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First-year mathematics students at Mimar Sinan take a course in Book
I of Euclid’s Elements in the fall semester, and then take an analytic
geometry course in the spring. These notes are intended to be useful to
teachers of both courses.

Euclid distinguishes between equality and sameness. For example, in
Book I of the Elements, Proposition  is that parallelograms on the
same base and in the same parallels are equal to one another; this is used
to prove Proposition , that parallelograms on equal bases and in the
same parallels are equal to one another.

An implicit definition of equality can be found in what we call Common
Notion : things that coincide with one another are equal to one an-
other. More precisely, things that can be made or caused to coincide are
equal. Hence the radii of a circle are equal to one another, by the very
construction of the circle: As one compass point swings around the fixed
other point, the gap between the two points is made to coincide with each
radius in turn.

In Proposition , the Side-Angle-Side Theorem, the hypothesis comprises
three equalities: of two sides of a triangle to two sides (respectively)
of another triangle, and of the included angles to one another. The
conclusion comprises four equalities: of the remaining sides, of the angles
subtended by the original equal sides, and of the triangles themselves.
Indeed, the equalities in the hypothesis mean that the two sides and
included angle of the one triangle can be superimposed on, or applied to,
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those of the other triangle. When this is done, then the whole triangles
coincide, and therefore the remaining sides and angles are equal, and the
triangles themselves are equal.

Today we are inclined to think that Proposition  is ‘really’ another pos-
tulate. Its proof does not rely on any earlier propositions or postulates.
But I think the proposition really does have a proof, which makes use of
the implicit definition of equality.

Equality is not identity, but is what we call an equivalence-relation. Given
a (bounded) straight line—what we call today a line segment—, we may
consider the class of straight lines that are equal to the given straight
line. This class itself can be understood as the length of that straight line.
Today we think of this length as a number, namely a positive element of
a certain ordered field. But it takes work to justify this way of thinking.
In fact this way of thinking took centuries to appear.

I think it is implicit in Euclid that lengths are the elements of an ordered

abelian semigroup: by this I mean an abelian semigroup with a (linear)
ordering such that always

a < a+ b.

This rule is suggested by Common Notion : the whole is greater than
the part.

In the same way, the area of a figure can be understood as the class of all
figures that are equal to it. Equality of figures is implied by congruence.

However, incongruent figures can also be equal, as in Propositions ,
quoted above. There, two incongruent parallelograms are shown to be
equal by cutting them up (in different ways) into congruent pieces.

The ordering of lengths is dense, by Proposition  (to bisect a given
bounded straight line).

Proposition  is to construct, in a given angle, and on a given straight
line as base, a parallelogram equal to a given triangle. Using Propositions
 and , we may replace the triangle in Proposition  with an arbitrary
rectilineal figure. If we consider the given straight line in that proposition
as a unit, and if we let the given angle be right, then we obtain a function
from areas of rectilineal figures to lengths. Any such figure determines





the height of a rectangle that is equal to it and sits on a base of unit
length.

Having fixed a unit length, we can multiply lengths: the product of two
lengths is the height of the rectangle of unit width that is equal to a
rectangle whose base and height are the two given lengths respectively.

Obviously then this multiplication is commutative. It is fairly obvious
that multiplication distributes over addition. It is not obvious from Book
I of Euclid that multiplication is associative; but we can still prove it, as
follows.

Multiplication can be effected as in the figure below. The two small

1

a

b

ab

rectangles on either side of the diagonal of the large rectangle are equal to
one another by Proposition . The converse is also true, in the following
sense: given that those two small rectangles have a common vertex as in
the figure, then the two straight lines from that vertex to the remaining
vertices of the large rectangle must lie on the same straight line.

We can adjust the figure so that the height of the large rectangle is not
the sum of a and the unit, but is the larger of the two. Now we shall not
label straight lines with their lengths, but we shall label points with their
distances from the lower left vertex. Then associativity of multiplication
can be shown by means of the next diagram. Indeed, by the converse of
Proposition , we shall have c(ab) = a(cb), provided

C +D + E = K.

By Proposition  itself, we have

A+B = E + F +H +K,

B = E + F,
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and therefore

A = H +K.

But again by Proposition , we have

A = D + E +G+H,

and therefore

D + E +G = K.

We finish by noting

C = G.

Therefore c(ab) = a(cb). We have assumed c < 1 < a and b < a(cb).
Strictly we should consider four more cases:

() c < 1 < a, but a(cb) = b;
() c < 1 < a, but a(cb) < b;
() c < a < 1; and
() 1 < c < a.

With lengths, equality becomes sameness, identity. By writing c(ab) =
a(cb), we mean that two equivalence-classes are the same, and in partic-
ular, every element of one of the classes is equal to every element of the
other class.

Again, the product of lengths a and b is the height of a unit-width rectan-
gle that is equal to a rectangle whose width is a and height is b. Then the
quotient of a by b is the height of a rectangle of width b that is equal to
a unit-width rectangle of height a. So quotients of lengths always exist.
Thus lengths are the positive elements of an ordered field.
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By Proposition , the so-called Pythagorean Theorem, all lengths have
square roots. By the same theorem, if again points in the next diagram
are labelled with their distances from the lower left vertex, then

a b

c

d
e

f

ad = bc,
a

b
=

c

d
,

and therefore

af = a
√

b2 + d2 =
√

a2b2 + a2d2 =
√

a2b2 + b2c2 = b
√

a2 + c2 = be,

a

b
=

e

f
.

Proposition  of Book VI of the Elements is that, in the following dia-
gram, where DE is parallel to the base BC of the triangle, this straight

A

B C

D
E

a

b

c

d

line DE cuts the other two sides of the triangle proportionally: that is,
AD is to DB as AE is to EC. We may write this as

AD : DB :: AE : EC.

Here the expression AD : DB can be understood to stand for a certain
equivalence-class; and then the sign :: stands for identity of equivalence-
classes. But these equivalence-classes are such that the same conclusion
is expressed by

a

b
=

c

d
.
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We can prove this by dropping an altitude from A.

But Euclid’s proof is not like that. For him, the meaning of A : B :: C : D
is that, for all natural numbers k and m,

kA > mB ⇐⇒ kC > mD.

This is Definition  of Book V. Euclid does not define the ratio A : B as
such. We can understand it as the equivalence class of all pairs (C,D)
such that A : B :: C : D; or we can understand it as the class of all
pairs (k,m) such that kA > mB. In the latter case, a ratio is just
a Dedekind cut. It would be foolish then to be impressed that Euclid
somehow ‘anticipated’ Dedekind; the point is that Dedekind learned from
Euclid.

In the definition of proportion, it is understood that A, B, C, and D

are magnitudes, such as (bounded) straight lines or figures; moreover A

and B have a ratio, as do C and D. By Definition  of the same book,
this means for example some multiple of A exceeds B, and vice versa.
It is a tacit assumption that any two straight lines have a ratio to one
another. In our terms, the ordered semigroup of lengths is assumed to
be archimedean. However, we have already shown that this assumption
is not required.

The use of capital letters to denote points, and minuscule letters to denote
lengths, is a convention established by Rene Decartes at the beginning
of his Geometry of . Descartes gives a geometric definition of the
product of two lengths; but he uses Euclid’s theory of proportion for this.
In particular, in the notation of our last diagram, Decartes defines

ad = bc,

so that if d is a unit, then a is the product of b and c. But this defini-
tion should be shown to be independent of angle BAC. It is indepen-
dent, by Euclid’s Proposition VI.; but again, this proposition uses the
archimedean assumption.

Descartes does not bother with the question of whether his multiplication
is commutative or associative. A positive answer may be taken as an
implicit consequence of Euclid’s theory of proportion. As we have seen,
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that theory makes more assumptions than we need; but without the
archimedean assumption, we have to do more work.

In the next figure, if BD ‖ CE and DF ‖ EG, then by Euclid’s theory

A B C

F

G

D

E

and in particular VI., we have

AB : BC :: AD : DE :: AF : AG,

and so BF ‖ CG. Without the archimedean assumption, we can make a
similar argument, using quotients of lengths. But can we draw the same
conclusion, without doing all of the work to show that lengths are the
positive elements of an ordered field?

Using the idea of I., we know that the parallelogram BE is equal to
the parallelogram DC. This is enough, if we can conclude also that the
rectangles with the same sides as these parallelograms are also equal to
one another. But it is not clear that this conclusion can be established
without developing a full theory of proportion.

A theorem expressed in the language of proportion is Euclid’s VI.: to
cut a given bounded straight line in so-called extreme and mean ratio.

Given a length a, the problem is to find a shorter length x so that

a

x
=

x

a− x
.

We can rewrite this equation as

a(a− x) = x2.
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This is the form of I.: to cut a given straight line so that rectangle
whose width is one segment and whose height is the whole straight line
is equal to the square on the other segment. Euclid presents the solution
to this problem synthetically: that is, he presents x as

√

a2 +
a2

4
−

a

2
,

then shows that this works. A Cartesian solution proceeds in the other
direction, analytically: We assume that there is some x such that

a(a− x) = x2,

and then we find

a2 = x2 + ax,

a2 +
a2

4
= x2 + ax+

a2

4

=
(

x+
a

2

)2

,

x =

√

a2 +
a2

4
−

a

2
.

However, synthesis and analysis are both Greek words, and the ancient
Greek mathematicians were aware of the method of analysis, whereby
one assumes that one has the x that one wants to find, in order to be
able to figure out what x is.
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