkish translation of Euclid pre-
pared in collaboration with my colleague Ozer Oztiirk [33]. The
translation is from the original Greek, as established by Heiberg
[30]. One could just translate Heath’s English [31]; but there are
ways that Heath is inaccurate. In translating the first proposition
of the first book of the Flements, Heath begins,

On a given finite straight line to constuct an equilateral triangle.

Let AB be the given finite straight line.

Thus it is required to construct an equilateral triangle on the
straight line AB.

With centre A and distance AB let the circle BCD be de-
scribed.

But what Euclid says (in Heiberg’s transcription and in my literal
translation) is,
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Emi Tfjs Sofeions elbeias memepaouévns Tpiywvov icdTAcupov
oustnoaocfBal. "EoTtw 7 Sofcica eufeia memepaopévn 1 AB.
Ael dn) &t Tfis AB eUfelas Tpiywvov iocomAeupov ouoTnoacbanl.
Kévtpow pév 16 A SiaoTthuart 8¢ 16 AB kUkhos yeypdobw o
BFA. // [1] On the given finite straight [line] to construct
an equilateral triangle. [2] Let the given finite straight [line]
be AB.3 [3] Thus it is required on the AB straight [line]
to construct an equilateral triangle. [4] With center A and
distance AB let a circle have been drawn, BrA.

The four sentences here are, respectively, the four parts of a propo-
sition that Proclus |79, p. 159| calls (1) enunciation, (2) exposi-
tion (or “setting out”), (3) specification, and (4) construction.
(In fact the fourth sentence is only part of the construction.) The
remaining two parts of a proposition are the (5) demonstration
and (6) conclusion. We shall find it useful to analyze Proposi-
tions VII.37 and 38 into these parts in §4.1 (p. 119). Meanwhile, in
Proposition 1.1, the construction continues with the drawing of a
second circle as in Figure 2.1, and with the connection of one of the
points of intersection of the two circles with the endpoints of the
original finite straight line. Then follows the (easy) demonstration
that the resulting triangle is indeed equilateral, and the conclusion
that what was to be done has been done. The literal translation of
the Greek above shows six differences from Heath:

1. For Euclid, a line is what we call a curve; our lines are Euclid’s
straight lines. Heath is faithful to Euclid by writing “straight line”
when this is what is meant. However, Euclid usually abbreviates
“straight line” (eUfeia ypaupr)) to “straight” (e8eia). Heath cannot
do this if, as he does, he wants to maintain good English style. One
can do it in Turkish though: here a line in Euclid’s sense is ¢izgi,
while a straight line is dogru ¢izgi or just dogru.

3 Alternatively, Let there be a given finite straight [line, namely] AB.
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Figure 2.1. Proposition 1.1

2. In the enunciation of the proposition, Euclid refers not to a
straight line, but the straight line. The definite article “the” here
can be understood as being generic, as in Wordsworth’s verse, “The
child is the father of the man,” quoted already on p. 34. I discuss the
mathematical use of the Greek article in more detail elsewhere [76].
The straight line of Euclid’s enunciation can also be understood as
the straight line in Euclid’s diagram, which exists before we start
to read the proposition.

3. Today, if we say that we are going to construct an equilateral
triangle on a straight line, we mean an arbitrary straight line; but
then we proceed to draw our own straight line, assigning to its
endpoints, as Heath does, the letters A and B. This is not what
Euclid does, as Reviel Netz explains in The Shaping of Deduction
in Greek Mathematics |67, pp. 24-5]:

Nowhere in Greek mathematics do we find a moment of specifica-
tion per se, a moment whose purpose is to make sure that the attri-
bution of letters in the text is fixed. Such moments are very com-
mon in modern mathematics, at least since Descartes. But specifi-
cations in Greek mathematics are done, literally, ambulando. The
essence of the ‘imperative’ element in Greek mathematics—‘let a
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)

line be drawn . . . ’, etc.—is to do some job upon the geometric
space, to get things moving there . . . ¢

What we see, in short, is that while the text is being worked
through, the diagram is assumed to exist. The text takes the
diagram for granted.

Thus, at the start of Euclid’s proposition, we have already been
given a straight line, its endpoints labelled A and B. The exposition
or “setting out” of the proposition tells us to understand the straight
line of the enunciation as the straight line AB. We are not told to
let AB be some straight line that we proceed to create for ourselves.

(See p. 123 for further illustration of this point.)

4. Today it is standard to use expressions like “the straight line
AB” or “the circle BC'D”; but sometimes this phrasing does not
quite fit Euclid. Netz proposes that the letters in the diagrams of
Greek mathematics are not symbols, but indices:

the letter alpha signifies the point next to which it stands, not by
virtue of its being a symbol for it, but simply because it stands
next to it. The letters in the diagram are useful signposts. They
do not stand for objects, they stand on them. [67, p. 47]

In his ensuing pages, Netz gives five arguments for his idea. One
argument is based on what we have just observed: in the proposition
under consideration, the letters A and B have a meaning before we
start reading, since they are already in the diagram. Thus the
letters are not symbols, whose meaning would be established by
convention; they are indices. A related argument, though one Netz
seems not quite to make, is that, strictly speaking, the letters are
adjectives. They are like the colors that Oliver Burne uses in his
remarkable edition of the first six books of the Elements [13]: here
the triangle to be constructed in Proposition 1.1 has black, red, and
yellow sides respectively, and these sides are referred to in the text

4The first ellipsis here is Netz’s; the second, mine.



52 2 FEuclid in History

merely by colored pictures of themselves; but if we were reading out
loud, we would speak of the yellow line, and not the “line yellow.”
Letters and colors may indeed be used substantively, just as the
adjective e08eia is used substantively in place of edfeia ypauun.
Like Greek adjectives, the Greek letters have no native gender,®
but take a gender from the noun they are used with or used in
place of. Thus in the exposition of the proposition, § AB, “the
AB,” stands for f| AB elfeia ypapun, “the AB straight line™: the
article 1] is feminine because the noun ypapun is feminine. Today,
it appears we use letters as nouns, often in apposition to other
nouns, as in “the straight line AB” or “the circle BC'D.” Euclid
does this too, as in the fourth sentence of the quotation, where 6
BI'A is in apposition to kUkAos (and takes its masculine gender);
so Heath is not wrong in his translation.” In the third sentence

5Burne himself uses expressions like “the yellow line” and “the red angle” when
describing his system of geometry in his Introduction. Meanwhile, Netz has
referred to Peirce for a general theory of signs, according to which these
may be indices, icons, or symbols. Icon are signs “signifying by virtue of
a similarity with their object.” Burne’s colored lines in text would seem
to be icons in this sense, for they are similar to the colored lines in the
diagrams. Netz calls Peirce’s distinction “well-known” and gives no further
reference. (Three pages later he quotes Peirce, with a precise reference, to
the effect that letters used in mathematics are indeed indices.) Peirce gives
the following examples in [70, p. 104]: The streak of a lead pencil is an icon
for a geometrical line; a bullet-hole is an index for a shot; an utterance of
speech is a symbol.

5There may be exceptions to this rule, as in Revelation 1:8: *Eyc eiw 16
Ahpa kal 1O TQ, Aéyer kUplos & Beds [1], “I am the Alpha and the Omega,
says the Lord God,” the articles here being neuter, neuter, and masculine
respectively.

7One may observe however that, in the sentence in question, “the circle BC D”
is not parallel in meaning to “center A” and “distance AB”; for here A and
AB are not appositives, but complements [48, §§14.1 & 3, pp. 439 & 447-8].
But the Greek does not make a formal distinction either.
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Figure 2.2. Letters as points

though, strictly, AB is not in apposition to “straight line,” but is an
adjective modifying it: again, the straight line in question is that
straight line in the diagram whose endpoints are labelled A and B.
If the letters were symbols for those endpoints, then our diagram
might be as in Figure 2.2—which is indeed how we make diagrams
today, at least outside of a strictly geometrical context. We shall
see later (§4.1 p. 115) an instance in the FElements where letters
are used symbolically: where they are not strictly labels on objects
in a diagram, because what they symbolize is not an object, but a
ratio of objects, if not simply a verbal expression. This will give us
reason to question the authenticity of the proposition in question.

5. Meanwhile, in Proposition 1.1, Heath tells us to let a circle
be drawn. Using chalk or a pen, we can then draw a circle. But
apparently Euclid had nothing like our blackboards or whiteboards,
with which a diagram could be constructed during a lecture. Again,
his diagrams would already have been drawn, perhaps on a wax
tablet. Referring to the last passage quoted, Netz says,

This, in fact, is the simple explanation for the use of perfect im-
peratives in the references to the setting out—‘let the point A
have been taken’. It reflects nothing more than the fact that, by
the time one comes to discuss the diagram, it has already been
drawn.

Though it is seen in the command “Have done with it,” the English
imperative in the perfect aspect is awkward. English does not even
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have a third-person imperative in any aspect, except in some for-
mulas like “God bless you”; otherwise we achieve the same effect
periphrastically,® by means of the second-person imperative “let,”
as in “Let it be done.” Turkish, like Greek, does have third-person
imperatives, which are commonly used:

let [somebody| draw  ypagéTw  ¢izsin
let [it] be drawn ypogéoBw  ¢izilsin
let [it] have been drawn yéypagbw ¢izilmis olsun

This similarity between Turkish and Greek was a particular reason
to translate directly from Euclid’s Greek into Turkish.

6. Heath italicizes the enunciations of Euclid’s propositions; but
Euclid had no such means of emphasizing text. He did not even
have the medieval distinction between minuscule and capital letters.

Like Heath, Heiberg emphasizes Euclid’s enunciations: not how-
ever by a change of font, but by spacing out the let-
ters like this. I assume Euclid did not consider doing such
a thing, since he would not even have separated words with spaces,
BUTINSTEADHEWROTECONTINUOUSLYLIKETHIS.? Although there
might have been the possibility of underlining for emphasis, pre-

8«Periphrasis & civilisation are by many held to be inseparable; these good
people feel that there is an almost indecent nakedness, a reversion to bar-
barism, in saying No news is good news instead of The absence of intel-
ligence is an indication of satisfactory developments. Nevertheless, The
year’s penultimate month is not in truth a good way of saying November.”
H. W. Fowler, A Dictionary of Modern English Usage [35, PERIPHRASIS, p.
430].

90bserving this in a footnote [67, n. 102, p. 50|, Netz mentions a papyrus from
350325 BCE in which, “the continuous text is, as usual, unspaced. Letters
referring to the diagram are spaced from the rest of the text.” This is one
of Netz’s reasons why letters referring to diagrams should be understood as
indices, not symbols.



2.2 From a course of Euclid 55

sumably Euclid did not use this either.*®

In The Mathematics of Plato’s Academy [34, §6.2], David Fowler
discusses what we know about ancient manuscript style. He also
[34, §10.4] looks at what he calls the protasis-style of Euclid. TTpo-
Tao1s is the term of Proclus that we translate as “enunciation.” Be-
fore Euclid, we have no evidence of any mathematics written in the
Euclidean style, with an enunciation followed by justification. Aris-
totle’s Prior Analytics might be an exception, except that it is not
really mathematics, but logic.’* Today the protasis-style is ubiqg-
uitous in mathematics; and yet we signal our protases with rubrics
like “Theorem N,” and our justifications with the word “Proof” (and
a box [ at the end). Strictly speaking, this is not Euclid’s style.

It is often not students’ style either. In performing the task of
demonstrating something, students will write down various state-
ments, without being clear about the logical relations between
them. Even professional mathematicians will do this at the board,
expecting the attentive listener to know what is meant (and ex-
pecting all listeners to be attentive).

At least Euclid establishes a set pattern for his propositions.
Read a bit, and you see that the FElements is a sequence of as-
sertions, each followed by a justification, the justification itself be-
ing laid out (more or less) according to the outline given by Pro-
clus. Actually, some of Euclid’s enunciations are not assertions, but

*°In the same footnote mentioned in the previous note, Netz mentions later
papyri in which mathematical letters are marked by superscribed lines.

** At the beginning of the Prior Analytics, Aristotle defines TpéTacis as “an af-
firmative or negative statement of something about some subject” [3, 24*10,
p- 199]. We then translate the word as premiss or just proposition. TpéTaois
is used in Greek today, as “proposition” is used in English, for an entire
proposition of Euclid [32]; but I am not aware of any ancient basis for this
usage.
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tasks, as in the very Proposition 1.1 that we have been looking at.
The distinction between an assertion and a task can be indicated by
the labels theorem (8edpnua) and problem (TpoPAnua). However,
according to Pappus, “among the ancients some described them all
as problems, some as theorems” [86, p. 567]. Euclid himself did not
use such labels at all.

Heath helps the reader typographically, by italicizing enuncia-
tions, by breaking the text into short paragraphs, and by centering
some phrases. This typography may be misleading, if it causes us
to think of Euclid’s propositions just as if they were modern the-
orems with proofs. In some cases at least, Euclid’s propositions
are not like that. An example mentioned above in §1.3 (p. 26) is
Proposition vii.4, and we shall consider this further in §§3.4 & 3.7

(pp- 83 & 94).

2.3 Equality

Another proposition of Euclid that is not like a modern theorem
is Proposition 1.4. This is where Euclid establishes the principle
of triangle congruence that we call “Side Angle Side.” For Hilbert,
this principle is an axiom, the one that he numbers IV, 6.** Euclid
proves the principle, but without using any postulate or any previ-
ous proposition. Can Euclid’s proof then be a “real” proof? Given
triangles ABI" and AEZ as in Figure 2.3, let us suppose AB = AE
and Al = AZ and /£ BAI' = Z EAZ. If we apply triangle to triangle
so that A falls on A, and AB falls along AE, then B will fall on E,

**More precisely, Hilbert’s axiom is that if two sides and the included angle of
a triangle are respectively congruent to two sides and the included angle of
another triangle, then the remaining angles are respectively congruent to
the remaining angles. That the remaining side is congruent to the remaining
side is his Theorem 10.
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Figure 2.3. Proposition 1.4

and Al' will fall along AZ, so that " will fall on Z; and then BI" will
coincide with EZ (see §2.4). So argues Euclid. Do we accept it?

Students are sometimes disturbed by an expression like AB = AE;
they want to make it |AB| = |AE|. Apparently they think that the
sign of equality in fact denotes identity. Obviously the straight lines
AB and AE are not identical; but they may have identical lengths,
which can then be denoted indifferently by |AB| or |AE|.

Euclid does not use a symbol for equality; he just says AB is equal
(foos*3) to AE. Along with definitions and postulates, the preamble
of the Elements contains so-called Common Notions; and of the five
of these that Heiberg and Heath accept as genuine, the first four
establish what equality means.*4 According to the assigned num-
bering, these Common Notions are that (4) things congruent to
one another are equal to one another, and (1) things equal to the
same thing are equal to one another; but moreover, if equals be (2)
added to or (3) subtracted from equals, the results are equal. In
Common Notion 4, I use the word congruent for Euclid’s participle

*3More precisely ion, in agreement with the feminine gender of ypapun; but
the lemma, or dictionary-form, of the word is icos.
*4The fifth is quoted on p. 64.
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e

Figure 2.4. Proposition 1.36

Figure 2.5. Proposition 1.35

¢pappolwv, to emphasize that the notion of congruence found in
Hilbert originates in Euclid’s notion of equality; but Heath says
“things which coincide with” instead of things congruent to. For
Euclid, figures are equal if congruent parts can be added or sub-
tracted so as to obtain congruent figures. Thus parallelograms on
equal bases and in the same parallels can be shown to be equal to
one another by cutting out and rearranging the parts shown in Fig-
ure 2.4. The equality of these parallelograms is Proposition 1.36.%5
Actually Euclid derives this equality from Proposition 1.35, where
the bases of the parallelograms are not equal, but the same (6
a¥Tds), as in Figure 2.5. Here the proof is by cutting and pasting;
then 1.36 is proved by means of a third parallelogram, which shares
a base with either of the first two parallelograms, as in Figure 2.6.
In the Declaration of Independence of the United States of Amer-

*5Equality is thus for Euclid an equivalence relation, with respect to which the
class of a figure is its “motivic measure” as in the account of Hales [40].
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Figure 2.6. Proposition 1.36 as Euclid does it

ica, when Thomas Jefferson wrote the self-evident truth, “that all
men are created equal” [44, p. 15|, he did not mean that all per-
sons were the same person. However, in mathematics today, we
confuse equality and identity. Thus when we write the equation
(k+1)! =k (k+ 1) as above (p. 18), we mean that (k + 1)! and
E!'- (k+ 1) are to be considered as the same element of the set N,
although we read the sign = as “equals.”

In the article called “When is one thing equal to some other
thing?” |60], the notion of equality that Barry Mazur contemplates
is not distinct from the notion of sameness. Thus the article be-
gins:

One can’t do mathematics for ten minutes without grappling, in
some way or other, with the slippery notion of equality. Slippery,
because the way in which objects are presented to us hardly ever,
perhaps never, immediately tells us—without further comment-
ary—when two of them are to be considered equal. We even see
this, for example, if we try to define real numbers as decimals,
and then have to mention aliases like 20 = 19.999..., a fact not
unknown to the merchants who price their items $19.99.

The heart and soul of much mathematics consists of the fact
that the “same” object can be presented to us in different ways.
Even if we are faced with the simple-seeming task of “giving” a
large number, there is no way of doing this without also, at the
same time, giving a hefty amount of extra structure that comes
as a result of the way we pin down—or the way we present—our
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Figure 2.7. Proposition 1.5

large number. If we write our number as 1729 we are, sotto voce,
offering a preferred way of “computing it” (add one thousand to
seven hundreds to two tens to nine). If we present it as 1+ 123 we
are recommending another mode of computation, and if we pin it
down—as [Ramanujan| did—as the first number expressible as a
sum of two cubes in two different ways, we are being less specific
about how to compute our number, but we have underscored a
characterizing property of it within a subtle diophantine arena.

When we are presented with the angles BAl" and EAZ in the tri-
angles in Figure 2.3, there is nothing about this presentation itself
that tells us that the two angles are equal, just as there is nothing
about the two expressions 20 and 19.999. .. that tells us they stand
for equal numbers. However, even when the expressions are under-
stood, the equal angles BAI" and EAZ are not interchangeable in the
way that 20 and 19.999... are. We say that the numbers 20 and
19.999... are the same number; but BAI' and EAZ are different
angles of different triangles.

In fact they could be the same angle, as they are for example in
Euclid’s Proposition 1.5, whose diagram is in Figure 2.7. Here the
sides AB and Al" of the triangle ABI" are given as being equal to
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one another. By construction, AZ = AH. Since also the angle ZAH
is common to the triangles AZI' and AHB, these two triangles are
congruent to one another, by Proposition 1.4—but strictly speaking,
this conclusion requires us to recognize that the common angle of
the two triangles is equal to itself. We must also recognize that this
angle can be expressed indifferently as ZAI' or HAB. Euclid does
not say this explicitly.

Mazur’s concern is more with the question of whether your tri-
angles are the same as my triangles, or your numbers are the same
as my numbers. He says [60, p. 225|, “Fquivalence (of structure)
in the above ‘compromise’ is the primary issue, rather than equal-
ity of mathematical objects"—where again I think “equality” can
be read as sameness. The “compromise” is between the treatment
of the number 5 as a particular standard five-element set, and its
treatment as the class of all five-element sets. The compromise
is to let you use your five, and let me use mine, as long as what
each of us does with it can be “translated” into what the other does
with it. Mazur elaborates on how the language of category theory
lets us talk about these things. However, I think there is no ques-
tion that, in any instance of actually doing mathematics, there is
only one number 5. There may be different five-element sets, but
there is only one five, be it a particular five-element set reserved
as a standard, or be it the unique class consisting precisely of all
five-element sets.

For Euclid, the matter is less clear. But before looking at his
treatment of numbers in particular, I want to answer the question
raised at the beginning of this section. Euclid’s proof of Proposition
1.4 is a real proof, because it is based on several applications of
the principle that equal straight lines can be made to coincide,
and likewise equal angles. This principle is not explicitly stated;
but should it have been? What else can equality of straight lines
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or angles mean? (The question of why, in the proof, BI" should
coincide with EZ, once their endpoints coincide, will be considered
in the next section.)

We have noted Common Notion 4, that things congruent to one
another are equal to one another. We have noted that the converse
fails: sometimes things are equal, only because they have congruent
parts. Sometimes not even this is so. Thus Proposition XII1.7 is

T&v mpioua Tpiywvov éxov Pdotv Sicipelital ls Tpels Tupouidas
foas dAAMAais Tprywvous Paoels éxouoas. // Every prism having
a triangular base is divided into three pyramids, equal to one
another, having triangular bases.

To prove this, rearranging congruent parts is not enough, by Dehn’s
solution of Hilbert’s Third Problem. Proposition XI1.7 is a corollary
of Proposition XiI.5, which belongs to the theory of proportion, so
it relies on the “Archimedean” axiom alluded to earlier (p. 46):

Al U6 TO aUTd Uyos oUoon Tupapides kal Tprywvous éxouoal
Bdoels Tpods SAANAas gioly s ai P&oeis. // Pyramids under the
same height, having triangular bases, are to one another as
the bases.

Thus the scope of the notion of equality in the Elements becomes
broader; but it at least originates in simple congruence. To say that
two straight lines or two angles are equal is to say that they can be
made to coincide. This gives us Proposition 1.4 as a theorem.

The status of Proposition 1.8, “Side Side Side,” is not so clear.
Given again the triangles ABI" and AEZ as in Figure 2.3, but now
letting AB = Al' and A"’ = AZ and BI' = EZ, we can apply the base
BI™ to the base EZ, since they are equal. Euclid argues that A must
fall on A, because otherwise it falls on a point H as in Figure 2.8,
and then a contradiction to Proposition 1.7 arises. If Euclid allows
such an argument, as he does, perhaps he will allow Hilbert’s proof
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Figure 2.8. Proposition 1.8

(discussed in the next section) that all right angles are equal to one
another.

Alternatively though, if angles AI'B and AZE are right, then they
are equal by the fourth postulate (considered in the next section),
and so Proposition 1.8 follows by 1.4. If only AI'B is right, then a
perpendendicular to EZ can be erected at Z by Proposition 1.11;
and the perpendicular can be made equal to Al'; by 1.3. In this
case, a contradiction to 1.7 arises as before. As it is, Euclid’s proof
of 1.11 relies on 1.8; but it need not. If neither of the angles ABI"
nor AZE is right, then a perpendicular to BI" can be dropped from
A, by 1.12; again Euclid’s proof of this relies on 1.8, but need not.

There is no reason not to think that Euclid was aware of this
alternative approach to 1.8, but preferred to leave it as an exercise
for the reader. Euclid does not say he is doing this; but then there
is a lot that he leaves to the reader without spelling it out, as we
shall discuss in §3.7 (p. 97).

Meanwhile, as it is, Fuclid’s proof of 1.8 assumes that we can

compare two angles that have different vertices: we can bring them
together, so to speak, so that, if they are unequal, then one will
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become a part of the other, in the sense of the Fifth (and last*%)
Common Notion: “The whole is greater than the part.” The possi-
bility of bringing angles together in the sense of adding them (rather
than subtracting the less from the greater) is required by the Fifth
Postulate—to be considered in the next section.

2.4 Straight lines and right angles

We do not know what the preamble of the Elements consisted of
when this collection of thirteen books was first compiled. In The
Forgotten Revolution |82, pp. 323—4|, Lucio Russo argues that Eu-
clid’s obscure definition of straight line is only a later addition to
the Elements: in origin it is a truncated sentence from a student’s
crib-sheet. The definition in the Elements is

Edbela ypaupr éoTiy,
fTis €€ foou Tols €@  €auTiis onuelols kelTal,

which is practically the same as the first part of

Evfeia pév olv ypappr) éoTw,
fiTis &€ ioou Tols & aUTfis onueiols kelTan
dpfn oloa kal olov &1 &kpov TeTapévn Tl T& TrépaTa.

Russo noticed the latter sentence among the Definitions of Terms
in Geometry attributed to Hero [45, p. 16, 1l. 22—4]; it means some-
thing like

A straight line is
one that equally with respect to all points on itself lies
right and mazimally taut between its extremaities.*”

*6The first four being on p. 57.

*"Russo’s translation, as rendered in English by Silvio Levy, is “A straight
(evBela) line is a line that equally with respect to all points on itself lies
straight (pfn) and maximally taught between its extremities.”
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The italicized part is what is missing from the Elements, though
it is where the meaning of the definition lies; the reference to “all
points on itself” allows for the case of an unbounded straight line,
where any two points must serve as extremities for the purpose of
the definition.

Here I just want to assert the plausibility of Russo’s argument.
There is reasonable doubt about the authenticity of the definition of
straight line in the Elements. Some understanding of straightness
is needed for the conclusion in Proposition 1.4 that, when points B
and [ are made to coincide with points E and Z, then straight line
BI' will coincide with straight line EZ. Whether Euclid meant this
understanding to be part of Postulate 1, or part of the definition
of straight line, or even just part of Proposition 1.4, I do not know.

The definition in the Elements of a right angle (dpfn ywvia) is
given as,

When a straight line set up on a straight line makes the adjacent
angles equal to one another, each of the equal angles is right, and
the straight line standing on the other is called a perpendicular to
that on which it stands.

This is Heath’s translation, with his italics. As the italics sug-
gest, surely it is right angles that are being characterized, and not
equality of angles. Equality of angles is implicitly understood; and
indeed, what else can it mean but that one angle can be picked up
and placed on another?

Postulate 4 is that all right angles are equal to one another. I take
this to mean that we have a toolkit containing a carpenter’s square.
The square is not for drawing right angles: this is achieved by
Propositions 1.11 and 12, mentioned at the end of the last section.
But the carpenter’s square reminds us that indeed all right angles
are equal to one another, because they can be made to coincide
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A B r C) VA H

Figure 2.9. Postulate 4

with this one standard angle. (I take an actual carpenter’s square
to my own Euclid classes, to serve as such a reminder.)

Euclid’s first three postulates are that we can do things that can
be done with a straightedge and compass, or just with a string or
cord. We can (1) connect two points with a straight line, (2) extend
a given straight line, and (3) draw a circle with given center, passing
through another given point. Finally, Postulate 5 tells us something
else that we can do, though it requires no new tool: we can find
a point of intersection of two straight lines, if we extend them far
enough, provided that a line falling across them makes the interior
angles on the same side less than two right angles. Here the angles
are together less than two right angles, though one of them might
be greater than a right angle. Implicitly then, we can bring two
angles together, for comparison with two right angles.

I noted in §2.1 (p. 44) that Hilbert thought Euclid’s Postulate
4 was actually a theorem. In the style of Euclid, Hilbert’s proof
would seem to be as follows. Suppose, as in Figure 2.9, straight line
AB is perpendicular to 'A, and EZ is perpendicular to HO. If right
angles ABI" and EZH are not equal to another, then one is greater.
Suppose the latter is greater. Then ABI™ will fall inside it as KZH.
The supplement KZO© of KZH must be equal to the supplement
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ABA of ABI; though this needs further discussion: it is Hilbert’s
Theorem 12. Absurdity results, since in short

ZABlN=2/4KZH < ZLEZH = ZEZO
< LKZO = £ ABA = Z ABTI".

How did we obtain angle KZH? Hilbert can use his axiom IV, 4,
which he summarizes as being

that every angle in a given plane can be laid off upon a given side
of a given half-ray in one and only one way.

For Euclid, this is a theorem, namely Proposition 1.23. Hilbert’s
toolkit contains a protractor, or else triangles with angles of all
posssible sizes; and these can be used to draw with. But again,
the only triangles in Euclid’s toolkit are right triangles, and they
cannot be used to draw with (and their acute angles cannot be used
in any way). In Euclid’s Proposition 1.4, we are able to “lay off”
one given angle on another, because this possibility is implicit in
the assumption that the two angles are equal to one another. In
Figure 2.9, there is no assumed equality of anything on the left with
anything on the right; so for Euclid, there can be no “laying off.”
We have noted in the previous section that Euclid’s proof of
Proposition 1.8 does require a laying off of one angle along the side
of another, as in Hilbert’s axiom; but there is an alternative proof,
on a Kuclidean basis, that does not require this laying off. We
have noted that Euclid’s fifth postulate also requires this laying
off, for the sake of adding two angles that have different vertices;
but Euclid will not use this postulate until 1.29, when it has been

shown (in 1.23) how to lay off an angle.
Corresponding to Euclid’s fifth postulate is Hilbert’s Axiom III:

In a plane « there can be drawn through any point A, lying outside
of a straight line a, one and only one straight line which does not
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intersect the line a. This straight line is called the parallel to a
through the given point A.

This introduces a whole new tool: parallel rulers.

In his proof of the equality of all right angles, Hilbert could have
assumed AB = EZ, and likewise for the other corresponding straight
lines, because of his axiom IV, 1, summarized as being

that every segment can be laid off upon a given side of a given
point of a given straight line in one and only one way.

This is Euclid’s Proposition I.3.

There must have been a great change in thinking about math-
ematics, if Hilbert was trying to build up geometry on a minimal
foundation, yet could treat as axiomatic what for Euclid needed
proof. Hilbert did achieve the logical economy of proving Fuclid’s
fourth postulate, but at the expense of an abundance of tools whose
practical use by the student of geometry is left unexplained.

Hilbert seems not to have been troubled by his change of ap-
proach to geometry. Perhaps this is because he was reading Euclid
according to a tradition whose changes to the meaning of Euclid
had gone unnoticed. Mathematics had evolved, but still Euclid was
revered as the father of rigorous mathematics; this may have caused
contemporary notions of mathematics to be read into Euclid. At
any rate, the continuous tradition may instill the assumption that,
when one is doing mathematics, one is still only doing the same
kind of thing that Euclid did.



3 Euclid’s Foundations of
Arithmetic

3.1 Unity

Not only is the definition of straight line plausibly held to be a late
addition to the Elements, but Russo says the same of the definition
of unity at the head of Book viI. His reason is that, six centuries
after Euclid, Iamblichus described the same definition as being due
to “more recent authorities.”

Heath discusses the same passage of lamblichus, both in his edi-
tion of the Elements [31, v. 11, p. 279] and in his History of Greek
Mathematics [43, p. 69]. The discussion is more brief in the latter,
where the very part of the passage that is relevant for us now is not
considered. In his notes on the Flements, Heath gives no explicit
indication that the authenticity of the definition of unity is called
into question by the words of Iamblichus. The definition in Euclid
is,

Movés éoTy,
ko My EkaoTov TV SvTwy €V AéyeTal.
Unity is
that according to which each entity is said to be one thing.
The translation is mine; Heath’s is “A unit is that by virtue of
which each of the things that exist is called one.” I propose to try

out unity instead of Heath’s “unit,” because the latter is a made-up
word, albeit made up precisely to translate Euclid’s povéds. In his

69
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preface to Billingsley’s English translation of the Elements, pub-
lished in 1570, John Dee wrote,

Number, we define, to be, a certayne Mathematicall Summe, of
Vnits. And, an Vnit, is that thing Mathematicall, Indiuisible, by
participation of some likenes of whose property, any thing, which
is in deede, or is counted One, may resonably be called One.

As Billingsley’s was the first English translation of the Elements
[31, v. I, p. 109], so is the passage from Dee the first of the illustra-
tive quotations in the UNIT article of the Ozxford English Dictionary
[66]. In the etymology section of that article, Dee’s marginal note—
apparently on the passage above—is quoted:

Note the worde, Vnit, to expresse the Greke Monas, and not Vni-
tie: as we haue all, commonly, till now, vsed.

However, at UNITY, the OFD gives Billingsley’s translation of Eu-
clid’s definition:

Vnitie is that, whereby euery thing that is, is sayd to be on.

Evidently Billingsley did not perceive a need for Dee’s new word
“unit.” Billingsley and Dee could have used “monad” (from the stem
povdd- of povés): this is now an English word, though its earliest
quotation in the OED is from 1615. The French monade dates
to 1547 |27, p- 484]. Meanwhile, French is content to use the old
unité where English puts the newfangled “unit”: in the quotation
from Bertrand’s Traité d’Arithmétique in §2.1 (p. 45), “unité de
longueur” serves where we say “unit of length.”

By the way, it is not clear whether Euclid’s povés and v (“one”)
are etymologically related. The Greek cardinal numeral “one” is
declined as an adjective and, as such, has three distinct genders:

*The word wunité is Anglo-French, being traced to the Psautier d’Ozford of
1120 [27].
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the masculine, feminine, and neuter are respectively eis, uic, €v.
Despite appearances, these three forms are related to one another:
each comes from oep, according to Smyth’s old Greek Grammar 84,
€349 and the more recent Chantraine |15, II, 326, €is|. The same
root is seen also in the Latin sources of our “simple” and “single.”
But whether the p of pia is related to the p of povds is unclear. The
latter word comes from povos, -m, -ov, meaning “only, alone, sole,”
as we may see from English words like “monotheism.” Chantraine
just traces pdvos to a conjectural *povFos and expresses doubt that
it is related to powvds “thin, scanty.”

As Smyth [84, €354€| describes it, the ending -&s, -&8os creates
“abstract and collective numbers,” so that &évas or povas is “the
number one, unity, monad.” I think we may usefully consider the
suffix as indicating a set with the number of elements indicated by
the main word. Thus a 8ekds, a decade, is a set of ten years. As
far as I can tell though, the only specific number that Euclid ever
uses is duas, in 1X.32 and later: it is a pair or double or dyad.

Meanwhile, our question was whether the definition of unity now
in Euclid is authentic, and in particular whether some words of
Tamblichus bear on this question. Those words are from On Nico-
machus’s Introduction to Arithmetic |49, p. 11, 1. 1.2 The relevant

paragraph begins as follows; as there seems to be no full published
English translation, I give my own attempt.3

Movéas 8¢ éoTi mooolU TO éAdyloTov i Toocol TO TP&dTOV Kal
Kowov pépos ) &pxn Toool' s B¢ Oupopidas mTepaivovoa
moooTns, émel EkdoTou Kal &pxT Kol TEAos Tépas KaAeital,
fomi 8¢ Qv kol TO péoov, Homep duéAel kUKAou kol cpalpas.
o1 B¢ vewTepol kol fiy EkaocTov TAY BvTev Ev AéyeTar Elerte

*The Greek text names the work as being of lamblichus of Chalcis in the
valley of Syria (IAMBAIXOY XAAKIAEQSE THE KOIAHZ ZYPIAZ).
3The clause “even though it be collective” is Heath’s [31, v. 11, p. 279].
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B¢ T 6pw TOUTW TO KAV CUCTNUATIKOV T). OUYKeXUuévws O
ol Xpuoimmelol Aéyovtes ‘uovas éori wAfjBos v povn yap olTn
&vtidiéoToATan 1§ TANKBel4 // Unity is the least of an amount
or the first and common part of an amount or the beginning
of an amount: thus Thymaridas [called it] “[the] limiting
quantity,” since the beginning and end of everything is called
a limit. (But there are things of which there is a middle, such
as, of course, the circle and sphere.)5 More recent authorities
[called unity] “that according to which each entity is said to
be one thing”; but they left out the restriction, "even though
it be collective.” The Chrysippians, confusedly, saying, "Unity
is multitude one”; for one is opposed to multitude.

Thymarides was “an ancient Pythagorean, probably not later than
Plato’s time” [43, p. 69]. Since Euclid was later than Plato’s time,
it is not clear whether ITamblichus’s “more recent authorities” (veco-
Tepol) included Euclid or not. As suggested above, Russo [82, p.
320| thinks Euclid is not one of these authorities.

Heath [31, v. 11, p. 279] apparently thinks he is. At any rate,
Heath continues to refer to the definition of unity in the Elements as
“Euclid’s definition,” even though he has taken note of Iamblichus’s
observation of what was missing from this definition. Apparently,

according to lamblichus, the full definition should be something
like,

Unity is that according to which each entity is said to be one
thing, even though it be collective.

I see no indication by Heath or Russo that such a definition can
be found anywhere else than in lamblichus’s comment. However, it

4The three passages italicized here are just letterspaced in Pistelli’s text, as
in the example on p. 54. There, as in the transcription, only the third of
these passages is bounded by inverted commas.

5Pistelli, the editor, marks this passage, “abesse malim,” which seems to mean
he would rather it were not there.
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does bear some resemblance to a definition that Sextus Empiricus
attributes to Plato in §11 of “Against the Arithmeticians” (which is
Book 1V of Against the Professors, here from the edition of Bekker
[28, p. 724, L. 6], with the translation of Bury |29, pp. 310 f.|):

Tnv ToU &vds Tolvuy vonow diaTutdy Hulv TubayopikdoTepoy &
TTA&Twv gnoiv 'Ev éoTw oU pndév xwpls AéyeTal €' fi 'oU peToxfj
gkaoTov Ev Te Kal oMK AéyeTar.’ TO y&p QuTOV, el TUXOL, Kal
T6 {&ov kal 6 Aifos TpooayopeUeTal pev v, oUK E0Tl B KAT&
TOV 1810V AOyov £v, GAN' év ueToX{] £vOs voeiTal, ToUuTou undevodg
ToUTwy kabeoT&dTOs. // Now Plato, in formulating in rather
Pythagorean fashion the concept of the one, declares that “One is
that without which nothing is termed one,” or “by participation
in which each thing is termed one or many.” For the plant, let
us say, or the animal, or the stone is called one, yet is not one
according to its own proper description, but is conceived as one

by participation in the One, none of them actually being the One.

This has little to do with mathematics, and neither does Sextus’s
entire essay. (See however page 103 and its note 16.) Sextus does
not give me the impression of somebody who knows what Euclid
is about. It is plausible that the definition of unity now in the
Elements was a later addition.

3.2 Proportion

What we refer to as proportion could also be called analogy. The
Greek for proportional is &véAoyov, and Euclid defines it for num-
bers in what is now listed as the twentieth “definition” at the head
of Book vir:

ApiBpotl &véaloydv ciow, OTtav 6 mpOTos ToU deuTeépou Kol O
Tpitos ToU TeTdpToU iodkis ©| ToAAaTA&o1os f| TO alTd pépos
f| & a¥T& pépm wow. // Numbers are proportional when the
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first is of the second, and the third is of the fourth, equally
multiple, or the same part, or the same parts.

We saw the third and fourth “definitions,” of part and parts, in §1.3
(p. 25). These are followed by:

TToAAamrA&otos 8¢ 6 peilwv ToU EA&OoOOVOS, OTAV KOTOMETPTTAL
UTrd ToU éAdocovos. // And the greater [number] is a multiple
of the less when it is measured by the less.

The notions of multiple and part are thus correlative, and we have
three ways to say the same thing:

1) B is a multiple of A;

2) Ais a part of B;

3) A measures B.
Measurement is the basic undefined notion.

Proportionality of magnitudes is defined at the head of Book V:

Ev T& aUT® Adyw peyedn AédyeTal elvon TpddTov Tpds SeUTepov
kal Tpitov TPds TETapTOov, OTav T& ToU TpPwTou Kal TpiTou
iocakis ToAAamAG&ola TV ToU SsuTépou Kal TeTAPTOU 10GKIS
ToAaTAaciwy Ko 6Tolovoly TTOAAATTACCIAOUOY EKATEPOV EKO-
Tépou 1 &uo Umepéxn ) &upo foa 7§ 1) &pa EMAeiTtfi Anefévta
KaTaMNAa. T& 8¢ 1OV adTov éxovta Adyov peyébn &véAoyov
kaAeioBw. // Magnitudes are said to be in the same ratio,
the first to the second and the third to the fourth, when
equimultiples of the first and third, by whatever multiplication,
are respectively either alike in excess of, or alike equal to, or
alike falling short of, equimultiples of the second and fourth.
And magnitudes having the same ratio are called proportional.

In the definition of proportionality of numbers, Euclid does not
mention ratios; but he does mention them later, as for example in
Proposition 17 in Book viI:
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E&v &p18uos dlo &piBuols ToAaTAaoidoas Tolf] Tvas, ol yevo-
pevolr €€ aUTdY TOV «UToOV Efouct Adyov TOls TOAAOTAGCIO-
ofteiow. // If a number multiply two numbers, the numbers
produced will have the same ratio as the multiplicands.

A third way of referring to numbers in proportion is seen in Propo-
sition VII.11:

Eav ) s &Aos Trpds SAov, oUTws &eaipebels Trpos dponpedéivTa,
kol 6 Aoitrds Trpos TOV Aoimov EFoTar, s SAos Trpos Sdov. [/
If as whole be to whole, so subtrahend to subtrahend, also
remainder to remainder will be, as whole to whole.

Thus, whether we are working with arbitrary magnitudes or num-
bers, we have different ways of expressing what seems to be the
same thing. We can say in words that

1) A, B, C, and D are proportional, or

2) Aisto BasCisto D, or

3) A has the same ratio to B that C has to D.
I do not see an important distinction to make between these modes
of expression as such. We might abbreviate any of them by writing

A:B:C:D. (3.1)
However, I think it is important not to write
A:B=C:D. (3.2)

Neither definition of proportion describes an equation of two things.
In a proportion, two ratios are not equal, but the same. This is
related to the fact that a ratio is not a thing that can be drawn in
a diagram; it is a relation between two things in a diagram—two
things that might have the same relation to one another that two
other things have. (See §4.1, p. 115, for possible exceptions to the
rule that a ratio cannot be drawn.)
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The notion of equality does however appear in the definitions of
proportion. I used the expression equally multiple in translating
the Book-v1I definition, and equimultiples in the Book-v definition;
but these stand for the same Greek phrase icdkis ToAAaTA&C10S,
which appears in singular form in Book V11, plural in Book v. Heath
uses “same multiple” for my equally multiple; but I have followed
Heath in using the word “equimultiples” in the other case.

Like “unit,” the word “equimultiple” seems to have been coined
for translating Euclid: the earliest example in the Ozford English
Dictionary is again from Billingsley’s 1570 translation. In any case,
Euclid’s iodxis is an adverb derived from the adjective icés “equal”;
it is not the adjective itself. The Book-v definition of proportional-
ity does not describe things that are equal, though both definitions
describe multiplying two things equally. In Greek as in English,
it appears there is no adverb “samely.” (The OED lists an adjec-
tive “samely,” meaning “without variety; monotonous”; the earliest
illustrative quotation is from 1799.)

Instead of (3.1), much less than (3.2) should we write

A/B=C/D, (3:3)

since A/B suggests a fraction, and none is indicated by Euclid’s
definition. Still, as Collingwood says in the Introduction to his
first book, Religion and Philosophy |16, p. xvii],

I am afraid we cannot escape the difficulty by any method so
simple as recourse to the dictionary.® The question is not what
words we use, but what we mean by them.

5The difficulty is with Collingwood’s assertion, “every one has to some de-
gree that unified life of all the faculties which is a religion. He may be
unconscious of it . . . But the thing, in some form, is necessarily and always
there . . . ” An imagined interlocutor objects, “But at least, that is not the
way we use the word; and you can’t alter the use of words to suit your own
convenience.”
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What do we mean, what do we want to mean, by writing (3.1),
(3.2), or (3.3) to express a proportion of numbers according to
Euclid’s definition? This is what we are going to investigate.

3.3 Numbers and sets

In addition to distinguishing equality from identity, we should dis-
tinguish measurement from division. Given twelve apples, we can
describe the same operation in two ways: we can measure the twelve
apples by three apples, or we can divide them into four equal parts.
Euclid refers to dividing, as distinct from measuring, in the sixth
definition of Book VviI:

"ApTios &pifuds éoTiv 6 dixa Siapolpevos.
An even number is one that is divided in twain.

I use the archaic “twain” here because it is usually seen only in
the phrase “in twain,” and this translates the single Greek adverb
dixa.”

Euclid’s numbers seem to be indistinguishable from our finite sets
with at least two elements. After the definition of unit or unity in
the Elements (quoted in §3.1, p. 69), there comes,

Ap1Buos 8¢ 1O €k povddwv ouykeiuevov TAfiBos.
And a number is a multitude of unities.

In addition to the expression multitude, which Heath uses, other
possible translations of mAfiflos are “mass, throng, crowd” [64]. We
use the word “number” in this way too, as when we say a number
of people are marching in the street.

“In the OED under TwaIN, the phrase “in twain” merits its own definition:
“into two parts or pieces, in two, asunder.” Of the Old English numeral for
two, “twain” represents the masculine form twegen; “two,” the feminine and
neuter twa and tu [47].
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In this sense, one is not a number. Thus we have, in the eleventh,
twelfth, and thirteenth® definitions at the head of Book VI

TTp&dTos &p1Buds éoTiv 6 povadi povn petpoupevos.  TTp&dTor
Trpos &AANAous &piBpoi ciow ol povddi uovn peTpoUuevol Kotwdd
péTpw. TUvBeTos &prBuds EoTiv & &p1BuEd T peTpolpevos. // A
prime number is a number measured only by unity. Numbers
prime to one another are numbers measured only by unity
as a common measure. A composite number is a number
measured by some number.

Every number is measured by unity; if this were a number too, then
by definition every number would be composite.

We did question the authenticity of the definition of unity; we
may do the same for other definitions. But consider Proposition 16
of Book 1x:

E&v 8Uo &piBuol pdTol Tpods &AAAous oy, oUK EoTal @s 6
TPAOTOS TPO§ TOV BeUTePoV, oUTWS 6 BeUTEPOs TPOS GAAOV TIVA.
// If two numbers be prime to one another, it will not be the
case that the first is to the second as the second is to some
other number.

Unity is prime to every number, and unity will be to a number
as that number is to its product with itself. Thus unity is not a
number in the sense of Proposition 1X.16.

On the other hand, Proposition VII.15 concerns a unit and three
numbers, given as A, BI', A, and EZ, where A is unity; but A
is described as the third number; BI', the second; and EZ, the
fourth. (See p. 107.) Implicitly then, A is the first of four numbers,
although it is unity.

8In Heiberg’s Greek text, they are 12th, 13th, and 14th; but Heiberg brackets
Definition 10 and omits it from his Latin translation, renumbering the later
definitions accordingly. Heath follows suit.
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As the status of unity is ambiguous, so is that of measurement.
In the given definitions of prime and composite numbers, being
measured means being measured by some other number, and thus
being measured a number of times. Elsewhere, a number is allowed
to measure itself. For example, Proposition ViI.2 is the problem of
finding the greatest common measure of two numbers that are not
prime to one another. If one of the numbers measures the other,
then it is the greatest common measure, since, as Euclid notes, it
also measures itself. In this sense, a prime number is a number

measured only by unity and itself.

Throughout the number-theoretic books of the Elements, num-
bers are diagrammed as bounded straight lines, or what are today
called line segments. These are not obviously sets of units. We
shall consider this feature of the Elements in §3.5; for now I note a
curious move that Euclid makes in proving Proposition viI.8. The
enunciation is,

E&v &piBuds dpiBuol pépn 7, &mrep &oaipebels dpoupefévtos, kal
6 Aormods ToU Aormol T& alTd pépn EoTal, &mep 6 SAos ToU
&hou. // If a number be the very parts of a number that a
subtrahend is of a subtrahend,’ also the remainder will be the
very same parts of the remainder that the whole is of the
whole.

In our symbols, if A: B :: C : D, at least according to the “parts”
condition in Euclid’s definition of a proportion of numbers, then

A-C:B-D: A: B,

by the same condition. In Euclid’s proof, the four numbers are the
four line segments AB, 'A, AE, and 'Z, with AB assumed to be the

9Heath uses “number subtracted” for my subtrahend; but I remember being
taught the latter word in third grade, along with its correlate, “minuend”
(the number to be diminished). According to the OED, the two words go
back three centuries in English.
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Figure 3.1. Proposition VIL.8

same parts of A that the subtrahend AE is of the subtrahend I'Z.
The segments are drawn as in Figure 3.1, with E lying on AB, and Z
on 'A. We want to break up AB into parts, each equal to the same
part of 'A; and we want to break up AE into the equally numerous
parts of 'Z. Doing this directly makes the diagram complicated;
so Euclid takes HO equal to AB and divides it instead, along with
AE. Specifically, HK and K© are the parts of A, and AN and AE,
equally numerous, are each that same part (T6 a¥Td pépos) of I'Z;
and HM and KN are made equal to AA and AE respectively. Thus
each of HM and KN is the same part of 'Z that each of HK and KO
is of 'A; hence, by Proposition vil.7, each of the remainders MK
and NO is that same part of the remainder ZA. Hence MK and N©
together are the same parts of ZA that HK and KO together are
of C'A; but these sums are equal to the remainder EB and to AB,
respectively. The point for now is that HO is different from AB as
a set of units; but the two sets are equipollent, or as Euclid says,
equal.

The above definition of evenness of a number is meaningful for
an arbitrary set, possibly infinite: A set B is even, just in case
it can be divided in two, in the sense of having a subset A for
which there is a bijection f from A to B ~. A. Then the collection
{{z, f(z)}: © € A} is a partition of B into two-element subsets:
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this means B is measured by a two-element set, a dyad.

Conversely, being measurable by a dyad implies being even, but
only by the principle whereby one sock from each pair in a collection
of pairs of socks can be selected, as in Bertrand Russell’s illustra-
tion of the Axiom of Choice [81, pp. 92—3|.*° In fact the needed
principle is weaker than the full Axiom of Choice, but stronger
than bare Zermelo—Fraenkel set theory [50, 5.4 & 7.4]. Thus there
is mathematical reason to distinguish between measuring by two
and dividing in two, as Euclid’s language does.

3.4 Parts

We have sketched a proof of one case in which a number is the same
parts of another number that a third is of a fourth. But what really
does this conclusion mean?

When the phrase is “same part” rather than “parts,” the meaning
seems clear enough. If A, B, C, and D are numbers, or possibly
units, and A is the same part of B that C is of D, then A must
measure B the same number of times that C measures D: that is,
for some multiplier n,

A-n=B & C-n=D,

*°*Many people writing about the Axiom of Choice give the shoes-and-socks
illustration, attributing it to Russell, but without giving the more precise
reference to his late work, My Philosophical Development. Wikiquote (en.
wikiquote.org/wiki/Bertrand_Russell) was lacking the precise reference
until I supplied it on July 8, 2015, having been directed to it by Google.
Perhaps there is an earlier reference; but the discussion of the “multiplicative
axiom” in Principia Mathematica [go, Part II, Summary of Section D, pp.
500—4] is not it.
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or (as on p. 45),

A+---+A=B & C+---+C=D.
—_—— —_——

n n

Here we can read A-n and A+ ---+ A as “A composed n times”
—_——
n
(see p. 102). We have now also that B is the same multiple of A
that D is of C'. Thus, by Definition vil.2o, we have both of the
proportions

A:B:C:D, B:A:D:C.

It remains to understand what being the “same parts” means in the
definition.

By Definition vil.4 (p. 25), if A is less than B, but does not
measure B, then A is not part of B, but is “parts” of B. Heath’s
entire comment on the definition of “parts” is the following.

By the expression parts (uépn, the plural of uépos) Euclid denotes
what we should call a proper fraction. That is, a part being a sub-
multiple, the rather inconvenient term parts means any number
of such submultiples making up a fraction less than unity. I have
not found the word used in this special sense elsewhere, e.g. in
Nicomachus, Theon of Smyrna or lamblichus, except in one place
of Theon (p. 79, 26) where it is used of a proper fraction, of which
2

5 is an illustration.

This note is misguided in two ways. It ignores the fact that “parts”is
defined by simple negation, as when we define an irrational number
to be a real number that is not rational. We might then say that an
irrational number is one whose decimal expansion is neither finite
nor repeating; but this would have to be proved. In commenting
on the definition of “parts,” Heath is probably thinking ahead to



3.4 Parts 83

Proposition ViI.4, whose enunciation we saw in §1.3 (p. 26): “Every
number is of every number, the less of the greater, either a part
or parts.” The demonstration of this proposition is not a simple
appeal to the definition of “parts.” Thus that definition at the head
of Book VII is not really a definition, but is a kind of summary of
what is to come in the book.

We shall consider the demonstration of Proposition vii.4 in §3.7
(p- 94) below. Meanwhile, let us note that, pace Heath, the propo-
sition is not likely to be about fractions. According to David Fowler

[34, §7.1(b), pp. 227-9],

We have no evidence for any conception of common fractions p/q
and their manipulations such as, for example, p/q x r/s = pr/qs
and p/q +r/s = (ps + qr)/qs, in Greek mathematical, scien-
tific, financial, or pedagogical texts before the time of Heron and
Diophantus; and even the fractional notations and manipulations
found in the Byzantine manuscripts of these late authors may have
been revised and introduced during the medieval modernization
of their minuscule script. Among the thousands, possibly the tens
of thousands, of examples of fractions to be found in contempo-
rary Egyptian (hieroglyphic, hieratic, and demotic), Greek, and
Coptic texts, all but a few isolated examples in five texts . . .
use throughout the following ‘Egyptian[’] system for expressing
fractions . . . **
We take the basic sequence of the arithmoi:

two, three, four, five, ...,
represented in Greek by the letters 3, v, 4, ¢, ..., and convert it to
the sequence

half, third, quarter, fifth, ...,

"*Widely spaced dots “ . . .” are my ellipses; narrowly spaced dots “...”

denoting continuations of sequences are Fowler’s.
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where, after the exceptional cases of the first few terms, for which
special symbols . . . are assigned, the derived symbol is . . . usually
/A
transcribed as an accent, v, d,¢€, ..., or a prime, 7/, 0", ¢, ...
!

The sequence of parts starts with 3, ‘the two parts’, T& duUo
pépn, an expression for ‘two-thirds’. However extraordinary it may
seem to us, it is an incontrovertible fact that the sequence of parts
starts with two-thirds . . . (This is an additional reason for avoiding

/! A
the name ‘unit fractions’ for the sequence 8, 2,v,d,...) . ..
More complicated fractions than simple parts are expressed as
sums of an integer and different simple parts . . .

Fowler goes on to describe “division tables” [34, §7.2(a), pp. 234 {.]:

our common fraction % . . . would be expressed in a division
table . . . as
\/l rrrrrrrrry
Tov  uf3 [T0 (] ZiBLlAdvagn
! rrrrrrr
of the 12 [the 17this] 21217345168

for what we would write as

2 _ 1, 1 , 1, 1, 1 , 1
ﬁ_2+12+17+34+51+68'

rrrrrrr

I think a better “translation” of the Greek Z:t8:( )\51/&&/7 would be
something like

[ Y S A S A B B A |
2102107304501608
(or the initial é might be replaced with the Greek symbol £ for a
half). In any case, possibly the definition of “parts” in the Elements

serves as a reminder to the reader that, even though 12 is not a part
of 17, it is still parts of 17, namely the half, and the twelfth, and
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the seventeenth, and the thirty-fourth, and the fifty-first,** and the
sixty-eighth. In this case, Euclid’s Proposition viI.4 will give a new
meaning to the notion of “parts.”

3.5 Music

As noted above (p. 79), in the diagrams of the propositions in
Books viI-1X, numbers are bounded straight lines, or today’s line
segments. Heath remarks on this after Proposition VII.1:

the representation in Books VII. to IX. of numbers by straight lines
is adopted by Heiberg from the MsS. The method of those editors
who substitute points for lines is open to objection because it
practically necessitates, in many cases, the use of specific numbers,
which is contrary to Euclid’s manner.

Heath is right that points should not be used, but if I understand
him correctly, he is wrong about the reason. I think he means that
Euclid’s propositions are general, but that this would be belied by
diagrams that indicated specific numbers. However, as they are,
Euclid’s proofs are often not general in form, regardless of the dia-
gram. One example is the proof of Proposition vII.8 sketched above
(p- 79): the proposition is about being any number of parts, but the

2T note the oddity of English in using the exceptional form “first” here, rather
than “oneth.” First means foremost, but “fifty-foremost” makes no sense.
Another oddity is that “foremost” was originally formest, a superlative form
of FORME, which has an article in the OFED, though its latest illustrative
quotation is from 1523. The -me ending is already superlative [61, p. 163],
like the -st in “first,” making forme cognate with the Latin primus. Thus
forme also means first, and “foremost” is a double superlative, as “lesser”
is a double comparative (see note 5, p. 25). There was similarly an Old
English word hindema, with a superlative ending -dema as in the Latin op-
timus [83, Hind]; but “hindmost” is hind + most, not derived from hindema,
though they have the same meaning.
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proof is about being two parts. In the proof of Proposition viI.1,
showing one use of what we call the Euclidean algorithm, there are
three alternations of subtractions, not some unspecified number of
them. One must simply understand that there is nothing special
about three alternations as being three. Likewise, throughout Book
I of the Elements, specific triangles in the diagrams are to be un-
derstood as general. Specific numbers of dots in a diagram could
be understood as general.

However, if unities could always be thought of as points, then it
would be obvious that multiplication is commutative. Four rows
of dots, of three dots each, obviously have as many dots as three
rows, of four dots each (Figure 3.2). With diagrams of dots, there

Figure 3.2. Multiplication of points

would be no need to prove commutativity of multiplication, which
is Proposition ViI.16. But it is not obvious that four straight lines,
of 3 units each, will have together the same length as three straight
lines, of 4 units each (Figure 3.3).

—t—t——F+—++—&—F+—+—&—+—+—=*
—t—t—F+——++—F+—F+——+—+F+—+—=*

Figure 3.3. Multiplication of straight lines

Another possible reason why Euclid’s numbers are straight lines
is that lyre strings are like straight lines, and Euclid’s study of
numbers is inspired by music. According to Andrew Barker in
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Greek Musical Writings [6, p. 190], the ancient work called Sectio
Canonis (KataToun kavévos) is

attributed to Euclid in the manuscripts, and by Porphyry, who
quotes from it at length . . . Parts of the treatise are also quoted
by Boethius . . . [T]he attribution has been debated . . . There are
no good reasons, however, for denying Euclid’s authorship of the
main part of the treatise, at least as much as Porphyry quotes . . .

Fowler is more skeptical. He discusses the Sectio Canonis thor-
oughly [34, pp. 138—46]; T would just note that the chief burden
of the treatise seems to be the following. An interval of musical
notes somehow corresponds to a ratio of numbers, and those ratios
are of three possible kinds, as are ratios in the Flements. In the
Elements, a ratio can be multiple, part, or parts. According to the
Sectio Canonis [89, p. 149|,

TavTa 88 T& &K poplwy ouykelyeva &plbpol Adyw AédyeTal Tpods
EAANAa, WoTe kal Tous @Boyyous &vaykaiov év &piBuold Adyw
AéyeoBor mpods EAANAous TV 8¢ &piBudv ol uév év TroAAa-
TAaoiew Adyw Aéyovtal, ol d¢ év émipopiw, ol B¢ év émipepsl,
®oTe Kol Tous @B8Oyyous &vaykalov év Tols TolouTols Adyols
AéyeoBon Tpods dAAMAous. // All things composed of parts are
said to be to one another in the ratio of a number [to a
number]; so notes too must be said to be to one another
in the ratio of a number. Some numbers are said to be in
multiple ratio, others in part-again, still others in parts-again
[ratio]; so notes too must be said to be in in these ratios to
one another.

Numbers A and B are in
1) multiple ratio, if A is a multiple of B;
2) part-again ratio, if A — B measures B, so that A is the whole
of B with a part added;
3) parts-again ratio, otherwise.
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The latter two kinds of ratio—émiudpios and émipepris—are also
called in English “superparticular” and “superpartient,” as for ex-
ample in D’Ooge’s translation of Nicomachus [68, pp. 52-3, 215,
& 220|; but Barker uses the words “epimoric” and “epimeric” |6, p.
192, p. 43 1. 63]. The quoted passage from the Sectio Canonis is
given in the big Liddell-Scott—Jones lexicon [58] as an example of
the use of émpopios. This word is derived from popiov rather than

uépos; but either of these means “part.”
The passage continues somewhat obscurely.

TOUTwWY 8¢ ol uév ToAaTA&o10l Kal ETripodplol £vi dvouaTt Aéyov-
Tan pds &AAous. // Of these, the multiple [ratios] and the
part-again [ratios] to one another are said with a single name.

Barker’s translation is, “of these, the multiple and the epimoric are
spoken of in relation to one another under a single name”; Fowler
changes “in relation” to “with respect.” Barker suggests that “sin-
gle name” refers to the single words like TpimAdoios (“triple”) and
¢miTpitos (“third-again”) that name specific multiple and part-again
ratios. Fowler goes further, suggesting that “single name” alludes to
the single number that specifies one of these ratios, as the number
three specifies the triple and third-again ratios. Fowler’s suggestion
would seem to be partially corroborated by the last three proposi-
tions of Book VII of the Elements, which we shall consider in §4.1
(p- 115).

Meanwhile, suppose the strings of an eight-stringed lyre'3 are
represented by the numbers A through H, as in Figure 3.4. As |
understand Barker in The Science of Harmonics in Classical Greece
|7, p. 13], we can consider A, D, E, and H as fixed, while the other
strings can vary according to the chosen musical mode. The interval

*3 Apparently such lyres existed, although the traditional lyre had seven strings
[7, pp. 15 & 276].
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Figure 3.4. Lyre strings as numbers

AD or EH is a fourth or diatesseron (81& Tecodpwv), spanning, as
it does, four strings; AE or DH is a fifth or diapente (81& TévTe);
AH, an octave or diapason (81& Taoé@v). These intervals are all
concords, and the octave is composed of a fourth and a fifth. The
double octave is also a concord, but the double fourth and the
double fifth are not.

So much is observed or at least assumed. Then, following Euclid,
or whoever wrote the Sectio Canonis, we propose the axiom that
a concord corresponds to a ratio of numbers that is either multiple
or part-again. As the modern commentators point out, this axiom
does not correspond exactly to the observed reality. Nonetheless,
the author of the Sectio Canonis uses the axiom to argue as follows.
Since the double octave has a mean (namely the octave), it cannot
be part-again, since a part-again ratio can have no mean (in modern
terms, (n + 1)/n is never a square). Thus the double octave must
be a multiple ratio, and therefore the octave itself must be multiple
(since n? never measures (n + 1)2). Similarly, the fifth and the
fourth cannot be multiple, since their doubles are not; so the fifth
and the fourth are part-again. The least multiple ratio, namely the
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double, is composed of the two greatest part-again ratios, namely
the half-again (fjuioAios, half-whole or “hemiolic”) and the third-
again (2mitpitos, “epitritic’). Therefore these three ratios must
correspond respectively to the octave, the fifth, and the fourth.
Again, it may be questioned whether there is a purely mathe-
matical proof of this correspondence between musical intervals and
numerical ratios. The point for now is the importance given to
two kinds of numerical ratios: the ratio that obtains between the
greater A and the less B when B measures A, or when B is almost
equal to A, but the difference measures B. These are situations
when the Fuclidean Algorithm concludes in one or two steps.

3.6 The Euclidean Algorithm

The first proposition of Book viI of the Elements is a theorem in the
sense of Pappus (§2.2, p. 56); the next two are problems. All three
of these propositions involve the so-called Euclidean Algorithm.
The enunciation of the theorem is,

Ato Ep1Budv dvicwv ékkelpévwy, &vBugoipoupévou 8t el ToU
gE\&ooovos &mo ToU peilovos, &&v & AsiTduevos undemoTe KaTa-
peTpf) TOV Tpd EauTol, £ws oU Ae1pBfi povds, ol € &pxfis &piBuol
Tp&TOl TPdS dAATAoUs Ecovtar. // Two numbers being given,
and the less being alternately subtracted from the greater con-
tinually, if the remainder never measures the previous number
until unity is left, the original numbers will be prime to one
another.

In the Greek, the phrase being alternately subtracted is one word,
which is a passive participle of the verb &vBugaipé-cw. This is the
source of the feminine noun &v8ugaipeois, which I shall render as
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Figure 3.5. Proposition VII.1

anthyphaeresis.'* In the exposition of the proposition (in the
sense of Proclus, p. 49), unequal numbers AB and "'A are given, as
in Figure 3.5, which is Heiberg’s diagram rotated counterclockwise

through a right angle. In the demonstration, which depends on the
diagram,

O pév M'A tov BZ petpddv Aeimrétw EauTol éAdoocova Tov ZA, 6 8¢
AZ 16v AH peTpdv AeiméTw éautoU éAdoocova tov HIM, 6 8¢ HI
TOV ZO peTpdv AsiméTw povada thy ©A. // Let A, measuring
BZ, leave less than itself, ZA; then let AZ, measuring AH,
leave less than itself, HI'; then let HI, measuring Z©, leave a
unit, OA.

It is not mentioned how many times 'A measures BZ; or AZ, AH;
or HI, ZO©; but the unit ©®A measures the number HI" that num-
ber of times. The four numbers of times here form a sequence,
[no, 1, n2,n3], which we we may call the anthyphaeretic se-
quence of AB and I"'A.

Fowler calls the anthyphaeretic sequence a ‘“ratio,” or more pre-
cisely “anthyphairetic ratio” [34, §1.3, p. 24, & §10.1, p. 367|. He

*4Other writers use the transliteration “anthyphairesis,” but I follow the tra-
dition of writing the Latin diphthong ae for the Greek diphthong ai. Pre-

sumably one will pronounce the word as something like “An thigh FEAR
iss iss.”
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does this, because by one possible definition, A, B, C, and D are
proportional just in case the pairs (A, B) and (C, D) have the same
anthyphaeretic sequence. It does not matter whether A, B, C', and
D are numbers or arbitary magnitudes. In modern terms, if we

compute

1
g+ =1,

n+——:-
1

ng + —

n3

then the ratio of AB to 'A above is that of a to b. Moreover, a
and b will automatically be relatively prime (assuming we compute
them in the obvious way, replacing ng + 1/n3 with (nons + 1)/ns
and so forth). For arbitary magnitudes, the anthyphaeretic se-
quence might be infinite; however, if the magnitudes are lengths
constructible with straightedge and compass, then the sequence
will be periodic.

The historical situation is laid out by Thomas at the end of the
first of the two Loeb Classical Library volumes, Selections Illustrat-

ing the History of Greek Mathematics [85, pp. 504—9|. According
to the first proposition of Book vI of the Elements,

T& Tpiywva Kol T& TapaAAnAdypopua T& UTO TO adTd Uwyos
BvTa Tpods EAANAG doTv s oi B&oels. // Triangles and paral-
lelograms that are under the same height are to one another
as their bases.

In the Topics, Aristotle uses this result (or at least the part about
parallelograms) as an example of something that is immediately
clear, once one has the correct definition; and the definition of
“same ratio” is “having the same antanaeresis (dvtavaipeois).” In
a comment on the passage, Alexander of Aphrodisias observes that
Aristotle uses the word “antanaeresis” for anthyphaeresis. In 1933,
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Oskar Becker observed that Aristotle and Alexander could be allud-
ing to the anthyphaeretic definition of proportion described above.
It is thus reasonable to suppose that Euclid was aware of the pos-
sibility of an anthyphaeretic theory of proportion.
Proposition vilL.2 is a problem:

AUo &p1Budv SoBévTwy pry TphTwy TPods GAANAOUS TO péyloTov

aUT@Y Kowdy pétpov eUpeiv. // Two numbers not prime to one

another being given, to find their greatest common measure.

We may ask why this proposition is separated from Proposition 1,
since each of these propositions involves an application of the Eu-
clidean Algorithm, that is, anthyphaeresis. But Proposition 2 itself
considers two cases: when the the less of given numbers measures
the greater, and when it does not. We see here the practice of using
language as precisely as possible—a practice often abjured today
in mathematics, in favor of simplicity. If a straight line is erected
on another straight line, forming two angles, today we say that the
sum of the angles is equal to that of two right angles; for Euclid, in
Proposition 1.13, either this is so, or each of the angles is already a
right angle. Today we have an algorithm, the Euclidean Algorithm,
for finding greatest common divisors; Euclid has an algorithm for
verifying that two numbers are relatively prime, and for finding

their greatest common measure when they are not.
There is now a break in the usual pattern of exposition. Propo-

sition VII.2 has a Tropiopa, a porism: in the words of Proclus, “a
kind of windfall or bonus in the investigation” [85, p. 481], namely:

Ek 31) ToUTou @avepdy, OT1 é&v &piBuds SUo &pibpols ueTpfi,
kal TO péyioTov oUTGY kowdv péTpov petpnoet. // From this
then it is clear that, if a number measure two numbers, it will
also measure their greatest common measure.

As a corollary follows from the enunciation of a theorem, a porism
follows from the proof. The term could be used more widely today,
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as for example to label a generalization of a theorem, when it turns
out that the same proof yields the generalization.

Proposition ViI.3 is to find the greatest common measure of three
given numbers. There seems to be no reason to look further at this
before moving on to Proposition 4.

3.7 Part or Parts

We have seen the enunciation of Proposition Vvil.4 in §§1.3 & 3.4
(pp. 26 & 83); it is that the less number is part or parts of the
greater number. If being parts of a number just meant not be-
ing part of the number, that is, not measuring the number, then
Proposition 4 would be immediate. Euclid does not treat it as im-
mediate, and so the real meaning of parts must be more subtle. We
should consider what Euclid actually says. After the enunciation
of Proposition 4 come the exposition and specification:

"Eotwoav duo &piBuotl oi A, BI', kal éoTw éAdoocwv 6 Bl Aéycw,
811 6 BI' 100 A #To1 pépos éotiv §| pépn. // Let the two
numbers be A and BI', and let the less be BI'. | say that Bl
is, of A, either part or parts.

The demonstration then considers two cases:

Oi A, Bl y&p fito1 mpdTol Trpds dAAAous elotv fj ol. // For
A and BI are either prime to one another, or not.

The two cases thus correspond to Propositions vil.1 and vil.2. Here
is the first case:

goTtwoay mpodTepov ol A, BIT mpdTor mpds dAANAous.  Siai-
pebBévtos &N ToU Bl eis Ta&s &v alTd pov&das EoTon Ek&oTn
povas T&V év T& Bl pépos T1 ToU A doTe pépn éoTiv 6 BN 10U
A. // First suppose A and BI' are prime to one another. Bl
being divided into the units in itself, each unit of those that
are in BI" will be some part of A. Thus Bl is parts of A.
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The word thus here translates Euclid’s &doTe. As “thus” can mean
either therefore or in this way, so can doTe. 1 propose that in the
present instance it has the latter meaning. That is, since A and BI’
are coprime, Bl is parts of A, in the sense that each of its units is
a part of A.

Sometimes, indeed, doTe simply means therefore, only less em-
phatically; Heath translates it as “so that.” Euclid’s usual word
to indicate a logical conclusion is &pa, used postpositively—not at
the beginning of a clause; but occasionally doTe is used in place
of this, only prepositively—at the beginning. For example, Propo-
sition VII.34 is to find the least common multiple of two numbers,
and Proposition VII.35 is that this least common multiple measures
every common multiple. Proposition vi1.36 is to find the least com-
mon multiple of three numbers, given as A, B, and I". One lets A be
the least common multiple of A and B. In case ' does not measure
this, one lets E be the least common multiple of I and A, so that
E is a common multiple of A, B, and I". If it is not the least such,
one lets Z be less. Euclid’s argument continues as follows.

é¢mel of A, B, ' To6v Z peTpolow, kai oi A, B &pa 1OV Z pe-
TpoUow kal 6 &A&yloTos &pa UTTO TV A, B uetpolpevos tov Z
peTpnoel. EA&yloTos 8¢ UTo TQY A, B petpolpevos éotiv 6 At 6
A &pa TOV Z peTpel. peTpel 8¢ kol 6 [N 1oV Z' ol A, T &pa TOV
Z petpololy’ woTe Kol 6 éAdyloTos UTd TV A, [N yeTpolpevos
T6v Z petpnoel. // Since A, B, and ' measure Z, therefore
also A and B measure Z; therefore also the least [number]
measured by A and B will measure Z. But the least [number]
measured by A and B is A. Therefore A measures Z. But
also ' measures Z; therefore A and ' measure Z; thus also
the least [number] measured by A and I" will measure Z.

The last &oTe replaces &pa, perhaps because the indicated kind of
inference (that a least common multiple measures every common
multiple) has already been seen in the proof. Then &oTe indicates
an easy result. This is seen also in Book 1, where &doTe is used
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three times, in Propositions 3, 35, and 36, to indicate a result of
the form

A=C and B =C, thus A = B;

and &oTe is used in Propositions 7, 41, and 48, for similarly easy
results.

But in Proposition 1.4, which we looked at in §2.3 (p. 56), doTe
is used to indicate the conclusions that I" falls on Z, and BI" on EZ,
and triangle ABI" on AEZ; and in Proposition 1.8, d%oTe indicates
again that ABI" coincides with AEZ. In short, doTe indicates that
something happens, thus.

We see &oTe again in the second case of Proposition Vil.4, or
at least in its second subcase (corresponding to the second case of
Proposition vil.2). The case begins:

M1 EoTtwoav 81 ol A, BIM tpdTor tpds dAANAous” 6 &1 BIM Tov
A fitor petpel f) oU petpel. // Now suppose A and BI™ are not
prime to one another. Then BI' either measures A or does
not measure.

el ptv oy 6 BIM 1oV A peTpsl, pépos éotiv & BIM 1o A. // If Bl
measures A, Bl is a part of A.

The second subcase is diagrammed in Figure 3.6.

el 8¢ oU, eiM@bw TV A, Bl péyiotov kowdv pétpov 6 A, kal
Binpnobw & Bl eis ToUs T& A ioous tous BE, EZ, ZI'. kol émel
6 A Tov A peTpel, pépos éoTiv 6 A ToU A foos 8¢ & A ExdoTw
TV BE, EZ, ZI™ kal gkooTos &pa Tédv BE, EZ, ZI' ToU A uépos
¢otiv: doTe pépn doTiv 6 B 10T A. // If not, let the greatest
common measure A of A and BI' be taken, and let Bl be
divided into BE, EZ, and ZI, equal to A. Since A measures
A, Ais a part of A. And A is equal to each of BE, EZ, and
ZI'. Therefore each of BE, EZ, and ZI' is a part of A; thus
BN is parts of A.
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Figure 3.6. Proposition vii.4

The conclusion of the proposition repeats the enunciation, with—as
is usual—the addition of &pa and a QED:

Atras &pa &pifuos TavTos &pifpol 6 éAdoowv ToU peilovos
fito1 pépos éotiv ) pépm &mep £8el 8ei€an. // Therefore every
number is of every number, the less of the greater, either a
part or parts; which is just what was to be shown.

The last verb, 8¢i€on “to be shown,” is the normal ending for a theo-
rem, as opposed to a problem, which would end with TToifjoat “to be
done.” Nonetheless, strictly speaking, Proposition VII.4 is neither a
theorem nor a problem in the usual sense, because its enunciation
alone gives us nothing that we can either contemplate or use. I
read the whole proposition as an explanation of the definition of
proportion. The proposition tacitly explains how to tell when a
number A is the same parts of B that C' is of D. Assuming that A
is not in fact part of B, and C' is not part of D, we may conclude
that A is the same parts of B that C is of D, just in case A and
B are, respectively, the same multiples of their greatest common
measure that C and D are of their greatest common measure.

If Euclid spelled out this definition, he might distinguish the case
where, say, A and B are prime to one another. In this case, since
the only common measure of A and B is unity, A is the same parts
of B that C is of D, just in case C = F x A and D = E x B, where
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Figure 3.7. Proposition 1.7, with the missing case

E is the greatest common measure of C' and D. (We shall look at
the multiplications here symbolized in §3.8.)

Euclid does not spell out the details of the definition of having
the same parts. This need not be considered unusual. In Book 1
of the FElements, there are several propositions where a thorough
account of all possible cases is lacking. Euclid does not even bother
to mention that there are other cases than the one he considers.
We have no reason to think that he is not aware of the other cases.
We looked earlier (p. 60) at Proposition 1.5, which is that, in an
isosceles triangle, not only (1) the base angles, but also (2) the
exterior angles at the base, are equal to one another. A consequence
of this is Proposition 7, which, as suggested earlier (p. 62), is that
two different points on the same side of a straight line cannot have
the same respective distances from its endpoints. In his proof by
contradiction, Euclid considers only the case shown on the left of
Figure 3.7, where neither of the two points I' and A lies inside
the triangle determined by the other point and the given straight
line AB. The proof of this case needs only the first conclusion of
Proposition g: if Al = AA, then

ZBrA < ZATA = ZAAT < ZBAT, Bl # BA.
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The other case, on the right of Figure 3.7, goes unmentioned, but
is proved by means of the second conclusion of Proposition 5.

As discussed in §3.2 (p. 73), by definition, a number A is to B
as C' is to D, provided A is the same (1) multiple or (2) part or
(3) parts of B that C' is of D. This means, symbolically, according
to my reading of Proposition 4,

1) for some multiplier n, both A= B-n and C =D -n, or

2) for some multiplier n, both A-n =B and C-n = D, or

3) for some multipliers k£ and ¢, and some numbers F and F,

A=E-k, B=E-{, C=F-k, D=F-{,
where
E = gem(4, B), F =gem(C,D)  (3.4)

(where gem means greatest common measure). Again, condition
(3.4) is made as explicit as need be by Proposition 4.

Pengelley and Richman |72, p. 199 leave out Condition (3.4)
when they formulate Euclid’s definition of proportion. (The omis-
sion is repeated in |71, p. 870].) Then they observe that later proofs
make use of the transitivity of “equality” of ratios without having
proved it. However, the transitivity of this “equality” is immediate
from the definition of proportion, properly understood. By def-
inition, A is to B as C' is to D, provided that something about
pairs (X,Y) of numbers is the same, whether the pair be (A, B) or
(C,D). The “something” that is the same: it cannot be the mere
existence of a number Z and multipliers k£ and ¢ such that

X =27k, Y=27 V. (3.5)

Such Z, k, and / exist for all pairs of numbers X and Y. The
desired “something” could be the set of all pairs (k, ¢) of multipliers
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such that, for some number Z, (3.5) holds. That is, if we introduce
the notation

(X :Y]={(k,0):3Z(X=Z -k & Y =27 1)},
then we could define
A:B:C:D < [A:B]=[C:D].

But this happens not to be Euclid’s definition. By the account of
Pengelley and Richman, the definition is

A:B:C:D < [A:B|N[C: D] #@.

With a bit less symbolism, this is that A : B :: C' : D if and only
if [A: B] and [C : D] contain the same element. This formulation
does preserve the reference to sameness found in Euclid’s original
definition (p. 73). However, it does not specify which element is the
same element. As Euclid implies in Proposition Vii.4, that same
element must be the one pair (k,¢) such that

X =gem(X,Y) -k, Y =gem(X,Y) - ¢,

whether (X,Y') be (4, B) or (C, D).

To the modern reader accustomed to manipulating and reducing
fractions, Euclid’s meaning may not be entirely clear. But I think it
is clear enough to his intended audience, to suit Euclid’s purposes
at least. He may not have wanted to tell them everything; but
again, as noted in §3.4 (p. 81), he did not have to worry that they
would be confused by the modern notion of a fraction.

Euclid is aware that he can define proportionality—sameness of
ratio—by means of anthyphaeresis. He prefers to avoid this, per-
haps in order to make proofs easier. Proposition vii.13 will be an
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example of this (p. 107). Meanwhile, for the arbitrary magnitudes
considered in Book v, Euclid defines proportions as quoted in §3.2
(p- 74). Looking at arbitrary equimultiples is conceptually easier
than looking at the potentially infinite sequences of numbers gen-
erated by anthyphaeresis. For one thing, even if we say A measures
B, k times, with remainder C, Euclid has no notation for the mul-
tiplier k. Indeed, k here is not a thing. It is not, strictly speaking,
a number, but a numeral; not a noun, but an adjective. It can be
turned into a noun, as it will be in Book vII, when multiplication
of numbers is defined; but there is no need to do this in Book V.

When anthyphaeresis is applied to numbers, finite sequences are
generated. We apply anthyphaeresis to numbers A and B, we get
a greatest common measure C. Then A = C -k and B =C -/
for some k and /¢, as Euclid knows. He does not say much about k
and /¢ directly though. He does not say, for example, that they are
relatively prime. He does not have good notation for them. We can
write multipliers as we are doing, with minuscules; Euclid cannot.

Now, notation is not like house-building supplies. You cannot
will bricks and mortar into existence; but if you find your notation
inadequate, you just improve it. If Euclid was inhibited by a lack
of good notation, it would seem the fault was his own.

On the other hand, Euclid’s concern was not written expression
as such. Writing supplies are like house-building supplies. Even if
Euclid had as much scratch paper (or papyrus) to write on as we
do, he could not easily have distributed a copy of his lectures to
everybody who attended. I think of Phaedrus, in the eponymous
dialogue of Plato, borrowing the text of a speech of Lysias, not
so that he can copy it, but so that he can memorize it [78, 228b,
p. 417]. Evidently Euclid wrote things out, and that is why we
have his work; but his aim was not to come up with good written
expressions as such. See however §4.1 (p. 115).
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3.8 Multiplication

In the Elements, addition of numbers is implicitly understood to be
what we call a commutative, associative operation. Thus numbers
compose an additive semigroup. Moreover, each number is a sum or

combination of units, all of these units being equal to one another.
By contrast, multiplication is explicitly defined. The fifteenth of
the definitions at the head of Book VII reads,

Ap1Buods &piBuov moAAammAaciklav AéyeTtal, Stav, doau giolv év
aUTE povades, TooauTakls ouvTedf] 6 ToAAaTAcoIa(opevos, Kal
yévntad T15. // A number is said to multiply a number when,
however many units are in it, so many times is the multiplied
number composed, and some number comes to be.

I use the verb to be composed here for Euclid’s ocuvTifnui,*® be-
cause from this verb is derived the adjective ouvBeTos, and we trans-
late this as composite (as in Definition viL.13, p. 78). Heath uses
“to be added to itself” for Euclid’s ouvTiBnui; but taken literally,
this is misleading. To multiply A by B means to lay down a copy
of A for each unit in B; it does not mean to add all of those copies
to the A that already exists. If we multiply A by B—or as Eu-
clid says, if B multiplies A—, we can describe the result as “A, B
times,” or “B times A”: more precisely, “A, the number of times
that there are units in B.” We can write this result as

7

A X B,

although Euclid has no such notation. As we noted in §3.5 (p. 86),
it is not obvious that A x B = B x A, and this will actually be the

*5The form ouvteBf] appears to be an aorist subjunctive, like the next verb
yvévntal I have sometimes used the English subjunctive to translate Euclid’s
subjunctives, but not here.
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result of Proposition 16. Nonetheless, the definition of multiplica-
tion is followed by:

‘Otav 8¢ duo &pibuol ToMaTAcoi&oavTes AAANAoUS TTOIRCT
TV, O Yevouevos €TriTredos KaAgiTal, TrAsupal 8¢ aUToU ol TOA-
AamAacid&oavTes dAAHAous dpifuol. // And whenever two num-
bers, multiplying one another, make some [number], the
[number] produced is called plane, and its sides are the num-
bers multiplying one another.

This suggests an understanding that multiplication is indeed com-
mutative. This contributes to the feeling that the “definitions” at
the head of Book VII are more of a summary or introduction than
a list of formal definitions.

Given numbers A and B, we can write

AxB=A-n, (3.6)

where n is the number or rather numeral of units in B. Here B is a
noun, but n is an adjective. We can draw B in a diagram, but not
n itself. Rather, n would be a feature of the diagram.*® Instead of
(3.6), we can write

B

or less precisely
AxB=A+---+4+A;

another way to say this last is that A x B belongs to the semigroup
generated by A.

Euclid distinguishes between products A x B and multiples A -n
in the propositions of Book vil. The enunciation of Proposition
5 is:

*6This observation is reminiscent of the passage of Sextus Empiricus quoted
above (§3.1, p. 73).
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E&v &p18pos &piBuol pépos 1), kai ETepos £Tépou TO alTd pépos
N, kKol ocuvauedTEPOS CUVOUPOTEPOU TO aUTd pépos EoTal, OTrep
6 els ToU &vds. // If a number be part of a number, and
another be the same part of another, then the combination
will be the very same part of the combination that the one is
of the one.

Heath has “sum” instead of my combination; but the latter seems
closer to Euclid’s cuvap@dTepos.’ If the numbers in question are
respectively A, B, C, and D, we assume that, for some n, both
A-n = B and C-n = D; the conclusion is that (A+C)-n = B+ D.
In one line then,

(A+C) - n=A-n+C-n; (3-7)

this can be understood as a consequence of the commutativity of
addition.

*7The original meaning of cuvaugdTepos is both together [58], while the English
“sum” comes from the Latin feminine summa of the superlative of superus,
meaning above [47]. AupdTepos is an alternative to &uew [84, 349¢, p. 105],
which has the meaning of, and is cognate with, the Latin ambo and the
English “both” [83, 62]. In “combination,” the Latin prefix com- corresponds
(in meaning, if not in etymology) to the ocuv- of cuvopedTepos, while “-bin-"
is from bini “two together” [47]. Actually bini is a distributive numeral,
something that Turkish also has [6g, p. 254]. English and Greek do not
have distributives as such, so they can say only “two by two, two each” [63],
kaT& 8Uo, or ouvduo [84, 3544, p. 106]. In fact Euclid uses the latter word
in Proposition vil.14 (which we shall not otherwise consider): If numbers
Ai, Az, ..., Ayn, and numbers B1, Ba, ..., By, taken two by two (cUvduo),
are in the same ratio, so that A; : Ay :: By : By and so on, then A :
A, :: By : B,. Remarkably enough, the B of the Latin bins was originally
D, thus corresponding to the A of the Greek 8Uo, whereas the B of ambo
corresponds to the ® of &ugew. None of my sources suggest an etymological
connection between biny and ambo, despite the fact that each is about two
things together.
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Proposition 6 is the same as 5, but with “part” replaced by
“parts,” so that if

A=F -k, B=F n, C=F-k, D=F.n,
then
A+C=(E+F) -k, B+D=(E+F)-n.

There is no need here to assume that k and n are relatively prime,
or equivalently that F is the greatest common measure of A and
B. Nonetheless, from Propositions 5 and 6, Euclid immediately
obtains Proposition 12:

E&v Qo dmocololy &pifuol dvdhoyov, EoTar s els TGV fiyou-
pévey Tpds Eva TV ETopévov, oUTws &mavTes ol fjyoUpevol
Tpds &mavTas Tous émouévous. // If however many numbers
be proportional, one of the leading terms will be to one of
the following terms as all of the leading terms are to all of
the following terms.

Thus
A:B:(C:D = A:B:A+C:B+D,

or more generally

A1 :By Ay By oot A, B,
— A1 : B A1++AnBl++Bn (38)
Note that this hardly needs proof, if one understands and accepts
the anthyphaeretic definition of proportion: If (A4, B) and (C, D)

have the same anthyphaeretic sequence, then (A + C, B + D) has
the same sequence, since we shall have something like

A=B-n+ F, B> FE, C=D-n+F, D>F,
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so that, by Proposition VIL5, as expressed by (3.7),
A+C=(B+D)-n+E+F, B+D>E+F

By assumption, (B, FE) and (D, F') have the same anthyphaeretic
sequence, so we can continue as before.

Meanwhile, Euclid has already used the idea of the general form
(3.8) of Proposition 12 in proving Proposition 9. The enunciation
of this proposition is:

E&v &p18uos &piBuol pépos 1), kal ETepos ETépou TO adTd pépos
7, Kal vodA&E, & pépos éoTiv 1) pépn & TpdTos ToU TpiTou, TO
aUTO pépos EoTal 1) T& alTd pépm Kal 6 deUTepos ToU TeTAPTOU.
// If a number be a part of a number, and another be the
same part of another, also alternately, what part or parts the
first is of the third, the same part or parts will also the second
be of the fourth.

Thus if the four numbers are A, B, C, and D, and A-n = B and
C'-n = D, then whatever part or parts A is of C, the same part or
parts will B be of D, that is, A: C :: B : D. Without introducing
B and D, we can write the proposition as

A:C:2A-n:C-n. (3.9)

Thus Vil.12 is a more general form of vil.g. In Proposition g, A
is contemplated as being part or parts of C', but not as being a
multiple of C', presumably because, without loss of generality, we
may assume A < C (the case A = C being trivial).

Proposition 10 is the same as g, but again with the first two
instances of “part” in the enunciation replaced with “parts.” Thus
if the four numbers again are A, B, C, and D, but now £ -k = A
and B = E -n for some E, while F'-k = C and D = F' - n for some
F, then by (3.9)

E:F:A:C, E:F:B:D,
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and so, by transitivity of sameness of ratio, which should be obvious

(p- 99),
A:C:B:D.

Briefly, the propositionis E-k: F -k E-n:F-n.
Proposition 13 expresses g and 10 in the language of propor-
tion:

E&v Téooapes dpiBuol dvdhoyov o, kal EvadA&E dvéAoyov
¢oovtaur. If four numbers be proportional, they will also be
proportional alternately.

That is, alternation of a ratio is possible:
A:B:C:D — A:C:B:D.

This is so, because we may assume A < C, and then A is either
part or parts of C', as explained in Vil.4. These two cases have been
covered in Propositions g and 1o0.

Proposition g, like Vil.12, is immediate from the anthyphaeretic
definition of proportion, and then vil.1o follows easily. The com-
bination of Propositions g and 10 into VII.13 by means of VII.4 is
not immediate from the anthyphaeretic definition. But we shall
use alternation to establish commutativity of multiplication.

Proposition 15 can be read as a special case of 13, though Eu-
clid enunciates it in terms of measurement rather than proportion:

Eav povas apiBudy Tva petpf), ioakis 8¢ ETepos &piBuds &AAov
TG &p1Budy peTpfl, kal &voMA&§ iodkis 7| povds TOV TpiTov
dp1fudy petpnoel kail & BeUtepos TOV TéTopTov. // If unity
measure some number, and equally a different number mea-
sure some other number, also, alternately, equally will unity
measure the third number, and the second the fourth.
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Thus, if unity measures A as B measures C', this means

A=1+---+1, C=B+---+B, (3.10)
A A

and therefore

1:A:B:C.
Our 1, A, B, and C are Euclid’s A, BI'; A, and EZ, and by assump-

tion,

ool . . . glolv év T BN pov&des, ToooUTol eiol kal év 1 EZ
&pifuot foor Té A. // however many units are in BI, so many
numbers equal to A are also in EZ.

These units and numbers are not identical to one another:

dinpnobw o pév Bl €ls Tas v éoutd povddoas T&s BH, HO, OF,
6 8¢ EZ €is ToUs T A loous ToUs EK, KA, AZ. // Let B have
been divided into the units BH, HO®, and ©rI in it, and EZ
into the numbers EK, KA, and AZ equal to A.

However, the number of units is equal to the number of numbers
equal to A; and the latter numbers are equal to one another, as are
the units:

¢oTal 81 loov 16 TAfBos TV BH, HO, O 1& mAnBea T&dv EK,
KA, AZ, // The multitude of BH, HO, and ©I will be equal
to the multitude of EK, KA, and AZ,

and also

foou eloiv ai BH, HO, O povddes dAANAaus, ciol 88 kai ol EK,
KA, AZ &piBuol ioo1 &AAfhots. // the BH, HO, and O units
are equal to one another, and the EK, KA, and AZ numbers
are equal to one another.
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Thus (3.10) is justified. By Proposition 12,

1:B:14+---+1:B+---+B.

n n

Letting A = 1-n, we have
1:B::A:C,

or unity measures B as A measures C.
In the argument above, initially, C' is B x A; by the conclusion,
C = A x B; thus
Ax B=BxA.

This is made explicit in Proposition 16, whose enunciation is

E&v 8Uo dpiBuol moAAamAacidooavTes dAANAoUS TToidol Tvas,
ol yevopevol €€ alTdY Iool dAANAols EoovTal.
If two numbers, multiplying one another, make some
[number],
the products will be equal to ane another.

This would indeed appear to be a “real” theorem.

We can understand Euclid’s situation as follows. His numbers
compose a set . that is equipped with (1) a commutative, asso-
ciative operation of addition, which we denote by +; (2) an as-
sociative multiplication, x, which distributes over addition; (3) a
multiplicative identity, 1; (4) a linear ordering, <, such that

A<B <= X A+ X =0B.
We may define

#=SU{0}U{-X: X € .7},
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where 0 ¢ ., and X — —X is just some injection on . whose
range is disjoint from .#”U{0}. Then we can turn & into an ordered
ring, just as, in school, one obtains the integers from the natural
numbers. However, not every ordered ring is commutative like the
ring of integers. For example, the free group F5 on two letters
can be made into an ordered group, and then the noncommutative
group-ring ZFy can be ordered.*®

To apply the Euclidean Algorithm, Euclid tacitly assumes what
we call the Well Ordering Property of .. I think Euclid also tacitly
assumes that A x B always belongs to the semigroup generated by
A. Either of these assumptions implies the other, although Euclid
does not prove this or perhaps even contemplate a proof.

Nonetheless, Euclid does not assume commutativity of multipli-
cation. He proves it. This would seem to be more than number-
theory textbooks do today. Landau [53] and Hardy & Wright [42]
do not discuss foundations, but start right in, proving theorems
about divisibility. I suppose they expect the reader to understand
the natural numbers and all of the integers as lying among the so-
called real numbers, which are understood as composing an ordered
field (although this terminology may not be introduced). As far as
the integers themselves are concerned, the authors evidently take
for granted the axioms that LeVeque [56, pp. 8-10] makes explicit:
in effect, the integers compose an ordered commutative ring whose
positive elements are well-ordered.*®

Leveque observes that the well-ordering axiom can be replaced

*8Textbook references are Lam [52, Exercise 17.1, p. 269] and Botto Mura and
Rhemtulla [12, Thm 2.3.1, pp. 33 f.]. Every free product of ordered groups
is orderable.

*9Before introducing the ordering, LeVeque gives the axiom whereby a com-
mutative ring becomes an integral domain; but this will be implied by the
ordering.
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with the induction axiom, once the axioms of a commutative or-
dered ring are assumed. Burton [14, pp. 12| proves the “Archi-
medean property” and the “First Principle of Finite Induction,” us-
ing the “Well-Ordering Principle” as the only explicit property of
the natural numbers; otherwise, he says,

We shall make no attempt to construct the integers axiomatically,
assuming instead that they are already given and that any reader
of this book is familiar with many elementary facts about them.

It is presently asserted [14, p. 5] that “Mathematical induction is
often used as a method of definition as well as a method of proof.”
This suggests that recursive definitions are justified by induction
alone. They are not, and clarifying this point is of value to number
theory itself, as we discussed above (p. 18).

Again, in our terms, Euclid proves that every ordered ring whose
positive elements are well-ordered is commutative. Thus he would
appear to be more sensitive to rigor and logical economy than are
the corresponding texts of today.

3.9 Euclid’s Lemma

“FEuclid’s Lemma” now follows from some straightforward manipu-
lations. Thus Proposition VviII.17 is

C:D:CxA:DxA, (3.11)

which looks like a restatement of Proposition g, when this is writ-
ten as (3.9); but Euclid derives the result afresh, using that, by
definition,

1:A:C:CxA, 1:A=D:DxA,
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so that C': C x A :: D : D x A (since sameness of ratio is imme-
diately transitive), and therefore, alternately, (3.11). By applying
Proposition 16 to this, we obtain Proposition 18,

A:B:CxA:CxB. (3.12)
From (3.11) and (3.12), along with the rule
E:F:E:F — F=F,

we obtain
A:B:C:D <= DxA=CxB, (3.13)

which is Proposition 19. Euclid’s argument is as we have put it.
However, as we have already noted (p. 101), Euclid is not concerned
with how mathematics appears when written on a page. When he
writes out Propositions 17 and 18, he does not do as we have done,
choosing the letters in (3.11) and (3.12) so that Proposition 19
follows almost visually in the form of (3.13).

In Proposition 20, we suppose C' and D are the least X and Y
such that X : Y :: A: B. By Alternation (Proposition 13), though
Euclid does not make this explicit,

C:A:D:B.

Thus if C' is parts of A, so that D is the same parts of B, then for
some parts F of A and F of B, we have C = FE -k and D = F - k;
but then by Proposition 12,

E:F:C:D:A:B,

contrary to the minimality of C' and D. Thus C is not parts, but
is a part of A, and D is the same part of B; or as Euclid says, C
measures A and D measures B equally (iodxkis).
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Proposition 20 does not tell us which numbers are minimal as
described. Proposition 21 establishes a sufficient condition for being
such numbers. If A and B are prime to one another, then they must
be the least Z and Y such that Z : Y :: A : B. For, suppose not, but
" and A are least.

ioaxis &pa 6 ' 1OV A petpel kol 6 A tov B. dodaxis &1 6 M Tov
A peTpel, TooolTar povddes EoTwoav év T E. kal 6 A &pa
1OV B peTpel katd T&s év T E povddos. kol émet 6 [T OV A
peTPEl KaT& TAS év T® E povddas, kai 6 E &pa 1OV A petpel
kot T&s &V 16 I povddas. // Therefore I' measures A and A
measures B equally. Then as many times as ' measures A,
so many units let there be in E. Therefore also A measures B
according to the units in E. And since I' measures A according
to the units in E, also therefore E measures A according to
the units in T.

This is not the language of the enunciation of Proposition 16, but
is the language of its demonstration. At present, for some E we
have ' x E = A, and therefore E x [ = A, that is, E measures A;
and similarly the same E measures B, which is absurd, since A and
B are coprime.

We jump ahead to Proposition 29, which is immediate from
the definitions:

Atmas mpdTOs ApiBuds TPds Gmavta dpiBudy, Ov ur peTpsl,
Tp&TOs ¢oTw. // Every prime number, to every number that
it does not measure, is prime.

Finally then, in Proposition 30, we suppose P is prime and mea-
sures A x B, but does not measure A, so that P is prime to A by
Proposition 29. By hypothesis, for some C, P x C'= A x B, so by
Proposition 19,

P:A:B:C.
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By Proposition 21, P and A are minimal; then by Proposition 20,
P measures B.



4 Symbolic mathematics

4.1 Analysis

The last three propositions of Book ViII of the Flements hint at
a symbolic mathematics, a mathematics of manipulating symbols
that start out with no definite meaning. Such mathematics can
be called analytic, as Descartes’s geometry is called. It did not
originate with Descartes, for Pappus had already described it, more
than a thousand years earlier [86, pp. 596—7]:

év pév yap 1] dvoducel 1O (nTolpevov s yeyovods UtoBépevol
T6 2§ o0 ToUTo oupPaiver oxotmoupeba. // For in analysis we
suppose that which is sought to be already done, and we
inquire what it is from which this comes about.

Pappus attributes the work of analysis that he describes to “Euclid
the writer of the Elements, Apollonius of Perga and Aristaeus the
elder.”

Briefly, Proposition vi1.37 is the theorem that a number measur-
ing a number also divides it. Proposition 38 is the converse, that a
number dividing a number also measures it. If it is A dividing B,
this means B has, so to speak, an A’th part. Thus it seems A can
stand for the “ratio” that we denote by 1/A. We observed in §3.2
(p- 75) that a ratio is not one thing in a diagram, but two; and
indeed, the number A is not in itself the ratio of unity to A. It is
perhaps more easily confused with the ratio of itself to unity.

115
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Finally, Proposition VviI.3g is the problem of finding the least
number having given parts. In the exposition (in the sense of Pro-
clus, p. 49), these parts are given as A, B, and I'. In the construction,
numbers A, E, and Z are found such that, in effect,

A=1/A, B =1/E, r=1/z.

This is unorthodox. I think the orthodox Euclidean approach would
be simply to start with the numbers A, E, and Z. The problem then
is to find the least number that has A’th, E’th, and Z’th parts, and
this means finding the least number H such that, for some numbers
©, K, and A,

1:A::0©:H, 1:E:=:K:H, 1:Z: N H.

As it is, Proposition 39 starts not with the numbers A, E, and Z,
but with the partitive numerals A’th, E’th, and Z’th, which are
called A, B, and I'. No number is given that has parts designated
by these numerals.

It will be worth while to consider these last propositions of Book
VII in more detail. Proposition 37 has the enunciation,

E&v &piBuos Umd Tvos apiBuol peTpfiTal, O peTpoupevos Oupc-
vupov pépos £€el TG petpolvti. // If a number be measured
by some number, the measured [number] has a part having
the same name with the measuring [number].

Instead of having the same name, we could use “homonymous” for
Euclid’s opwvupos. If A is measured by the number three, that is,
by a triad B, then A = B x C for some number C; but then also,
by commutativity of multiplication, A=C x B,or A=C-3,s0C
is the third part of A. Here the third part is said to have the same
name as the triad, or to be homonymous with it.
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The proposition seems trivial to us, who from a young age are
given to understand that multiplication of numbers is commuta-
tive. It might seem trivial to Euclid’s intended audience as well.
At any rate, commutativity will perhaps be understood by any-
body who has to find products of specific numbers. Nonetheless,
Euclid works out a proof of the proposition; and the proof relies
not on commutativity of multiplication as in Proposition 16, but
on alternation of proportions as in Proposition 15. The diagram in
Heiberg’s text is as in Figure 4.1, and the Greek text itself begins

Figure 4.1. Proposition vII.37

on page 119. I translate Euclid’s argument as follows, paying at-
tention to the adjectival and appositional uses of letters discussed
earlier (p. 51).

For let the number A be measured by some number B.

| say that A has a part homonymous with B.

For as many times as B measures A, so many units let there
be in T.

Since B measures A according to the units in I, and also
the A unit measures the I' number according to the units in it
equally, therefore, the A unit measures the ' number, and B,
A. Alternately, therefore, equally the A unit measures the B
number, and ', A. What part, therefore, the A unit is of the
B number, the same part is also ' of A. And the A unit is a
part of the B number homonymous with it; also, therefore, I
is a part of A homonymous with B.

Thus A has a part, I, that is homonymous with B; which is
just what was to be shown.
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Thus if A is measured by B, it is measured a number " of times,
and so

1:T:=:B:A,

1:B:=T:A, (41)
by Proposition 15. Then I" is the same part of A that unity is of
B. In other words, qud part of A, I' is homonymous with B, or I
is the B’th part of A. In short, if B measures A, then A has a B’th
part, or as we may say (though Euclid does not), B divides A.

Conversely, if A has a B’th part—if B divides A—, then B mea-

sures A. This is Proposition 38, though Euclid’s exposition will
use I in place of our B. As usual, the enunciation uses no such
letters at all:

If a number have any part whatever, it will be measured by
a number having the same name with the part.

Heath calls this, “practically a restatement of the preceding propo-
sition” [31, v. 11, p. 343] and Euclid’s subsequent lettering may
suggest as much (as may the diagram in Heiberg, which is as for
Proposition 37, though slightly bigger, and with the label A moved
to the left of the corresponding straight line). But Proposition 38
is the converse of 37. For Euclid proceeds with 38 as follows.

For let the number A have whatever part B, and let the
[number] homonymous with the B part be T.

| say that ' measures B.

For since B is a part of A homonymous with T, and also
the A unit is a part of ' homonymous with it, what part,
therefore, the A unit is of the ' number, the same part also is
B of A. Equally, therefore, the A unit measures the I' number,
and B, A. Alternately, therefore, equally the A unit measures
the B number, and T, A.

Therefore ' measures A; which is just what was to be
shown.
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Here, as in Proposition 37, A is measured " times by B, so the
proportions (4.1) are known to hold again, in the same order, and
therefore ' measures A. Thus Proposition 38 is superficially simi-
lar to 37. Indeed, the very phrases expressing (4.1) in the Greek
text are the same in both propositions. We can compare the two
propositions side by side as follows.
Proposition 37 ‘ Proposition 38
Enunciation

E&v &piBuos Umd Twos &p1Bpol | CEdv &piBuos pépos €xn OTioly,
peTpfTan,

O PETPOUUEVOS Suvupoy pépos el | UTTO OpwUpoU &p1Bpod

TE PeTPOUVTL peTpninoeTon TG pépel.
Exposition

ApiBuds yap 6 A Umo Twos | ApiBuds yap 6 A pépos ExéTw

ap18upol 10U B petpeiocfw: oTioUv 1OV B,

kol TG B pépel opwvupos EoTw
[&p1Buos] o T
Specification
Aéyw, 6T1 6 A Suwvupov pépos Exel | Aéyw, 6T1 6 [T Tov A peTpel.
™6 B.
Construction
Oodkis yap 6 B Tov A petps],
TooaUTal povddes EoTwoav év TR

I

Demonstration
émel 6 B TOv A peTpel katd T&s | Emel yoap 6 B ToU A pépos éoTiv
év 16 I povades, opwvupov T T,

[ C e ) . L . - .
peTpel & kol | A povas TOV | EoTi 8 kal | A povas ToU [T pépos
[ &piBuoy kot T&s &v alT®d | dpwvuyoyr auTd,

povades,

o

(o]

apa pépos éoTiv | A povas Tol

ap1Buod, 16 alTO pépos éoTl Kal
B to0 A

iocakis &pa 1 A povds Tov [ | icaxis &pa 1| A povds Tov [

-

O~
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&p1Budy peTpel kol 6 B Tov A. Gp1Budy peTpel kai 6 B Tov A.
EvaMGa§ &pa iodkis 1) A povas Tov | EvadAaé &pa iodkis 1) A povas TOv
B &p1Bpov petpel Ko< ol Tov A B &p1Bupov petpel kai 6 [N Tov A.

8 &pa pépos ZoTiv | A povas ToU
B &piBuol, 16 adTd pépog goTl Kol
6 100 AL 1) 8¢ A povdas ToU
B &piBuol uépos éoTiv Suwvupov
auT®d kol 6 [N &pa Tod A pépos
¢oTiv Spwvupoy TR B.
Conclusion

wote 6 A uépos éxer Tov [ | 6T &pa Tov A peTpel
opvupov dvta TG B
Omrep £€de1 dellan. Omrep £de1 dellan.

In Proposition 37, I is found in the construction, and it is named
in the conclusion only qud B’th part of A; it does not appear in the
specification. In Proposition 38, I" is part of the exposition: it is
one of the givens. Morever, in 38, B is given only as the ["th part
of A, and B is not mentioned in the specification or conclusion.
Thus Propositions 37 and 38 are logically distinct. They reflect the
logical distinction discussed in §3.3 (p. 77) between measuring and
dividing infinite sets.

It may seem that FEuclid could have phrased the exposition and
specification of Proposition 38 as,

For let A have a part homonymous with I".
I say that " measures A.

Then there would have to be a construction:

For let the part of A homonymous with I" be B.

'In the pdf scan that I have of Heiberg’s text, only o appears, without the
rough breathing mark; I assume this is a misprint, if not a defect of the
scan itself.
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But this construction would be to divide A by I" (to divide A into
M-many parts). We do not not know to do this: we only know how
to measure. Thus A must be given as already divided into -many

parts, these being equal to B.

So far everything seems properly “Euclidean,” even painstakingly
so. Various ways of understanding the commutativity of multipli-
cation have been worked out in the established style. But then we
reach Proposition 39. This is a complement and corollary of 34
and 36, which we looked at earlier (p. 95). The enunciation of 34
is

Abo &p1Buddv dobévtwy ebpely, 6v EAdyloTov peTpololy &piBuov.
// Two numbers being given, to find the least number that
measures [them].

Proposition 36 is the same, with “Three” for “Two” (Tpiév for Avo).
The two propositions thus represent the problem of finding least
common multiples. Then 39 is to find the least number having
given parts:

ApiBuov ebpew, 8s EAdyioTos v s T& SobBévTa pépm. // To
find the number that—being least—will have given parts.

Here the word order is different, the givens now being mentioned
last. Propositions 34 and 36 use the genitive absolute construction
to introduce the givens, and the case of the relative pronoun, which
would logically be nominative, is “attracted” to the accusative case
of its “antecedent” (which is actually written later: the word order
is “to find [the| which-least-measures number”). In 39, there is no
absolute construction, and the relative pronoun has its logical case,
the nominative. The exposition, specification, and demonstration
of 39 proceed as follows.

"EoTtw T& dobévta pépn Tta A, B, I
B¢l BT &p18pdy eupely, Os éAdyloTos v EEel Ta A, B, [ pépn.
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"Eotwoav y&p Tois A, B, I pépeov ouwvupor &pibpol oi A, E,
Z, xai €iMngBw o T&Y A, E, Z éAdyioTos peTpoupevos &pi8uos
6 H.

O H &pa dpwvuua uépn éxel tois A, E, Z. tols & A, E, Z
Spwvupa uépn éoti & A, B, [ 6 H &pa gxel & A, B, ' pépn.

Let the given parts be A, B, and T

We must find a number that will minimally have A, B, and
" parts.

So let the numbers having the same names as the A, B, and
[ parts be A, E, and Z; and let the least number measured
by A, E, and Z have been taken, namely H.

Then H has parts having the same names as A, E, and Z.
But the parts having the same names as A, E, and Z are A,
B, and I'. Therefore H has A, B, and I parts.

That is, if A, B, and I" are A’th, E’th, and Z’th respectively, using
VI1.36 we let H be the least number measured by A, E, and Z. By
vII1.37, H has A’th, E’th, and Z’th parts, that is, it has A, B, and I
parts.

Having used the Latin A, B, C, and G for A, B, I' and H, Heath
says “therefore GG has the parts A, B, C,” but this is misleading. In
the Greek, the letters are used adjectivally, not substantively:

6 H &pa éxer 1& A, B, I uépn.
Therefore H has A, B, and I parts.

A contrasting substantival use can be seen in the construction of
VIL8 (see p. 79), after HO has been made equal to AA, which has
been given as being parts of 'A. The command is given,

Binpnobew 6 pév HO eis t& ToU A pépn
T& HK, KO.
Let HO have been divided into the parts of A,
[namely] HK and K®©.
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Thus HK and K© have been given the definite article, making them
nouns, placed in apposition to “the parts of 'A.” This feature of the
Greek is pointed out by Netz (67, §2.3, p. 43—4], who considers,
from Proposition XIII.4, the sentence éoTw eUfciar 7| AB: Heath
translates it as “Let AB be a straight line,” but it ought to be,
“Let there be a straight line, [viz.] AB.” Proposition VviI.39, A, B,
and [ are not parts of H in the way that HK and K© are parts of
I"A in Proposition VII.8: again, they are not numbers, but partitive
numerals.

For the record, the demonstration of Proposition viI.39 contin-
ues, establishing that H must be the least number having A’th,
E’th, and Z’th parts; for, if © has these parts and is less, then, by
38, it also is measured by A, E, and Z, which is absurd. Such is the
argument of the last proposition of Book ViI.

The diagram for this proposition consists of eight separate line
segments, labelled A through ©, as in Figure 4.2. What can the

A B r

Figure 4.2. Proposition VII.39

first three of these be—the ones that are called the given parts? At
the beginning, they are not known to be parts of anything; they
are just parts, simply, like a half or a third or a fourth. Or are they
parts of some definite, though unspecified, segment? This segment
would then be like Descartes’s unit length (mentioned on p. 47),
introduced so that every length can be understood as its own ratio
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to that unit length. Under this interpretation, A, B, and I" are close
to being ratios as such, rendered concrete for the moment so that
they can be talked about, but not intended for comparison with
particular numbers. This would be the only instance I know of
in Euclid where a ratio can actually be pointed to in a diagram:;
elsewhere, a ratio is a relation between fwo things in a diagram.
Nonetheless, Heath remarks on Proposition 39,

This again is practically a restatement in another form of the
problem of finding the L.C.M.

This is actually more correct than Heath’s similar remark on Propo-
sition 38; for 39 is a problem, whose solution is indeed effected by
finding a least common multiple, just as in 35. Proposition 39 may
be the more practical solution to this problem, if one is more likely
to want a number X of cubits that can be divided into two, three,
and five parts, than a number Y of cubits that can be measured
by two, three, and five cubits. On the other hand, in practical life,
perhaps everybody knows that these X and Y are the same.

Though Heath and Heiberg give no suggestion of the possibility,
I wonder whether Proposition 39 is not a later addition to Book Vi1,
put there by somebody who thought Proposition 36 should have a
formal correlate (or a more “practical” correlate, in the sense just
suggested).

The position of Proposition 39 at the end of Book VIl may con-
tribute to the plausibility of its being a later addition to the Fl-
ements. Perhaps 37 and 38 are also later additions. All three
propositions follow easily by means of the commutativity of multi-
plication, and this commutativity is relied on implicitly throughout
the ensuing Books VIII and 1X. Again, Proposition VII.3g in par-
ticular seems to be due to somebody who is thinking “formally.”
Since measuring is correlated with dividing by means of Proposi-
tion VII.16, for every proposition like 36 about measuring, one may
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think that a proposition like 39 about dividing can and should be
written. But we have seen that 39 does not really fit the preceding
propositions. Similar additions to Wikipedia are inserted today by
people who want to make their contribution: their contributions do
not always reflect a full understanding of the surrounding text.

4.2 Symbolic commutativity

In §3.8 (p. 102), on the basis of Propositions 1, 2, 4, 5, 6, 12, and
15 of Book viI of the Elements, we reviewed Euclid’s proof of the
commutativity of multiplication given in Proposition vil.16. Using
modern symbolism freely now, we can summarize the argument as
follows. We shall denote numbers by small letters. Multiplication
is “defined” by

a-b=a+---+a. (4.2)

Then in particular, by the “definition” of number,

—14+..-4+1=1"-a. .
a=14---+ a (4-3)

a

If the Euclidean algorithm (illustrated in Propositions 1 and 2) has
the same steps for a and b that it does for ¢ and d, this means, by
definition (inferred from Proposition 4), that the proportion

a:buc:d
holds. In particular, we always have the proportion
l:a:b:b-a, (4.4)
as well as the implication

a:bic:d = a:ba+c:b+d (4.5)



126 4 Symbolic mathematics

(which is Proposition 12, obtained from 5 and 6). Repeated appli-
cation of this, starting with 1 :a :: 1: a, gives

l:a:1+---4+1:a+---+a, (4~6)
b b
that is,
l:a::b:a-b

(which is Proposition 13). Consequently, because of (4.4),
b-a=a-b.

If that is Euclid’s proof, a streamlined proof seems possible. The
proof of (4.5) uses the distribution axiom

(a+b)-c=a-c+b-c, (4.7)

for which Euclid gives intuitive justification. The way he generalizes
(4.5) to get (4.6), he might generalize the distribution axiom to get

(a_i_..._i_a).cza.c_i_..._i_a.c’
————
b b

that is,
(a-b)-c=(a-c)-b.

Letting a be unity yields commutativity of multiplication. This
second proof may seem simpler; but then we are using symbolism
that Euclid does not. At this stage, he may prefer to avoid talking
about products of three (or more) factors.

In any case, (4.2) and (4.3) are not up to modern standards
for definitions. We shall bring them up to this standard and, on
Euclid’s cues, develop a nontrivial proof of the commutativity of
multiplication, in the remainder of this chapter.
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4.3 Euclid’'s Arithmetical Structure

In his arithmetical books, we can understand Euclid as working in
a structure
(N, 1,4, %, <).

Here 1 is unity, or the unit, as discussed in §3.1 (p. 69). Then
elements of N are numbers, as in §3.3 (p. 77).

For Euclid, there are many units, but they are all equal to one
another, as noted explicitly in the proof of Proposition viL.15 (p.
107). Equality is not identity (§2.3, p. 56), though treating it as
such should not cause us any problem.

The binary operation + of addition is undefined, but is used in
the Elements from the beginning. We can read the expression a+b
in the conventional way, as a plus b, meaning a with the addition
of b. For Euclid, this will be the same as b+ a; we call it the sum
of a and b, or b and a.

The binary operation x of multiplication is defined, after a
fashion (§3.8, p. 102). When in use between two numbers, our
symbol x will become a dot. In case

a-b=c, (4.8)

we understand this to mean that when a is the multiplicand, and
b the multiplier, then c is resulting product. We may write (4.8)
informally as

meaning c is the sum of b copies of a; but we should be careful to
justify anything derived from this “intuitive” formulation.

In Euclid’s terminology, a measures the product a-b. Measuring
is an undefined notion in the text of the FElements as we have it;



128 4 Symbolic mathematics

but by Definitions ViI.3 and 5, there are two more ways to express
it (§3.2, p. 73):

e ¢ is part of a- b,

e ¢ -bis a multiple of a.
We might also say

e b divides a - b (into parts, each of which is equal to a),

e a-bisbtimes a (or a, b times).
The main point is that multiplication is initially presented in an
asymmetrical way.

As the status of unity as a number is ambiguous in Euclid (p.
78), we may refer to the elements of N other than 1 as proper
numbers.

The binary relation < is of course the (undefined) notion of being
less than. There is the converse relation > of being greater
than, which may be more common in the Elements: Common
Notion 5 (p. 64) is “The whole is greater than the part,” although
the geometric sense of “part” meant here is not the more precise
arithmetical sense given above.

I propose now that, for Euclid, the structure (N, 1, +, X, <) tac-
itly has just the properties that make it isomorphic to a structure

(@~ A{0},1,+, %, €),

where « is an ordinal, and so 1 = {0}, and also + and x are
addition and multiplication of ordinals, and « is closed under these
operations. In particular,

a=w’
for some ordinal 3, as will be shown below. Then Euclid will make
additional assumptions, from which it can be proved that g = 0,
so @ = w. In particular then, multiplication will be commutative.
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4.4 Euclid’s Implicit Axioms

Presumably Euclid is not actually thinking in terms of our ordinals.
But his work suggests that he understands the following axioms to
be true in the structure (N, 1, +, x, <).

A1,
Az.
Asj.

Ay.

A6.

Arx.

AS.

Ag.

dx Jy (b)a = b=a-x OR (b=a-z2+y & a>y)).

The less-than relation is a linear ordering.
Every non-empty subset has a least element.
1 is the least element of the whole set:

1 <a.
Addition is associative:

a+(b+c)=(a+0d) +ec.

. Addition makes greater:

a+b>a.
Being greater is achieved by addition:

Jr (b>a = zb=a+x).

To multiply by a sum is to add the multiples:

c-(a+b)=c-a+c-b.
Multiplication by unity is identical:
a-1=a.

Division with remainder is always possible:
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A1o.

A11.

A1z

A13.

A14.

Multiplication is associative:
c-(b-a)=(c-b)-a.

Multiplication by a proper number makes greater:
b>1 = a-b>a.

The multiple of unity by a number is the number:

1l-a=a.
A multiple of a sum is the sum of the multiples:
(a+b)-c=a-c+b-c.
Addition is commutative:

b+a=a-+b.

All of these but A2 belong to first-order logic. Most of the axioms
would seem to be “obvious” properties of numbers. A13is a modern
interpretation of Euclid’s Proposition VII.5; this proposition then
should be understood as an “intuitive” argument for why the axiom
is true. Ag is used implicitly in the Euclidean Algorithm. We shall
see below how the other axioms arise in Euclid’s work.

4.5 Modern Analysis of the Axioms

Meanwhile, let us note that the first twelve axioms in §4.4 are

indeed true in (w“’ﬁ ~ {0}, 1,4+, x, E): see for example [57, Ch.

IV]. It is a straightforward exercise to show that the converse is
true as follows.
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Theorem 1. If a structure (A,1,®,®, <) satisfies the first nine
axioms in §4.4, then it is isomorphic to some structure

(a N {0}7 17 +? ><’ 6)7

J2 . .
where a = wW®" for some ordinal B, and + and X are the ordinal
operations.

Proof. Since (A, <) is a well-ordered set by A1 and A2, we may
assume from the start that it is a nonempty ordinal with 0 removed,
and < is €. By A3, the element of A called 1 is indeed the ordinal 1.
Showing that & and ® are the ordinal operations is now equivalent
to showing the following, for all a and g in A:

1. a @ 1 is the successor o of a with respect to <.

2. adf =(adp).

If 8 is a limit ordinal, then a @ 8 = sup;g(a @ f3).
a®l=aqa.

a®f =(a®pb)®a.

If B is a limit, then a ® 8 = sup;z(a ®§).

Details are as follows. I shall make explicit only the first use of an
axiom.

1. By Ag, o/ < a®1. Suppose a < 3. We shall show a®1 < S.
By A6, for some v in A, a & v = 8. Thus it is enough to show
that the operation £ — a @ £ on A is strictly increasing. Since « is
arbitrary, we consider ¢ in its place. By A4,

AN ol

dPa<(0Pa)Py=0d(ady)=0d0,

as desired. Thus a @1 = o’.

2. a0 =ad(Bal)=(aaf)ol=(ap).

3. Now suppose 5 is a limit ordinal in A. Then a3 is an upper
bound of {a @ &: £ < B}. Let v be the least upper bound. Then
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for some 0 in A, a & 6 = . We must have § < 8. If § < 3, then
0 <B,soadd <y=ad®d<add, which is absurd. Therefore
0 =p.

4. a®1=a by AS8.

5 By A7, a@f =a@(fol)=a@fdarkl=ak & a.

6. The operation £ — § ® £ is always strictly increasing, because
if again o < B in A, so that a @& v = § for some ~, then

IRa<IRAaPIRYT=0R(ady)=0R .

Now suppose again ( is a limit ordinal in A, so a ® § is an upper
bound of {a®&: £ < B}. Let v be the least upper bound. By Ag,
for some § and 6, we have either a ® 6 = v or a ® § § 6 = -, where
0 < a. Again 0 < 3, but § < [ yields absurdity, so § = 3, and
there is no 6.

Thus @ and ® are + and x. The ordinal A U {0} has a Cantor
normal form

wCVO b0++wa"bn’

where ag > -+ > a,, and {bg,...,bp} Cw~1. If n > 0, then A
contains w™° - by, but not its double, namely w®° - by + W™ - by or
W - (hy - 2): this is absurd, since A is closed under addition. Thus
n = 0, and we may write AU {0} = w®-b. If b > 1, then b = ¢
for some ¢ in w \ 1, and A contains w® - ¢, but not its double,
which again is absurd. Thus b = 1, and AU {0} = w®. Since A
is closed under multiplication, o must be closed under addition, so
as before, o must be w? for some 3. O

Corollary 1. The first nine axioms in §4.4 entail the next three.

Corollary 2. With the first nine axioms in §4.4, either of A1g
and A14 entails

(W~ 1,+,x,€)= (N, 1,4, x, <),
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and therefore x on N is commutative.

Proof. We prove the contrapositive. In the statement of Theorem
1, if 8 > 0, then « contains w + 1; but

(w+l) w=w-w<w-w+1-w,
l+w=w<w+1. O

Of course Euclid’s argument for the commutativity of multipli-
cation does not proceed as above. We consider it again in the next
section. Meanwhile, there is yet another approach:

Theorem 2. The first sixz axioms in §4.4, along with Axiom 14,
entail
(w~1,1," )2 (N, 1,z —x+1,<).

Proof. Without the use of any axioms about N at all, there is
a unique homomorphism from (w ~ 1,1,”) to (N,1,2 — = + 1).
Showing that the homomorphism is an isomorphism is equivalent
to establishing the so-called Peano Axioms:

1. (N,1,z — x + 1) allows proof by induction.

2. The operation x — = + 1 on N is not surjective.

3. The operation « — x + 1 on N is injective.

See for example [74, Thm 2].

1. In N, if @ # 1, then a > 1 by A3, so a = 1+ b for some b
by A6, and then a = b+ 1 by A14, so b < a by Ax. Therefore
the structure (N, 1,2 + z 4 1) allows proof by induction by the
standard argument: if B C N, and 1 € B, and a + 1 € B whenever
a € B, then the complement N \ B can contain no least element,
so by Az it is empty.

2. Since 1 < aand a < a+ 1, sothat 1 < a+ 1 by Az, the
operation x — = + 1 on N is not surjective.
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3. Using also A4 as in the proof of Theorem 1, if a < b, then we
havea+1=14+a <1+b=>b+1, and so the operation z — z +1
on N is injective.

Finally, since the ordering of N is determined by addition accord-
ing to the rule

a<b <= dra+z=09, (4.9)

and a similar rule holds for w~\ 1, we have the desired isomorphism.
O

Conversely, the Peano Axioms entail all of the axioms of §4.4, in
the following sense. Assuming only that the structure (N, 1,z —
x + 1) allows proof by induction, Landau shows implicitly in Foun-
dations of Analysis [54] that there are unique operations + and x
on N such that

r+(y+1)=(z+y)+1,

x-1=ux, z-(y+1l)=x-y+uz.

By induction too, these operations respect the axioms in §4.4 that
govern the operations alone and 1. In the same way, multiplication
is commutative. Under the additional assumption that  +— z+1 is
injective, but not surjective, one shows that the relation < defined
by (4.9) satisfies the remaining axioms.

4.6 Euclid’'s Argument

Finally we cast Euclid’s argument for the commutativity of multi-
plication in modern terms, using the axioms above. We might take
the following as being obvious for numbers, as Euclid seems to; but
we can prove it using the axioms:
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Lemma 1. In N, if a > b, then the equation
a=b+x (4.10)
has a unique solution.

Proof. There is a solution by A6. Any two solutions are compa-
rable, by A1. But then there cannot be two solutions, since the
operation x — b+ is strictly increasing, as in the proof of Theorem
1, which uses also Ag and A4. O

The unique solution to (4.10) is the difference of a from b, de-
noted by

a—b.
Lemma 2. In N, if a > b, then
c-(a—b)=c-a—c-b.
Proof. By A,

b+ (a—b) = a,
c-(b+(a—b)) =c-a,
c-b+c-(a—b)=c-a,
c-(a=b)=c-a—c-b. O

Lemma 3. If a measures b, then a < b.

Proof. If a measures b, this means a - ¢ = b for some c¢. Since ¢ > 1
by A3, we have a < a-c by A11 (in case ¢ > 1) or A8 (in case
c=1). O
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The Euclidean Algorithm is given in Propositions 1 and 2
of Book viI. If @ > b, then by Ag either a =b-k or a = b-k+c for
some k and c such that b > c. In the latter case, either b = c- £ or
b= c-/f+d for some ¢ and d such that ¢ > d, and so on. We can
understand A2 to mean simply that the sequence (a,b,c,d,...)
must terminate; and then its last entry will be measured by all
common measures of ¢ and b and will be one itself. The following
theorem spells out the details. We do not really make the argument
more rigorous by replacing (a,b,c,d,...) with (a1, as,a3,a4,...)
unless we actually have a theory of the indices.

Theorem 3. In N, if a; > ag, there are sequences (b1,ba,...) and
(a1,a2,as,...) given by

ap = agq1 - bp +apy2 & apy1 > apgo.

The sequences must terminate: some anto does not exist, but
ap = Apy1 - by. (4.11)

Then
ai > as > as > -0 > Aptl, (4.12)

and an41 1S a common measure of a1 and az, and any1 1S measured
by every common measure of a1 and az, S0 any1 1S greater than
every other common measure of a1 and as.

Proof. By Ag, from ay and a1, we can obtain by and perhaps
ap+2. Then a1 > ag > a3 > --- by A1. By Az then, for some
n, there is no a,42, so we have (4.11) and (4.12). We can now
compute

p—1 = Qp - bp_1 + an+1
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= (an—l—l : bn) : bn—l + ant1

= Qn41 * (bn : bn—l) + an41 [AlO]
= apt1 - (bp - bp_1) +ans1 -1 [A8|
= apg1- (by by +1). [A7]

Continuing in this way, we obtain a,11 as a common measure of a;
and as. If d is a common measure, then

d-z=(d-y) b+ a3
=d-(y-b1)+ as,

so by Lemma 2,
az=d-(x—1y-bp).

Continuing in this way, we have d as a common measure of all of
the ag, including a,41. By Lemma 3 then, a,q; is greater than
every other common measure of a; and as. ]

The sequence (by, b, ...) in the theorem is the anthyphaeretic
sequence of (a1, az) as defined on p. g1. The number a,; in the
theorem is the greatest common measure of a; and as, and we
may write

ap+1 = gem(aq, az).

Two numbers are prime to one another, as in Definition 12
of Book vii, if their only (and therefore their greatest) common
measure is unity.

As noted earlier (p. 130), Proposition 5 of Book VI is our A13.
Meanwhile, though proportion is mentioned in Definition 4, the real
meaning is suggested by Proposition 4, as in §3.7 (p. 94): four
numbers a, b, ¢, and d are proportional, and we shall write this
as

a:b:c:d, (4.13)
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just in case, for some e and f,

a=gem(a,b)-e, c¢=gem(cd)-e,

b=gem(a,b) - f, d=gem(e,d)- f. (4-14)

Though we shall not actually use it, the following observation
can be taken as the motivation for Proposition 4:

Theorem 4. Assuming a > b and ¢ > d, (4.13) holds if and only
if (a,b) or (c,d) have the same anthyphaeretic sequence.

Proof. The proof of Theorem 3 shows that the numbers e and f
such that a = ged(a, b) - e and b = ged(a, b) - f depend only on the
anthyphaeretic sequence of (a,b). Conversely, by its definition in
the statement of the theorem, the sequence depends only on e and
I O

The “definition” of proportion at the head of Book VII suggests
the following.

Theorem 5. If a measures b, so that a - f = b for some f, then
a:bc:d <= c-f=d.

Euclid seems not to make the following two lemmas explicit.
Lemma 4, like Lemma 1, might be considered as axiomatic. Lemma
5 might be taken as an obvious consequence of the axioms, although
writing out a proof in modern fashion is tedious.

Lemma 4. Ifa-b=a-c, then b= c.

Proof. If b # ¢, then we may assume b < ¢, by A1. But then
a-b<a-c, since x — a -z is strictly increasing, as in the proof of
Theorem 1, which uses A6, Ay, and A7. O
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Lemma 5. Under the conditions (4.14), e and f must be prime to
one another. Conversely, if this is so, and

a=g-e, c=h-e,
b=g-f, d=h-f

for some g and h, then (4.13) holds.

(4.15)

Proof. Given (4.14) and A1o, we find that gcm(a, b) - gem(e, f) is
a common measure of ¢ and b. Then

gem(a, b) - gem(e, f) < gem(a, b)
by Theorem 3; but if gecm(e, f) > 1, then
gem(a,b) - gem(e, f) > gem(a, )

by A11; therefore gcm(e, f) =1 by A1 and A3.
Conversely, if (4.15) holds, then g is a common measure of a and
b, so for some k,
g -k =gem(a,b).

But for some e’ and f’,

g-e=a=gem(a,b) ¢ =(g-k)-¢ =g-(k-e),
g-f=b=gem(a,b) f'=(g-k)-f'=g-(k-f)
by Ao, so
e=k-é, f=k-f

by Lemma 4, and so k is a common divisor of e and f. Suppose
these are prime to one another. then g = gem(a,b) by A8, and
likewise h = gem(c, d). We thus obtain (4.14), and therefore (4.13).

O
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I suppose it is just possible that Euclid overlooked the need to
prove the last lemma. It seems to me more likely that he would
just reason as follows. Suppose a and b are as in (4.14). Applying
the Euclidean algorithm to a and b of course yields gem(a,b). But
if we now consider gecm(a,b) as a unit, this shows that the same
algorithm applied to e and f yields unity. Conversely, if we know
this, but a and b are as in (4.15), then the algorithm applied to
these will obviously yield g.

In any case, the lemma yields the following, which is Proposi-
tion 12 of Book ViI:

Theorem 6. Ifa:b:: c:d, then
a:bra+c:b+d.
Proof. Suppose (4.13) holds, so that (4.14) holds. By A13,

a+ ¢ = (gem(a, b) + gem(c, d)) - e,
b+d= (gcm(a7 b) + gCHl(C, d)) -

and therefore a: b::a+c: b+ d by Lemma 5. O

FEuclid’s Proposition 15 is that if b measures a as many times
as unity measures ¢, then ¢ measures a as many times as unity
measures b. Since ¢ = 1- ¢ by A12, the conclusion is

b-c=a = c-b=a,

or simply the following theorem, which is Euclid’s Proposition
16.

Theorem 7. In N, multiplication is commutative:

a-b=>-a.
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Proof. Since a =a -1 by A8, we have

l:azl:a-1
Suppose
l:azc:a-c
Then
l:az:l4c:ata-c [Theorem 6]
te+lia-c+a [A14]
te+lia-cta-l [A8]
se+lia-(e+1) [A7].

By induction (which we established in the proof of Theorem 2, by
means of A3, A6, A14, Ay, and A2),

l:ax=b:a-b. (4.16)
Since a = 1-a by A12, by Theorem 5 we must have b-a =a-b. O

Euclid does not use induction as we have. But we can apply
Theorem 6 as many times as we like to get

liazl4+---+1:a+---+a
sl4+--+1:a-14+---+a-1 [A8]
sl++lia-(14---41) [A7].
For Euclid, every number is a sum 1+---+1, and so (4.16) follows.

We can just use the axioms to show that there is no least number
that is not of the form 14 ---+ 1.
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