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A derivation of a field is an operation D on the field satisfying

D(x + y) = Dx + Dy, D(x · y) = Dx · y + x · Dy.

Example. “Taking the derivative,”

f 7→ f ′,

on R(x) or the field of meromorphic functions on C.

The derivations of a field K compose a vector space over K,

Der(K),

where the vector-space operations are given by

(D0 + D1)x = D0x + D1x, (a · D)x = a · (Dx).

Then Der(K) also has a multiplication, given by

[D0, D1] = D0 ◦ D1 − D1 ◦ D0;

this is the Lie bracket operation, which I may denote by

b.





In this context, a multiplication is an operation · on an abelian
group that distributes over addition:

x · (y + z) = x · y + x · z, (x + y) · z = x · z + y · z.

A ring in the most general sense is an abelian group with a
multiplication.

Examples.

. Z and Q;

. the Cayley–Dickson algebras R, C, H, O, S, . . . ;

. the ring Mn(R) of n × n matrices over a ring R;

. (R3,×);

. (Der(K), b).





A group operation is another kind of multiplication.
The permutations of a set A compose a group,

(Sym(A), ◦),

the operation being composition.

If there is a homomorphism from a group (G, ·) to (Sym(A), ◦),
then (G, ·) acts on A.
The action is faithful if the homomorphism is one-to-one.

Theorem (Cayley). A group acts faithfully on its underlying set.
Indeed, if (G, ·) is a group, and g, x ∈ G, define

λg(x) = g · x.

Then

g 7→ λg : (G, ·) → (Sym(G), ◦).





Now let V be an abelian group.
The endomorphisms of V compose an abelian group,

End(V ).

Examples. φ 7→ φ(1) : End(Z)
∼=→ Z, End(Z ⊕ Z) ∼= M2(Z).

Then (End(V ), ◦) is an associative ring: a ring (R, ·) satisfying

x · (y · z) = (x · y) · z.

If there is a homomorphism from a field K to (End(V ), ◦),
then V is a vector space over K.
We may say then K acts on V .

Example. K acts on Der(K).

But also (Der(K), b) may be said to act on K.
So K and (Der(K), b) are interacting rings.





The multiplications of V compose an abelian group,

Mult(V ).

This has an involutory automorphism, m 7→ •
m, where

•
m(x, y) = m(y, x).

Example. m 7→ m(1, 1) : Mult(Z)
∼=→ Z, but •

m = m.

Examples. In place of V , consider End(V ):

. (End(V ), ◦) is an associative ring, as above.

. (End(V ), ◦ − •◦) is a Lie ring, namely, a ring (R, ·) in which

(x · y) · z = x · (y · z) − y · (x · z), x · x = 0.

In particular, (Der(K), b) is a Lie ring.

. (End(V ), ◦ +
•◦) is a Jordan ring, in which

(x · y) · (x · x) = x · (y · (x · x)), x · y = y · x.





If (R, ·) is a ring, p, q ∈ Z, and

x 7→ λx : (R, ·) → (End(R), p◦ − q
•◦)

(where again λx(y) = x · y), let (R, ·) be called a (p, q)-ring.

Theorem.

. All associative rings are (1, 0)-rings.

. All Lie rings are (1, 1)-rings.

Corollary. If
(p, q) ∈ {(0, 0), (1, 0), (1, 1)},

then (End(V ), p◦ − q
•◦) is a (p, q)-ring.

Theorem (P). The converse holds.

Proof. x 7→ λx : (End(V ), p◦ − q
•◦) → (End(End(V )), p◦ − q

•◦)
⇐⇒ λx·y = λx · λy

⇐⇒ λpx◦y−qy◦x(z) = (pλx ◦ λy − qλy ◦ λx)(z)

⇐⇒ p(px ◦ y − qy ◦ x) ◦ z − qz ◦ (px ◦ y − qy ◦ x) = . . .





A differential field is a pair

(K,V ),

where

. K is a field,

. V is both a subspace and a sub-ring of Der(K).

Theorem. If (K, V ) is a differential field, and dimK(V ) = m, then
V has a basis

{∂0, . . . , ∂m−1},
where in each case

[∂i, ∂j] = 0.

The structures (K, ∂0, . . . , ∂m−1) have a theory, which I denote by

DFm .

Example.
(

C(x0, . . . , xm−1), ∂/∂x0, . . . , ∂/∂xm−1

)

|= DFm.





Let A be a structure with underlying set A.
(So A might be a group, a differential field, an ordered set, . . . )
By introducing names for all elements of A, we get the structure

AA.

The diagram of A is the quantifier-free theory of AA.

Example. The diagram of the field F2 is axiomatized by

0 + 0 = 0,

0 · 0 = 0,

1 + 0 = 1,

1 · 0 = 0,

0 + 1 = 1,

0 · 1 = 0,

1 + 1 = 0,

1 · 1 = 1,

0 6= 1.

This does not entail field-theory.
For example, it does not entail

∀x ∀y x · y = y · x.

Neither does field-theory entail 1 + 1 = 0.





Let ACF be the theory of algebraically closed fields, such as C.
That is, ACF has the field axioms, along with, for each positive
integer n, the axiom

∀u0 . . .∀un−1 ∃x u0 + u1 · x + · · · + un−1 · xn−1 + xn = 0.

Theorem. If K is a field, then the theory

ACF∪ diag(K)

is complete (it entails either σ or ¬σ for each σ. . . ).

Proof. Use the Łoś–Vaught Test.

(This relies on Gödel’s Completeness Theorem.)

. The theory ACF∪ diag(K) has no finite models.

. by Steinitz, all algebraically closed fields that include K, but
are of cardinality (|K| + ℵ0)

+, are isomorphic over K.

(Gödel’s Incompleteness Theorem: a particular theory
—namely Th(N, +, ·, <)—has no complete axiomatization.)





Definition (A. Robinson). A theory T is model complete if, for
all models A of T , the theory

T ∪ diag(A)

is complete, that is,

T ∪ diag(A) ⊢ Th(AA).

Examples (A. Robinson).

. Torsion-free divisible abelian groups (i.e. vector spaces over Q),

. algebraically closed fields, such as C (by the last slide),

. real-closed fields, such as R.

Theorem (A. Robinson). A theory T is model complete if, for all
models A of T ,

T ∪ diag(A) ⊢ Th(AA)∀,

that is, if A ⊆ B, and B |= T , then:
every system over A soluble in B is soluble in A.





Let
DFm

0 = DFm ∪{p 6= 0: p prime}.
Theorem (McGrail, ). DFm

0 has a model companion,

DCFm
0 : that is,

(DFm
0 )∀ = (DCFm

0 )∀

and DCFm
0 is model complete.

Theorem (Yaffe, ). The theory of fields of characteristic 0
with m derivations Di, where

[Di, Dj] =
∑

ak
i jDk,

has a model companion.

Theorem (P, ; Singer, ). The latter follows readily from
the former.

Theorem (P, submitted March, ). DFm has a model
companion, DCFm, given in terms of varieties.





If (K, V ) is a
differential field,
what is the model
theory of V ?

Piet Mondrian, Broadway Boogie Woogie
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Theorem. Let (V, ·) be a Lie ring, and

R = (End(V ), ◦).

Then (V, ·) acts on R as a Lie ring of derivations.
The action takes D to the derivation

f 7→ Df

of R, where

Df (x) = D · (f (x)) − f (D · x).

That is,

Df = [λD, f ].

In short,

D 7→ λλD
: (V, ·) → (Der(R), b).





Again (V, ·) is a Lie ring, so it acts on R, namely (End(V ), ◦).
Let t ∈ End(V ). It may happen that ({Dt : D ∈ V }, ◦)
—is a well-defined sub-ring of R,
—is closed under the action of (V, ·), and
—is a field.
Then V is a vector space over K,
and (V, ·) acts on K as a ring of derivations.
It may happen further that V acts on K as a space of derivations:
That is, if a, f ∈ K and D ∈ V , it may happen that

a(D)f = a ◦ (Df ).

Then let (V, ·, t) be called a vector Lie ring.

Example. If (K, V ) is a differential field, t ∈ K, and Dt 6= 0 for
some D in V , then (V, b, t) is a vector Lie ring, and

({Dt : D ∈ V }, ◦) = K.





Theorem (P). The class of m-dimensional vector Lie rings is
elementary, with ∀∃ axioms. Its theory has a model companion,
whose models are those (V, ·, t) such that, when we let

K = ({Dt : D ∈ V }, ◦),

then V has a commuting basis (∂i : i < m) over K, and

(K, ∂0, . . . , ∂m−1) |= DCFm .

Here dimC(V ) = ∞, where C is the constant field.

However, for an infinite field K, the theory of Lie algebras over K
apparently has no model-companion (Macintyre, announced ).

Is there a model-complete theory of infinite-dimensional Lie
algebras with no extra structure?





Adolph Gottlieb, Centrifugal

We can also consider (V,K) as a
two-sorted structure.





A vector space can be understood model-theoretically as a triple

(V,K, ∗),
where

. V is an abelian group;

. K is a field;

. ∗ is the action of K on V , that is,

(x, v) 7→ x ∗ v : K × V → V,

and x ∗ v = λx(v), where x 7→ λx : K → (End(V ), ◦).
Let the theory of vector spaces of dimension n be

Tn,

where n ∈ {1, 2, 3, . . . ,∞}.
Theorem (Kuzichev, ). Tn admits elimination of quantified
vector-variables.





A theory is inductive if unions of chains of models are models.

Theorem (Łoś & Suszko , Chang ). A theory T is
inductive if and only if

T = T∀∃.

Hence all model complete theories have ∀∃ axioms.

Of an arbitrary T , a model A is existentially closed if

T ∪ diag(A) ⊢ Th(AA)∀.

Theorem (Eklof & Sabbagh, ). Suppose T is inductive.

. T has a model companion if and only if the class of its
existentially closed models is elementary.

. In this case, the theory of this class is the model companion.





Again, Tn is the theory of vector spaces of dimension n.
If n > 1, then no completion Tn

∗ of Tn can be model complete,
because it cannot be ∀∃ axiomatizable.
For example, let

a0 = v
0 = 2, as+1 = v

s+1 =
√

as,

Ks = Q(as),

Vs = spanKs
(vs, . . . , vs+n−1).

Then
as+1 ∗ v

s+1 = v
s,

so we have a chain

(V0, K0) ⊆ (V1, K1) ⊆ · · ·
of models of Tn whose union has dimension 1.
The situation changes if there are predicates for linear dependence.





Let VSn (where n is a positive integer) be the theory of vector
spaces with a new n-ary predicate P n for linear dependence. So
P n is defined by

∃x0 · · · ∃xn−1
(

∑

i<n

xi ∗ vi = 0 N

∨

i<n

xi 6= 0
)

.

Let VS∞ be the union of the VSn.

Theorem (P).

. VSn has a model companion, the theory of n-dimensional
spaces over algebraically closed fields.

. VS∞ has a model companion, the theory of infinite-dimensional
spaces over algebraically closed fields.





Proof. Given a field-extension L/K, where where

[L : K] > n + 1,

we can embed (Kn+1, K) in (Ln, L), as models of VSn, under








x0

...
xn−1

xn









7→





x0

...
xn−1



 − xn





a0

...
an−1



 ,

where the ai are chosen from L so that the tuple

(a0, . . . , an−1, 1)

is linearly independent over K.





Compare:
Let T be the theory of fields with an algebraically closed subfield.
The existentially closed models of T have transcendence-degree 1,
because of

Theorem (A. Robinson). We have an inclusion

K(x, y) ⊆ L(y)

of pure transcendental extensions, where

K(x, y) ∩ L = K,

provided
L = K(α, β),

where

α /∈ K(x, y)alg, β = αx + y.

(Hence T has no model companion.)





A Lie–Rinehart pair is a quadruple (V, K,D, ∗), where
. V and K are abelian groups,
. D is an action of V on K; and ∗, of K on V ; so

(u + v) D x = u D x + v D x,

v D(x + y) = v D x + v D y,

(x + y) ∗ v = x ∗ v + y ∗ v,

x ∗ (u + v) = x ∗ u + x ∗ v;

. The actions are faithful:

∃x (v D x = 0 ⇒ v = 0), ∃v (x ∗ v = 0 ⇒ x = 0);

. if u, v ∈ V , there is a unique element [u, v] of V such that

[u,v] D x = u D(v D x) − v D(u D x),

(u D x) ∗ v = [u, x ∗ v] − x ∗ [u,v];

. if x, y ∈ K, there is a unique element x · y of K such that

(x · y) ∗ v = x ∗ (y ∗ v),

(x ∗ v) D y = x · (v D y).





Assuming (V, K,D, ∗) is a Lie–Rinehart pair, one shows that V
does act on K as a Lie ring of derivations:

v D(x · y) = (v D x) · y + x · (v D y).

Let the theory of those Lie–Rinehart pairs (V, K,D, ∗) in which
(K, ·) is a field be denoted by

LR .

In this case, (K, V ) is a differential field.
The theory LR is not inductive. However, let the theory of those
models (V,K,D, ∗) of LR in which

dimK(V ) 6 m

be denoted by

LRm .

Then LRm is inductive and companionable.





Let T be the theory of pairs (V, K), where K is a field,
char(K) = 0, and V acts on K as a space of derivations.
Let DCF

(m)
0 be the model-companion of the theory of fields of

characteristic 0 with m derivations with no required interaction.

Theorem (Özcan Kasal). The existentially closed models of T are
just those models (V,K) such that

. tr-deg(K/Q) = ∞;

. (K,v0, . . . , vm−1) |= DCF
(m)
0 whenever (v0, . . . , vm−1) is

linearly independent over K;

. if (x0, . . . , xn−1) is algebraically independent, and
(y0, . . . , yn−1) is arbitrary, then for some v in V ,

∧

i<n

v D xi = yi.

These are not first-order conditions: they require the constant field
to be Qalg.





The picture changes when (for each n) a predicate Qn is
introduced for the n-ary relation on scalars defined by

∨

i<n

∀v

(

∧

j 6=i

v D xj = 0 ⇒ v D xi = 0
)

.

Let the new theory be
T ′,

so this entails

¬Qnx
0 · · ·xn−1 ⇔ ∃(v0, . . . , vn−1)

∧

i<n
j<n

vi D xj = δj
i .

Say (a0, . . . , an−1) from K is D-dependent if

(V,K) |= Qna
0 · · · an−1.

So algebraic dependence implies D-dependence.
Also, D-dependence also makes K a pregeometry.





Theorem (Özcan Kasal). The existentially closed models of T ′ are
those (V,K) such that D-dim(K) = ∞ and whenever

. U is quasi-affine over Q(a0, . . . , ak−1,~b) with a generic point

(x0, . . . , xℓ+m−1, ~y),

where ~x is algebraically independent over Q(~a,~b),

. (v0, . . . , vk+ℓ−1) is linearly independent,

.
(

Ik 0
)

= (vj D ai)i<k
j<k+ℓ,

.

(

F Iℓ

G H

)

is (ℓ + m) × (k + ℓ) with entries from Q(~a,~b)[U ],

then U contains (~c, ~d) such that

.

(

F Iℓ

G H

)

(~c, ~d) = (vj D ci)i<ℓ+m
j<k+ℓ ,

. D-dim(cℓ, . . . , cℓ+m−1, ~d/~a, c0, . . . , cℓ−1) = 0.





Franz Kline, Palladio
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