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1. ELLIPSES AND ELLIPTIC CURVES

An ellipse is given by an equation

In general, length along a curve from P to @) is given by fg Vdx? + dy2. For the ellipse,
we compute

2edx 2ydy 5  bi? o, b2z’ 9
22 + 02 =0, dy” = a4y2d$ :7a2(a2—m2)dx’
SO
a®(a?® — 2?) + b%a?
/\/de—i-dyQ—/\/ (2~ 29) dz

1 at — 2a? 1 Y
= — —_— de‘ = dx,
a/\/a2—$2 a/a?—:n2
where b? + ¢ = a? and
yQ — (a2 _ 1'2)((14 _ CQCL‘Q).
Assuming ¢ # 0, the last equation defines an elliptic curve and is equivalent to:

y* = (2% = a®)(a® —a¥),
2 T —a\ /cr+ a? cr — a?
(ﬁ) :(x+a><:ﬁia>(x+a )

v? = Bulu — p)(u — p),

We rewrite this as
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where

Yy T —a
R — u =
(z +a)?’ rz+a’

and B, u, and p are such that

v =

2

<cx+a2)<cw_a ) = B(u — p)(u—p),

r+a r+a
2 a2

o= (2+%) = Bl@—a—pl@+a)z—a—pla+a)
=8(1—pwz— 1+ p)((1—p)z—(1+p)a)

=80 =11 = p) (o= 1) (2= 122).

So it suffices if

2 2
9 a 14+ p a 1+p
that is,
_a2—c 1 B=_ Au
H=are P= CESE.

After another change of variables, the equation becomes
v =z(z—1)(z — N
(where A = p/p). On this curve, the differential form d z/y is holomorphic. But

Q
Q[
P Y

is well defined, not on P(C) (that is, C U {o0}), but rather on the Riemann surface got
by cutting and gluing two copies of this along lines from 0 to oo and 1 to A: the surface
is then a torus. This then is the elliptic curve, and the function above is an analytic
bijection onto C/A for some lattice A.

2. CURVES AND FUNCTION FIELDS

Let K and L be algebraically closed fields, with K C L and tr-deg(L/K) = oc.
An irreducible f in K[X,Y] defines a curve C over K, namely

C = {(z,y) € L*: f(z,y) =0}
We define
K[C] = K[X,Y]/(f),
K(C) = fraction field of K[C];
this is the field of rational functions on C' over K. Then
KI[C] = Kla, ]
K(C) = K(a,b),
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where

a=((z,y) — )

on C,

b= ((z,y) — y)}

so that f(a,b) = 0 and (a, b) is a generic point of C over K; we may assume (a, b) € L.
Say also
D ={(z,y) € L*: g(z,y) = 0},
and ¢* is an embedding of K(C) in K(D) over K. Then
0=¢"(f(a,0)) = f(¢"(a), ¥ (b)),

so (¢*(a),¢*(b)) is a generic point of C' and is also a dominant rational map ¢ from
D onto C'. We recover ¢* by

¢"(h) =hoe.
Indeed,
¢*(a) = a(¢*(a), 9" (b)) = ao (¢*(a)," (b)) = aoy,
and likewise for b.

Rule. The K-algebra K(C) embeds in K(D) if and only if C has a generic point with
coordinates from K(D).

We also have
K(C)= K(D) <= D and C are birationally equivalent.

For example, the function

0 (0 )

determines a birational equivalence between the elliptic curves above.
Orlet f=X%2+Y?and g =X. See Figure 1. Then ¢: C — D, where

2
o(z,y) = § im () = (h;ﬁ;) :
so C' and D are birationally equivalent, and
K(D) = K(e) 2 K(a,b) = K(C)
b
1+4+a

€

1—e¢?
T+e 1
2e
1—e?
Every curve C has a genus v(C) in N. If K(C') embeds in K (D) over K, then
1(C) < (D).
If the embedding is proper, then either v(C) < v(D) or
0<~(C)<v(D) <1
If v(C) =0, then K(C) = K(X).

— b
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(z.1) 1—t2 2t
T = —, ——
Y 112142

FIGURE 1. Birational equivalence of circle and straight line

3. LOGIC AND ELLIPTIC CURVES

Suppose K(C) 2 K(D). We may assume v(C) < v(D) < v(F) for some curve E.
Then the formula

Jy (z,y) € E
defines K in K(C) and K(D). If v(C) < (D) or 1 < v(C) = v(D), then the sentence
Ve Vy 3z ((z,y) € D = (z,2) € E)

is true in K(C), but not K (D), so these algebras have different theories; we say they
are not elementarily equivalent, and we write

K(C) # K(D).

We cannot then have 0 = v(C) = (D). The remaining possibility is 1 = v(C) = (D),
that is, C' and D are elliptic curves.

An elliptic curve E is also an abelian group; the curve has complex multiplication
if End(E) 2 Z.

Theorem (Jean-Louis Duret (1992); D.P. (1998)). If C' and D are curves over K, and
C' is not an elliptic curve with complex multiplication, then

K(C)#2 K(D) = K(C)# K(D).
In general, if p: D — C, then
deg(p) = [K(D) : K(C)]

Theorem (D.P. (1998)). Suppose C and D are elliptic curves over K with complex
multiplication. The following are equivalent.

(1) There are ¢ and ¢’ from C onto D with

ged(deg(p), deg(¢')) = 1.
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(2) K(C) and K(D) agree on all sentences
v(3907 cee LEn,l) Ely ¢($0, <o Ln—1, y)7

where 1 is quantifier-free.

If char(K) = 0, then the foregoing are equivalent to the following.
(3) End(C) = End(D).

Say Ey and Ej are elliptic curves over C. For each i in {0, 1} there are A; and B; in
C such that E; is birationally equivalent to the curve defined by

y? = 42® — Az — B;

So we may assume Fj; is this curve. There is a lattice A;, namely (1, 7;), where S(7;) > 0,
and there is a function g;, namely

1 1 1
T (e )
such that (gp;, ;) is a generic point of E; and is a bijection from C/A; to E;. Say

p: Ey — Ej. There are o and w in C such that the following commutes.

C/Aq (p0,00") B

oz \L

(C/Al ®
zn—>z+wl
C/A E;
(plrpll)

We may assume w = 0, so ¢ is an isogeny and, in particular, a homomorphism. We
must have
alg C Ay,
and then
deg(p) = [A1 : alg].

Also, if o # 0, there is a matrix (a > or M in M, (Z) such that

b
c d

(o) =(rm) =0 () =v ()

and then
deg(p) = det(M).
Also
<_dc _ab> (Tlo> = a ' det(M) <T11> = o !deg(p) <711> :

2z a tdeg(p)z: C/A — C/Ag
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FIGURE 2. A lattice and its endomorphisms

corresponding to an isogeny ¢ from FE; to Fy. Then

deg(p) = deg(y),
P = [deg(p)]

where [n] is multiplication by n.
If E corresponds to C/A, then

End(E) = {z € C: zA CA}.

For example, if
—14 V=T
T=—.
4
then (see Figure 2)
End(E) = (1,27).

In general, if E has complex multiplication, this means, for some « in C \ R, we have
N 1\  [a+br
) \e+dr)’
a=a+br,
c+dr =ar = (a+br)T,

br? +(a—d)T —c=0.

So E has complex multiplication if and only if 7 is quadratic. If indeed

SO

br? +ar —c=0
in lowest terms, then one shows

End(F) = (1, b7);
in any case, End(F) embeds in A.
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In general, since End(F) embeds in C, it is commutative. Suppose ¢ and 1 are
isogenies from Ey to Fp of relatively prime degrees. There are integers m and n such
that

mdeg(p) + ndeg(y) = 1.
Then End(E;) = End(Ey) by
o — moay + npai.
Now suppose conversely End(E7) = End(FE)y), and each curve has complex multiplica-

tion. Then Ay and A; have a common sublattice, so by linear algebra we may assume
T1 = nTp for some n.

Theorem (D.P.). Say End(E) = End(Ey) 2 Z, and
b702+a70—c:()
i lowest terms, and 7 = ntg. Then
Hom(Ey, E1) = (n, bT).
If this takes @ to nx + byT, then

b
deg(¢p) = na® — azy — —1?,
n

a quadratic form with relatively prime coefficients, so it represents coprime numbers.
Suppose now p divides the degree of every isogeny from FEjy to Ej. Then there is a
finite set L of lattices, each having index p in Aj, such that, if
OéA() - A17
then, for some A in L,
OéA() - AC A1.
Hence
K(Ey) 2 K(E),
because K (FEy) but not K(E}) is a field L such that, if
@ [K(E)] € L,
then
P [K(EY)]C FCL,
where the isomorphism-class of F' over ¢*[K(E1)] has finitely many possibilities.
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