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This is a transcription, made in August, 2012 (last compiled August 23,
2012), of handwritten notes that I used for a talk given at the mid-term
Modnet meeting in Antalya in 2006. The talk was given at the white-
board, without slides. I do mot know how closely the talk followed these
notes. Some sentences or paragraphs of my notes are bracketed in the
manuscript, perhaps to indicate that I need not write them on the board.
I omit those brackets here. Other parts of the notes are distinguished as
being too much to talk about; those parts are omitted here. The abstract
of the talk was of course typed up and distributed at the time; it is dis-
played below. I have now made its defined terms bold, rather than italic.
It came with a bibliography, which is now printed as the bibliography of
these notes.

In a differential field, how can we tell whether all consistent
systems of equations and inequations have solutions? I shall
review the history of answers to this question, and I shall
update the accounts in [P1, P2].

To begin with the Robinsonian beginnings, I remind or in-
form the reader-listener of the following. The class of sub-
structures of models of a theory T is elementary, and its the-
ory is Ty. The class of structures in which a structure 9t



embeds is elementary, and its theory is diag(9). The class
of models of T is closed under unions of chains if and only if
T = T3 [R2, 3.4.7]. The theory T is called model-complete
[R1] if T'Udiag(9M) is complete whenever M = T. If T C T*,
and Ty = T*y, then T* is the model-completion [R2| of
T if T* U diag(9M) is complete whenever M = T'; but T* is
merely the model-companion of 7" if 7™ is model-complete.
A derivation of a field K is an additive endormorphism D
of K that respects the Leibniz rule, D(z-y) = Dz -y+x- Dy.
A differential field is a field equipped with one or more
derivations.

Various model-complete theories of differential fields are of ongoing in-
terest. It seems worthwhile to review them from the beginning. Some
basic definitions are in the abstract.

Example. The theory of the one-dimensional vector-spaces over alge-
braically closed fields is:

e the model-completion of the theory of one-dimensional vector-
spaces,

e the model-companion of the theory of vector-spaces.
A scalar-field can be made algebraically closed in only one way; but a

vector-space of more than one dimension does not determine how its
dimensions can be collapsed when the scalar-field is enlarged.

I shall talk about:
e DF, the theory of (K, D), where D € Der(K);
e DPF, which is DFU{Vxz Jy (p = 0A Dz =0 — 2P = y): p prime}.
Another basic definition:
M is an existentially closed model of T if
MCNET = M1 N,

that is, 9t satisfies all quantifier-free formulas with parameters from M
that are satisfiable in 91.

A characterization of model-companions:



Theorem (Eklof & Sabbagh, 1971). If T = T3, then TFAE:
e the class of existentially closed models of T is elementary,
e T has a model-companion,
e the model-companion of T is the theory of the existentially closed
models of T.
Model-completions meet a stronger condition:
Theorem (Robinson, <1963 [R2|). TFAE:
e T has a model-completion.

o T = Ty3, and there is ¢ — ¢ on existential (or just primitive)
formulas such that, if ME=T and a € M™.

ME@(a) <= MCNETU{p(a)} for some N,

o the model-[completion] is
TU{Vx (p(x) — ¢(x)): ¢ existential}.
The immediate example is the theory of differential fields. Subscripts
indicate characteristic; DFy = DPF.

Theorem (Seidenberg). ¢ — @ as in Robinson’s Theorem exists when
T is DFy or DPF,,.

Corollary.
e Robinson, <1963 [R2]: DFq has a model-completion, DCFy.
o Wood, 1973 [W1]: DPF, has a model-completion, DCF,,.

For more comprehensible axioms, one can use:
Theorem (Blum, <1977 [B]). TFAE:

o T* is the model-completion of T,



o IfABET; MET*; M is |B|*-saturated:

m

ya

A—B

If, further, T = Ty, so substructures of models are models, then the
embedding of A in B can be analyzed as

A — A(ar) = A(ar,a2) = - — B

where each structure is a model of T; so B = A(a) suffices (Blum’s
Criterion).

Since DFy is universal, Blum gets nice axioms for DCFy. Wood gets
similar axioms for DCF,,, but cannot use Blum’s criterion, since DPF,, is
not universal:

Theorem (Blum, <1977 [B], Wood, 1974 [W2]). (K, D) = DCF if and
only if:

e (K,D) = DPF,

o K = K*P,

e (K,D) E 3z (f(x,Dx,...,D""'z) = 0 A g(z, Dx,...,D"z) # 0)
where f and g are ordinary polynomials over K, and g # 0 and

Ons1f # 0.

Wood makes use of r, where
Va; (r(x)? =2V (Dx #0Ar(z) =0).

Then DPF,, is universal, so Blum’s Criterion can in principle be used.
Rather, Wood uses a Primitive Element Theorem of Seidenberg.

Singer (1978 [S]) uses Blum’s Criterion to get a model-completion of the
theory of ordered differential fields. This means altering the condition
K = K*®*° (and then the last condition). Hrushovski and Itai (2003 [HI])



keep K = K?# [sic|, but change the last condition to get many model-
complete theories of differential fields.

An alternative approach: First, we could have eliminated inequalities by
the usual trick, x # 0 <= Jy axy = 1.

Over (K, D), a model of DPF, TFAE:

Jx /\fw Dz,...,D"x) =0,

32130, BRI /\ffl?o, ,wn)zo/\/\lezazlJrl)

<n
The latter is an instance of

Izo,- - s 1) (/\ f(x) =0A /\ Dz; = gi(x)).
f

i<k

If this is witnessed by a, WMA (ag,...,ar—1) is a separating transcen-
dence basis of K(a)/K.

P
T (go(), ..., gr—1(x))
V(a) = A
idominant, separable
ZE(), ey L 1 Ak

DCF says: V(a) contains P such that D(p(P)) = 1 (P) (P. & Pillay 1998
[PP)).

How do these ideas work in case of several derivations? DF™ is the theory
of (K,dy,...,0m—1), where 9; € Der(K) and [0;,0,] =0

Theorem (McGrail, 2000 [McG]). DF{" has a model-completion, DCF{".

Proof. Use Blum’s Criterion. If o € w™, let 0%« denote

600(0) R 8m_1”(m'_1)l‘.



Let < be the product-order on w™:

o< T &= /\U(i)ﬁT(i%

<m

ol =Y o(i);

i<m
o<1t <> (|lo|,0(0),...,0(m—1)) < (|7],7(0),...,7(m — 1))
lexicographically,
K{a) = K(0°a: 0 € w™)

If 97 a is algebraic over its <-predecessors, then so is 37T 7a; (and 9°7a >
0%a). (Picture when m = 2.) [There was no picture in my notes.]

Hence a is a generic zero of a system of finitely many equations. That
system can be chosen ‘coherent’; being coherent is first-order. O

How can we tell whether an arbitrary system has a solution?

Example. m = 2; does
oy = A9y = 9Oy

have a solution? n = 3:

&

o1l



Try differentiating to eliminate 9™ x:

o]
a - b
a
o1l
b
a
Check the common derivative of b and a:
B
a - b c
c a
b c
a
Check the common derivative of a and c:
a———d b—m— c
c a d
d b c
a

A new condition is imposed; what we started with cannot be a solution.

Theorem. For every m and n, there is M such that, for all models
(K,00,...,0m—1) of DF{", for all fields K(a”: 0 < (Mn,...,Mn)), if
the 0; extend so that

aiaa = aa+1‘,’ (1’(.]) = 6ij)7
then (K, 00, -..,0m—1) C (L,éo7 . ,5m_1) = DF{", where

K(a®:0<(n,...,n))CL



and 9;a° = a°t*.

Here M ~m™ ~ (a stack of n exponents); but I have some hope that
M can be m.

See earlier example.

Differential forms. ..
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