Lie-rings

David Pierce Athens, summer, 2005

(From Plato's door, according to Tzetzes [12th c.]: Μηδεὶς ἀγεωμέτρητος εἰσίτω μου τὴν στέγην. Why did the AMS choose a version of this as its motto?)

E is an abelian group, in signature $\{+, -, 0\}$.

 $\operatorname{End}(E)$ is its *abelian group* of endomorphisms.

Mult(E) is the abelian group of **multiplications** of E: bi-additive maps

$$(x,y) \mapsto \mathbf{m}(x,y) : E \times E \to E.$$

If $m \in \text{Mult}(E)$, then (E, m) is a **ring**; also, Mult(E) contains $\overset{\bullet}{m}$, the **converse** of m, given by

$$\overset{\bullet}{\mathsf{m}}(x,y)=\mathsf{m}(y,x).$$

Mult(End(E)) contains **composition**, c, and so

$$\langle \mathbf{c}, \overset{\bullet}{\mathbf{c}} \rangle \leqslant \operatorname{Mult}(\operatorname{End}(E));$$

in particular, the **bracket**, $c - \overset{\bullet}{c}$ or **b**, is in Mult(End(E)).

A ring (E, \mathbf{m}) is:

- associative, if m(m(x, y), z) = m(x, m(y, z));
- commutative, if associative, and $\mathbf{m} \mathbf{m} = 0$;
- a **Lie-ring**, if $m + \tilde{m} = 0$ and m(m(x, y), z) = m(x, m(y, z)) m(y, m(x, z))(the **Jacobi identity**).

It is obvious that $(\operatorname{End}(E), \mathbf{c})$ is associative; to see that $(\operatorname{End}(E), \mathbf{b})$ is a Lie-ring requires a computation.

Theorem A. Among non-associative rings, Lie-rings are the most "natural" in a precise sense.

Theorem B. There are Lie-rings (E, m) with t in $\operatorname{End}(E)$ such that $\operatorname{Th}(E, \mathsf{m}, t)$ is model-complete and ω -stable.

There is an isomorphism

$$\mathbf{m} \mapsto \lambda^{\mathbf{m}} : \mathrm{Mult}(E) \to \mathrm{Hom}(E, \mathrm{End}(E)),$$

- where λ^{m} is $x \mapsto \lambda^{\mathsf{m}}(x) : E \to \operatorname{End}(E)$,
- where $\lambda^{\mathsf{m}}(x)$ is $y \mapsto \mathsf{m}(x,y) : E \to E$.

We can now recast the Jacobi identity:

$$\mathsf{m}(\mathsf{m}(x,y),z) = \mathsf{m}(x,\mathsf{m}(y,z)) - \mathsf{m}(y,\mathsf{m}(x,z))$$

becomes

$$\begin{split} \lambda^{\mathsf{m}}(\mathsf{m}(x,y)) &= \lambda^{\mathsf{m}}(x) \circ \lambda^{\mathsf{m}}(y) - \lambda^{\mathsf{m}}(y) \circ \lambda^{\mathsf{m}}(x) \\ &= \mathsf{b}(\lambda^{\mathsf{m}}(x), \lambda^{\mathsf{m}}(y)), \end{split}$$

This says λ^{m} is a *ring*-homomorphism from (E, m) to $(\operatorname{End}(E), \mathsf{b})$.

Theorem A. Let $(p,q) \in \mathbb{Z} \times \mathbb{Z}$, and let m be $p\mathsf{c} - q\dot{\mathsf{c}}$. Call a ring (E,*) an m -ring if λ^* is a ring-homomorphism from (E,*) to $(\operatorname{End}(E),\mathsf{m})$. The following are equivalent:

- $(\text{End}(E), \mathbf{m})$ is an \mathbf{m} -ring for all E.
- \bullet m is c or b or 0.

A **derivation** of a ring (E, \mathbf{m}) is an element D of $\operatorname{End}(E)$ such that

$$D(\mathsf{m}(x,y)) = \mathsf{m}(Dx,y) + \mathsf{m}(x,Dy);$$

—rearranged,

$$D(\mathsf{m}(x,y)) - \mathsf{m}(x,Dy) = \mathsf{m}(Dx,y);$$

—with y removed,

$$D \circ \lambda^{\mathsf{m}}(x) - \lambda^{\mathsf{m}}(x) \circ D = \lambda^{\mathsf{m}}(Dx),$$

that is,

$$b(D, \lambda^{\mathsf{m}}(x)) = \lambda^{\mathsf{m}}(Dx);$$

—with x removed,

$$\lambda^{\mathsf{b}}(D) \circ \lambda^{\mathsf{m}} = \lambda^{\mathsf{m}} \circ D,$$

that is, the following commutes:

$$E \xrightarrow{\lambda^{\mathsf{m}}} \operatorname{End}(E)$$

$$D \downarrow \qquad \qquad \downarrow \lambda^{\mathsf{b}}(D)$$

$$E \xrightarrow{\lambda^{\mathsf{m}}} \operatorname{End}(E)$$

The derivations of (E, \mathbf{m}) compose a subgroup

$$Der(E, \mathbf{m})$$

of $\operatorname{End}(E)$; this subgroup is closed under **b**.

For any abelian group E, there is a commutative diagram

$$(\operatorname{End}(E), \mathbf{b}) \xrightarrow{\lambda^{\mathbf{b}}} (\operatorname{Der}(\operatorname{End}(E), \mathbf{c}), \mathbf{b})$$

$$\downarrow \subseteq \qquad \qquad (\operatorname{End}(\operatorname{End}(E)), \mathbf{b})$$

Suppose now (E, \mathbf{m}) is a Lie-ring. Then $\lambda^{\mathbf{m}}$ is the **adjoint representation:** there is a commutative diagram

$$(E, \mathbf{m}) \xrightarrow{\lambda^{\mathbf{m}}} (\operatorname{Der}(E, \mathbf{m}), \mathbf{b})$$

$$\downarrow^{\lambda^{\mathbf{m}}} \qquad \downarrow^{\subseteq}$$
 $(\operatorname{End}(E), \mathbf{b})$

Combining gives

This means that every D in E is now a derivation $f \mapsto Df$ of $(\operatorname{End}(E), \mathbf{c})$ by the rule

$$(Df)x = \mathsf{m}(D, fx) - f(\mathsf{m}(D, x)).$$

Still (E, \mathbf{m}) is a Lie-ring, mapping into $(\operatorname{Der}(\operatorname{End}(E), \mathbf{c}), \mathbf{b}).$

Let $t \in \text{End}(E)$. Call the structure

$$(E, \mathbf{m}, t)$$

a vector Lie-ring if:

- $\{Dt : D \in E\}$ is the universe of a sub-field K of $(\operatorname{End}(E), \mathbf{c})$, and
- E acts on K as a vector-space (over K) of derivations:

$$(gD)f = g(Df).$$

Theorem B.

- The class of vector Lie-rings is elementary.
- If $n < \omega$, then the theory of vector Lie-rings of dimension n is companionable.
- the model-companion of this theory becomes complete and ω -stable when characteristic 0 is specified.

(Related results are being worked out independently by Martin Bays.)