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. Ellipses and elliptic curves

An ellipse is given by an equation

x2

a2
+

y2

b2
= 1.

In general, length along a curve from P to Q is given by
∫ Q

P

√

dx2 + d y2. For the ellipse,
we compute

2xdx

a2
+

2y d y

b2
= 0, d y2 =

b4x2

a4y2
dx2 =

b2x2

a2(a2 − x2)
dx2,

so
∫

√

d x2 + d y2 =

∫

√

a2(a2 − x2) + b2x2

a2(a2 − x2)
dx

=
1

a

∫

√

a4 − c2x2

a2 − x2
d x =

1

a

∫

y

a2 − x2
dx,

where b2 + c2 = a2 and

y2 = (a2 − x2)(a4 − c2x2).

Assuming c 6= 0, the last equation defines an elliptic curve and is equivalent to:

y2 = (x2 − a2)(c2x2 − a4),
( y

(x + a)2

)2
=

(x − a

x + a

)(cx + a2

x + a

)(cx − a2

x + a

)

.

We rewrite this as

v2 = βu(u − µ)(u − ρ),
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where

v =
y

(x + a)2
, u =

x − a

x + a
,

and β, µ, and ρ are such that
(cx + a2

x + a

)(cx − a2

x + a

)

= β(u − µ)(u − ρ),

c2
(

x − a2

c

)(

x +
a2

c

)

= β(x − a − µ(x + a))(x − a − ρ(x + a))

= β
(

(1 − µ)x − (1 + µ)
)(

(1 − ρ)x − (1 + ρ)a
)

= β(1 − µ)(1 − ρ)
(

x − 1 + µ

1 − µ

)(

x − 1 + ρ

1 − ρ

)

.

So it suffices if

c2 = β(1 − µ)(1 − ρ),
a2

c
=

1 + µ

1 − µ
, −a2

c
=

1 + ρ

1 − ρ
,

that is,

µ =
a2 − c

a2 + c
, ρ =

1

µ
, β = − c2µ

(1 + µ)2
.

After another change of variables, the equation becomes

y2 = x(x − 1)(x − λ)

(where λ = ρ/µ). On this curve, the differential form d x/y is holomorphic. But

Q 7→
∫ Q

P

dx

y

is well defined, not on P(C) (that is, C ∪ {∞}), but rather on the Riemann surface got
by cutting and gluing two copies of this along lines from 0 to ∞ and 1 to λ: the surface
is then a torus. This then is the elliptic curve, and the function above is an analytic
bijection onto C/Λ for some lattice Λ.

. Curves and function fields

Let K and L be algebraically closed fields, with K ⊂ L and tr-deg(L/K) = ∞.
An irreducible f in K[X, Y ] defines a curve C over K, namely

C = {(x, y) ∈ L2 : f(x, y) = 0}.
We define

K[C] = K[X, Y ]/(f),

K(C) = fraction field of K[C];

this is the field of rational functions on C over K. Then

K[C] = K[a, b]

K(C) = K(a, b),
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where
a = ((x, y) 7→ x)

b = ((x, y) 7→ y)

}

on C,

so that f(a, b) = 0 and (a, b) is a generic point of C over K; we may assume (a, b) ∈ L2.
Say also

D = {(x, y) ∈ L2 : g(x, y) = 0},
and ϕ∗ is an embedding of K(C) in K(D) over K. Then

0 = ϕ∗(f(a, b)) = f(ϕ∗(a), ϕ∗(b)),

so (ϕ∗(a), ϕ∗(b)) is a generic point of C and is also a dominant rational map ϕ from
D onto C. We recover ϕ∗ by

ϕ∗(h) = h ◦ ϕ.

Indeed,
ϕ∗(a) = a(ϕ∗(a), ϕ∗(b)) = a ◦ (ϕ∗(a), ϕ∗(b)) = a ◦ ϕ,

and likewise for b.

Rule. The K-algebra K(C) embeds in K(D) if and only if C has a generic point with

coordinates from K(D).

We also have

K(C) ∼= K(D) ⇐⇒ D and C are birationally equivalent.

For example, the function

(u, v) 7→
(x − a

x + a
,

y

(x + a)2

)

determines a birational equivalence between the elliptic curves above.
Or let f = X2 + Y 2 and g = X. See Figure . Then ϕ : C → D, where

ϕ(x, y) =
y

1 + x
, ϕ−1(t) =

(

1 − t2

1 + t2
,

2t

1 − t2

)

,

so C and D are birationally equivalent, and

K(D) ∼= K(e) ∼= K(a, b) ∼= K(C)

e 7→ b

1 + a

1 − e2

1 + e2
← a

2e

1 − e2
← b

Every curve C has a genus γ(C) in N. If K(C) embeds in K(D) over K, then

γ(C) 6 γ(D).

If the embedding is proper, then either γ(C) < γ(D) or

0 6 γ(C) 6 γ(D) 6 1.

If γ(C) = 0, then K(C) ∼= K(X).
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b

b

b

(x, y) =

(

1 − t2

1 + t2
,

2t

1 + t2

)

t =
y

1 + x

Figure . Birational equivalence of circle and straight line

. Logic and elliptic curves

Suppose K(C) ≇ K(D). We may assume γ(C) 6 γ(D) < γ(E) for some curve E.
Then the formula

∃y (x, y) ∈ E

defines K in K(C) and K(D). If γ(C) < γ(D) or 1 < γ(C) = γ(D), then the sentence

∀x ∀y ∃z ((x, y) ∈ D ⇒ (x, z) ∈ E)

is true in K(C), but not K(D), so these algebras have different theories; we say they
are not elementarily equivalent, and we write

K(C) 6≡ K(D).

We cannot then have 0 = γ(C) = γ(D). The remaining possibility is 1 = γ(C) = γ(D),
that is, C and D are elliptic curves.

An elliptic curve E is also an abelian group; the curve has complex multiplication

if End(E) ≇ Z.

Theorem (Jean-Louis Duret (); D.P. ()). If C and D are curves over K, and

C is not an elliptic curve with complex multiplication, then

K(C) ≇ K(D) =⇒ K(C) 6≡ K(D).

In general, if ϕ : D → C, then

deg(ϕ) = [K(D) : K(C)]

Theorem (D.P. ()). Suppose C and D are elliptic curves over K with complex

multiplication. The following are equivalent.

() There are ϕ and ϕ′ from C onto D with

gcd(deg(ϕ), deg(ϕ′)) = 1.
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() K(C) and K(D) agree on all sentences

∀(x0, . . . , xn−1) ∃y ψ(x0, . . . , xn−1, y),

where ψ is quantifier-free.

If char(K) = 0, then the foregoing are equivalent to the following.

() End(C) ∼= End(D).

Say E0 and E1 are elliptic curves over C. For each i in {0, 1} there are Ai and Bi in
C such that Ei is birationally equivalent to the curve defined by

y2 = 4x3 − Aix − Bi.

So we may assume Ei is this curve. There is a lattice Λi, namely 〈1, τi〉, where ℑ(τi) > 0,
and there is a function ℘i, namely

z 7→ 1

z2
+

∑

ω∈Λir{0}

(

1

(z − ω)2
− 1

ω2

)

,

such that (℘i, ℘i
′) is a generic point of Ei and is a bijection from C/Λi to Ei. Say

ϕ : E0 → E1. There are α and ω in C such that the following commutes.

C/Λ0

z 7→αz

²²

(℘0,℘0
′)

// E0

ϕ

²²

C/Λ1

z 7→z+ω

²²

C/Λ1
(℘1,℘1

′)
// E1

We may assume ω = 0, so ϕ is an isogeny and, in particular, a homomorphism. We
must have

αΛ0 ⊆ Λ1,

and then

deg(ϕ) = [Λ1 : αΛ0].

Also, if α 6= 0, there is a matrix

(

a b
c d

)

or M in Mn(Z) such that

α

(

1
τ0

)

=

(

a + bτ1

c + dτ1

)

=

(

a b
c d

) (

1
τ1

)

= M

(

1
τ1

)

,

and then

deg(ϕ) = det(M).

Also
(

d −b
−c a

) (

1
τ0

)

= α−1 det(M)

(

1
τ1

)

= α−1 deg(ϕ)

(

1
τ1

)

,

so

z 7→ α−1 deg(ϕ)z : C/Λ1 → C/Λ0



 DAVID PIERCE

1
τ

1

2τ

Figure . A lattice and its endomorphisms

corresponding to an isogeny ϕ̂ from E1 to E0. Then

deg(ϕ̂) = deg(ϕ),

ϕ̂ϕ = [deg(ϕ)]

where [n] is multiplication by n.
If E corresponds to C/Λ, then

End(E) ∼= {z ∈ C : zΛ ⊆ Λ}.
For example, if

τ =
−1 +

√
−7

4
.

then (see Figure )
End(E) = 〈1, 2τ〉.

In general, if E has complex multiplication, this means, for some α in C r R, we have

α

(

1
τ

)

=

(

a + bτ
c + dτ

)

,

so

α = a + bτ,

c + dτ = ατ = (a + bτ)τ,

bτ2 + (a − d)τ − c = 0.

So E has complex multiplication if and only if τ is quadratic. If indeed

bτ2 + aτ − c = 0

in lowest terms, then one shows

End(E) ∼= 〈1, bτ̄〉;
in any case, End(E) embeds in Λ.
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In general, since End(E) embeds in C, it is commutative. Suppose ϕ and ψ are
isogenies from E0 to E1 of relatively prime degrees. There are integers m and n such
that

mdeg(ϕ) + n deg(ψ) = 1.

Then End(E1) ∼= End(E0) by

α 7→ mϕ̂αϕ + nψ̂αψ.

Now suppose conversely End(E1) ∼= End(E0), and each curve has complex multiplica-
tion. Then Λ0 and Λ1 have a common sublattice, so by linear algebra we may assume
τ1 = nτ0 for some n.

Theorem (D.P.). Say End(E1) ∼= End(E0) ≇ Z, and

bτ0
2 + aτ0 − c = 0

in lowest terms, and τ1 = nτ0. Then

Hom(E0, E1) ∼= 〈n, bτ̄〉.
If this takes ϕ to nx + byτ̄ , then

deg(ϕ) = nx2 − axy − bc

n
y2,

a quadratic form with relatively prime coefficients, so it represents coprime numbers.

Suppose now p divides the degree of every isogeny from E0 to E1. Then there is a
finite set L of lattices, each having index p in Λ1, such that, if

αΛ0 ⊆ Λ1,

then, for some Λ in L,
αΛ0 ⊆ Λ ⊂ Λ1.

Hence
K(E0) ≇ K(E1),

because K(E0) but not K(E1) is a field L such that, if

ϕ∗[K(E1)] ⊆ L,

then
ϕ∗[K(E1)] ⊂ F ⊆ L,

where the isomorphism-class of F over ϕ∗[K(E1)] has finitely many possibilities.
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