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This is a transcription, made in August,  (last compiled August ,
), of handwritten notes that I used for a talk given at the mid-term
Modnet meeting in Antalya in . The talk was given at the white-
board, without slides. I do not know how closely the talk followed these
notes. Some sentences or paragraphs of my notes are bracketed in the
manuscript, perhaps to indicate that I need not write them on the board.
I omit those brackets here. Other parts of the notes are distinguished as
being too much to talk about; those parts are omitted here. The abstract
of the talk was of course typed up and distributed at the time; it is dis-
played below. I have now made its defined terms bold, rather than italic.
It came with a bibliography, which is now printed as the bibliography of
these notes.

In a differential field, how can we tell whether all consistent
systems of equations and inequations have solutions? I shall
review the history of answers to this question, and I shall
update the accounts in [P, P].

To begin with the Robinsonian beginnings, I remind or in-
form the reader-listener of the following. The class of sub-
structures of models of a theory T is elementary, and its the-
ory is T∀. The class of structures in which a structure M
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embeds is elementary, and its theory is diag(M). The class
of models of T is closed under unions of chains if and only if
T = T∀∃ [R, ..]. The theory T is calledmodel-complete
[R] if T ∪diag(M) is complete whenever M |= T . If T ⊆ T ∗,
and T∀ = T ∗∀, then T ∗ is the model-completion [R] of
T if T ∗ ∪ diag(M) is complete whenever M |= T ; but T ∗ is
merely the model-companion of T if T ∗ is model-complete.
A derivation of a field K is an additive endormorphism D
of K that respects the Leibniz rule, D(x ·y) = Dx ·y+x ·Dy.
A differential field is a field equipped with one or more
derivations.

Various model-complete theories of differential fields are of ongoing in-
terest. It seems worthwhile to review them from the beginning. Some
basic definitions are in the abstract.

Example. The theory of the one-dimensional vector-spaces over alge-
braically closed fields is:

• the model-completion of the theory of one-dimensional vector-
spaces,

• the model-companion of the theory of vector-spaces.

A scalar-field can be made algebraically closed in only one way; but a
vector-space of more than one dimension does not determine how its
dimensions can be collapsed when the scalar-field is enlarged.

I shall talk about:

• DF, the theory of (K,D), where D ∈ Der(K);

• DPF, which is DF∪{∀x ∃y (p = 0 ∧Dx = 0→ xp = y) : p prime}.

Another basic definition:

M is an existentially closed model of T if

M ⊆ N |= T =⇒ M 41 N,

that is, M satisfies all quantifier-free formulas with parameters from M
that are satisfiable in N.

A characterization of model-companions:
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Theorem (Eklof & Sabbagh, ). If T = T∀∃, then TFAE:

• the class of existentially closed models of T is elementary,

• T has a model-companion,

• the model-companion of T is the theory of the existentially closed
models of T .

Model-completions meet a stronger condition:

Theorem (Robinson, 6 [R]). TFAE:

• T has a model-completion.

• T = T∀∃, and there is ϕ 7→ ϕ̂ on existential (or just primitive)
formulas such that, if M |= T and a ∈Mn.

M |= ϕ̂(a) ⇐⇒ M ⊆ N |= T ∪ {ϕ(a)} for some N,

• the model-[completion] is

T ∪ {∀x (ϕ̂(x)→ ϕ(x)) : ϕ existential}.

The immediate example is the theory of differential fields. Subscripts
indicate characteristic; DF0 = DPF0.

Theorem (Seidenberg). ϕ 7→ ϕ̂ as in Robinson’s Theorem exists when
T is DF0 or DPFp.

Corollary.

• Robinson, 6 [R]: DF0 has a model-completion, DCF0.

• Wood,  [W]: DPFp has a model-completion, DCFp.

For more comprehensible axioms, one can use:

Theorem (Blum, 6 [B]). TFAE:

• T ∗ is the model-completion of T ,
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• If A,B |= T ; M |= T ∗; M is |B|+-saturated:

M

A

>>

// B

∃

OO

If, further, T = T∀, so substructures of models are models, then the
embedding of A in B can be analyzed as

A→ A(a1)→ A(a1, a2)→ · · · → B

where each structure is a model of T ; so B = A(a) suffices (Blum’s
Criterion).

Since DF0 is universal, Blum gets nice axioms for DCF0. Wood gets
similar axioms for DCFp, but cannot use Blum’s criterion, since DPFp is
not universal:

Theorem (Blum, 6 [B], Wood,  [W]). (K,D) |= DCF if and
only if:

• (K,D) |= DPF,

• K = Ksep,

• (K,D) |= ∃x (f(x,Dx, . . . ,Dn+1x) = 0 ∧ g(x,Dx, . . . ,Dnx) 6= 0)
where f and g are ordinary polynomials over K, and g 6= 0 and
∂n+1f 6= 0.

Wood makes use of r, where

∀x; (r(x)p = x ∨ (Dx 6= 0 ∧ r(x) = 0).

Then DPFp is universal, so Blum’s Criterion can in principle be used.
Rather, Wood uses a Primitive Element Theorem of Seidenberg.

Singer ( [S]) uses Blum’s Criterion to get a model-completion of the
theory of ordered differential fields. This means altering the condition
K = Ksep (and then the last condition). Hrushovski and Itai ( [HI])
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keep K = Kalg [sic], but change the last condition to get many model-
complete theories of differential fields.

An alternative approach: First, we could have eliminated inequalities by
the usual trick, x 6= 0 ⇐⇒ ∃y xy = 1.

Over (K,D), a model of DPF, TFAE:

∃x
∧
f

f(x, Dx, . . . , Dnx) = 0,

∃(x0, . . . ,xn) (
∧
f

f(x0, . . . ,xn) = 0 ∧
∧
i<n

Dxi = xi+1).

The latter is an instance of

∃(x0, . . . , xn−1) (
∧
f

f(x) = 0 ∧
∧
i<k

Dxi = gi(x)).

If this is witnessed by a, WMA (a0, . . . , ak−1) is a separating transcen-
dence basis of K(a)/K.

x
� ψ //

_

ϕ

��

(g0(x), . . . , gk−1(x))

V (a) //

dominant, separable
����

Ak

(x0, . . . , xk−1) Ak

DCF says: V (a) contains P such that D(ϕ(P )) = ψ(P ) (P. & Pillay 
[PP]).

How do these ideas work in case of several derivations? DFm is the theory
of (K, ∂0, . . . , ∂m−1), where ∂i ∈ Der(K) and [∂i, ∂j ] = 0.

Theorem (McGrail,  [McG]). DFm0 has a model-completion, DCFm0 .

Proof. Use Blum’s Criterion. If σ ∈ ωm, let ∂σx denote

∂0
σ(0) . . . ∂m−1

σ(m−1)x.
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Let 6 be the product-order on ωm:

σ 6 τ ⇐⇒
∧
i<m

σ(i) 6 τ(i);

|σ| =
∑
i<m

σ(i);

σ l τ ⇐⇒ (|σ|, σ(0), . . . , σ(m− 1)) < (|τ |, τ(0), . . . , τ(m− 1))

lexicographically,

K〈a〉 = K(∂σa : σ ∈ ωm)

If ∂σa is algebraic over itsl-predecessors, then so is ∂σ+τa; (and ∂σ+τa >
∂σa). (Picture when m = 2.) [There was no picture in my notes.]

Hence a is a generic zero of a system of finitely many equations. That
system can be chosen ‘coherent’; being coherent is first-order.

How can we tell whether an arbitrary system has a solution?

Example. m = 2; does

∂(n,n)x = x ∧ ∂(n−1,1)x = ∂(0,n)x

have a solution? n = 3:

a
∂0→

∂1↓

b

· ·

b ·

a





Try differentiating to eliminate ∂(n,n)x:

a
∂0→

∂1↓

b

· · · a

b · · ·

a

Check the common derivative of b and a:

a
∂0→

b c

c · · · a ·

b · · c ·

a ·

Check the common derivative of a and c:

a d b c

c · · · a d

d b · · c ·

a ·

A new condition is imposed; what we started with cannot be a solution.

Theorem. For every m and n, there is M such that, for all models
(K, ∂0, . . . , ∂m−1) of DFm0 , for all fields K(aσ : σ 6 (Mn, . . . ,Mn)), if
the ∂i extend so that

∂ia
σ = aσ+i, (i(j) = δi j),

then (K, ∂0, . . . , ∂m−1) ⊆ (L, ∂̃0, . . . , ∂̃m−1) |= DFm0 , where

K(aσ : σ 6 (n, . . . , n)) ⊆ L
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and ∂̃iaσ = aσ+i.

Here M ∼ mm

...
m

(a stack of n exponents); but I have some hope that
M can be m.

See earlier example.
Differential forms. . .
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