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The interacting rings in question arise from differential fields:

(K, ∂0, . . . , ∂m−1),

where

. K is a field—in particular, a commutative ring;

. each ∂i is a derivation of K: an endomorphism D of the
abelian group of K that obeys the Leibniz rule,

D(x · y) = D(x) · y + x · D(y);

. [∂i, ∂j] = 0 in each case, where [ · , · ] is the Lie bracket, so

[x, y] = x ◦ y − y ◦ x.

A standard example is (C(x0, . . . , xm−1),
∂

∂x0
, . . . , ∂

∂xm−1
).

In general, let

V = spanK(∂i : i < m) ⊆ Der(K);

then V is also a Lie ring.





Recall some notions due to Abraham Robinson:
The quantifier-free theory of AA is denoted by

diag(A).

A theory T is model complete under any of three equivalent
conditions:

. whenever A is a model of T , the theory

T ∪ diag(A)

is complete;

. whenever A |= T ,

T ∪ diag(A) ⊢ Th(AA);

. whenever A, B |= T ,

A ⊆ B =⇒ A 4 B.

Then T is complete if all models have a common submodel.





Robinson’s examples of model complete theories include the
theories of

. torsion-free divisible abelian groups (i.e. vector spaces over Q),

. algebraically closed fields,

. real-closed fields.

Theorem (Robinson). T is model complete, provided

T ∪ diag(A) ⊢ Th(AA)∀

whenever A |= T , that is,

A ⊆ B =⇒ A 41 B

whenever A, B |= T .

Proof. If A 41 B, then A 4 C for some C, where B ⊆ C; then
B 41 C, so continue: A

4
//

41
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?

ÂÂ?
??

C
41
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?
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4
// E

41
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?

ÂÂ?
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4
//

B
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4
// D
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4
// F 4

//
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Let

DFm = Th({fields with m commuting derivations}),
DFm

0 = DFm ∪{p 6= 0: p prime}.

Theorem (McGrail, ). DFm
0 has a model companion,

DCFm
0 : that is,

(DFm
0 )∀ = (DCFm

0 )∀
and DCFm

0 is model complete.

Theorem (Yaffe, ). The theory of fields of characteristic 0
with m derivations Di, where

[Di, Dj] =
∑

ak
i jDk,

has a model companion.

Theorem (P, ; Singer, ). The latter follows readily from
the former.

Theorem (P, submitted March, ). DFm has a model
companion, DCFm, given in terms of varieties.





What is the model
theory of V ?

First consider rings
in general.

Piet Mondrian, Broadway Boogie Woogie
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In the most general sense, a ring is a structure

(E, ·),

where

. E is an abelian group in {0,−, +}, and

. the binary operation · distributes over + in both senses: it is a
multiplication.

Beyond this, there are axioms for:

commutative rings

xy − yx = 0

(xy)z = x(yz)

Lie rings

x2 = 0

(xy)z = x(yz) − y(xz)

By itself, (xy)z = x(yz) defines associative rings;

and (xy)z = x(yz) − y(xz) is the Jacobi identity.





For rings, are there representation theorems like the following?

Theorem (Cayley). Every abstract group (G, 1, −1, · ) embeds in
the symmetry group

(Sym(G), idG, −1, ◦ )

under x 7→ λx, where
λg(y) = g · y.

A ring is Boolean if it satisfies x2 = x.

Theorem (Stone). Every abstract Boolean ring (R, 0, +, ·) or R

embeds in a Boolean ring of sets

(P(Ω), ∅, △,∩).

(Here Ω = {prime ideals of R}, and the embedding is
x 7→ {p : x /∈ p}.)

For associative rings and Lie rings only, there are such theorems.





I know no representation theorem for abelian groups. There are
just ‘prototypical’ abelian groups, like Z. One might mention
Pontryagin duality: Every (topological) abelian group G embeds
in G∗∗, where G∗ = Hom(G, R/Z).

Prototypical associative rings include

. Z, Q, R, C, and H;

. matrix rings.

But there are non-associative rings:

. (R3,×) is a Lie ring (in fact, the Lie algebra of SO(3, R));

. the Cayley–Dickson algebras R, R′, . . . become
non-associative after R′′ (which is H):





Let (E, ·) be a ring with an involutive anti-automorphism or
conjugation x 7→ x. The abelian group M2(E) is a ring under

(

a b
c d

) (

x y
z w

)

=

(

ax + zb ya + bw
xc + dz cy + wd

)

,

with conjugation
(

x y
z w

)

7→

(

x z
y w

)

.

Let E ′ comprise the matrices
(

x y
−y x

)

.

Then E ′ is closed under the operations, and E embeds under

x 7→

(

x 0
0 x

)

.





If E is an abelian group, then its multiplications compose an
abelian group that has an involutory automorphism,

m 7→
•
m,

where •
m is the opposite of m:

•
m(x, y) = m(y, x).

Let End(E) be the abelian group of endomorphisms of E. Then

. (End(E), ◦) is an associative ring;

. (End(E), ◦ −
•
◦) is a Lie ring;

. (End(E), ◦ +
•
◦) is a Jordan ring: a ring satisfying

xy = yx, (xy)x2 = x(yx2).

Pascual Jordan, –.





If (E, ·) is a ring, let

x 7→ λx : E → End(E),

where (as in the Cayley Theorem)

λa(y) = a · y.

If p and q are in Z, let (E, ·) be called a (p, q)-ring if

x 7→ λx : (E, ·) → (End(E), p◦ − q
•
◦).

Theorem. All associative rings are (1, 0)-rings; all Lie rings are
(1, 1)-rings. In particular, (End(E), p◦ − q

•
◦) is a (p, q)-ring if

(p, q) ∈ {(0, 0), (1, 0), (1, 1)}.

Theorem (P). The converse holds.





Proof. We have

x 7→ λx : (End(E), p◦ − q
•
◦) → (End(End(E)), p◦ − q

•
◦)

if and only if
λxy = λxλy,

that is,
λpx◦y−qy◦x(z) = (pλx ◦ λy − qλy ◦ λx)(z),

that is,

p(px ◦ y − qy ◦ x) ◦ z − qz ◦ (px ◦ y − qy ◦ x)

= p
(

px ◦ (py ◦ z − qz ◦ y) − q(py ◦ z − qz ◦ y) ◦ x
)

− q
(

py ◦ (px ◦ z − qz ◦ x) − q(px ◦ z − qz ◦ x) ◦ y
)

,

that is,

p2 = p3, pq = p2q, qp = q3, p2q = pq2, pq = pq2

—assuming the  compositions x ◦ y ◦ z etc. are independent in
some example; and they are when E = Z4.





If (V, ·) is a Lie ring, then each λx is a derivation of it: Write the
Jacobi identity as

x(yz) = (xy)z + y(xz);

this means
λx(yz) = λx(y) · z + y · λx(z).

Thus λ factors:

(V, ·) λ //

λ

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
?

(Der(V, ·), ◦ −
•
◦)

⊆

²²

(End(V ), ◦ −
•
◦)
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For any abelian group V , the Lie ring (End(V ), ◦ −
•
◦) acts as a

ring of derivations of the associative ring (End(V ), ◦):

[z, x ◦ y] = z ◦ x ◦ y − x ◦ y ◦ z

= z ◦ x ◦ y − x ◦ z ◦ y + x ◦ z ◦ y − x ◦ y ◦ z

= [z, x] ◦ y + x ◦ [z, y].

(End(V ), ◦ −
•
◦) λ //

λ

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
(Der(End(V ), ◦), ◦ −

•
◦)

⊆

²²

(End(End(V )), ◦ −
•
◦)
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Combine the diagrams—again, (V, ·) is a Lie ring:

(V, ·) λ //

λ
))SSSSSSSSSSSSSSSSSSSS (Der(V, ·), ◦ −

•
◦)

⊆
²²

(End(V ), ◦ −
•
◦) λ //

λ
++WWWWWWWWWWWWWWWWWWWWWWWWW

(Der(End(V ), ◦), ◦ −
•
◦)

⊆
²²

(End(End(V )), ◦ −
•
◦)

Each D in V determines the derivation

f 7→ Df

of (End(V ), ◦), where

Df = λλD
(f ) = [λD, f ],

so that
Df (x) = D · (f (x)) − f (D · x).





If (K, ∂0, . . . , ∂m−1) |= DFm, and V = spanK(∂i : i < m), and t in
K is not constant, then

K = {Dt : D ∈ V }.

Indeed, if Dt = a 6= 0, then

x =
x

a
(Dt) =

(x

a
D

)

t.

There is an elementary class consisting of all (V, ·, t) such that

. (V, ·) is a Lie ring,

. t ∈ End(V ),

. ({Dt : D ∈ V }, ◦) is a field K,

. for all f and g in K and D in V ,

f ◦ (Dg) = (f (D))g,

. dimK(V ) 6 m.

Let VLm be the theory of this class. Then VLm has ∀∃ axioms.





Theorem (P). The theory VLm has a model companion, whose
models are precisely those models (V, ·, t) of VLm such that, when
we let

K = ({Dt : D ∈ V }, ◦),

then V has a commuting basis (∂i : i < m) over K, and

(K, ∂0, . . . , ∂m−1) |= DCFm .

Here dimC(V ) = ∞, where C is the constant field.

However, for an infinite field K, the theory of Lie algebras over K
apparently has no model-companion (Macintyre, announced ).

Is there a model-complete theory of infinite-dimensional Lie
algebras with no extra structure?





Adolph Gottlieb, Centrifugal

We can also consider (V,K) as a
two-sorted structure.
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Suppose first (V, K) is just a vector space, in the signature
comprising

. the signature of abelian groups, for the vectors;

. the signature of rings, for the scalars;

. a symbol ∗ for the (right) action (v, x) 7→ v ∗ x of K on V .

Let the theory of such structures of dimension n be

Tn,

where n ∈ {1, 2, 3, . . . ,∞}.

Theorem (Kuzichev, ). Tn admits elimination of quantified
vector-variables.





A theory is inductive if unions of chains of models are models.

Theorem (Łoś & Suszko , Chang ). A theory T is
inductive if and only if

T = T∀∃.

Hence all model complete theories have ∀∃ axioms.

Of an arbitrary T , a model A is existentially closed if

A ⊆ B =⇒ A 41 B

for all models B of T .

Theorem (Eklof & Sabbagh, ). Suppose T is inductive. Then
T has a model companion if and only if the class of its existentially
closed models is elementary. In this case, the theory of this class is
the model companion.





Again, Tn is the theory of vector spaces of dimension n.

If n > 1, then no completion Tn
∗ of Tn can be model complete,

because it cannot be ∀∃ axiomatizable:

There is a chain

(V, K) ⊆ (V ′, K ′) ⊆ · · · ⊆ (V (s), K(s)) ⊆ · · ·

of models of Tn
∗, where

. (V (s), K(s)) has basis (vs, . . . , vs+n−1), but

. vs = vs+1 ∗ xs for some xs in K(s+1) r K(s), so

. the union of the chain has dimension 1.

The situation changes if there are predicates for linear dependence.





Let VSn (where n is a positive integer) be the theory of vector
spaces with a new n-ary predicate P n for linear dependence. So
P n is defined by

∃x0 · · · ∃xn−1
(

∑

i<n

vi ∗ xi = 0 N

∨

i<n

xi 6= 0
)

.

Let VS∞ be the union of the VSn.

Theorem (P).

. VSn has a model companion, the theory of n-dimensional
spaces over algebraically closed fields.

. V S∞ has a model companion (even, model completion), the
theory if infinite-dimensional spaces over algebraically closed
fields.





The key is lowering dimension to n.
Given a field-extension L/K, where where

[L : K] > n + 1,

we can embed (Kn+1, K) in (Ln, L), as models of VSn, under








x0

...
xn−1

xn









7→





1 0 −a0

. . . ...
0 1 −an−1













x0

...
xn−1

xn









,

that is,

x 7→
(

I −a
)

x,

where the ai are chosen from L so that the tuple

(a0, . . . , an−1, 1)

is linearly independent over K.





Why? Given an (n + 1) × n matrix U over K, we want to show

rank(U) = n ⇐⇒ det
((

I −a
)

U
)

6= 0.

Write U as

(

X
yt

)

. Then

rank(U) = n ⇐⇒ det

(

X a

yt 1

)

6= 0.

Moreover,

det

(

X a

yt 1

)

= det(X − ayt),

X − ayt =
(

I −a
)

(

X
yt

)

=
(

I −a
)

U.

That does it.





Compare:
Let T be the theory of fields with an algebraically closed subfield.
The existentially closed models of T have transcendence-degree 1,
because of

Theorem (Robinson). We have an inclusion

K(x, y) ⊆ L(y)

of pure transcendental extensions, where

K(x, y) ∩ L = K,

provided
L = K(α, β),

where

α /∈ K(x, y)alg, β = αx + y.

(Hence T has no model companion.)





A Lie–Rinehart pair can be defined as any (V,K), where:
. V and K are abelian groups, each acting on the other, from the
left and right respectively, by

(x, y) 7→ x D y, x ∗ y ←[ (x, y).

. The actions are faithful:

∃y (x D y = 0 ⇒ x = 0), ∃x (x ∗ y = 0 ⇒ y = 0).

. Multiplications are induced,
(i) on V , by the bracket;
(ii) on K, by (opposite) composition:

[x, y] D z = x D(y D z) − y D(x D z), x ∗ (y · z) = (x ∗ y) ∗ z.

. These multiplications are compatible with the actions:

(x ∗ y) D z = (x D z) · y, x ∗ (y D z) = [y, x ∗ z] − [y, x] ∗ z.





Then V does act on K as a Lie ring of derivations; that is,

x D(y · z) = (x D y) · z + y · (x D z).

Indeed,

w ∗ (x D(y · z))

= [x, w ∗ (y · z)] − [x, w] ∗ (y · z)

= [x, (w ∗ y) ∗ z] − ([x, w] ∗ y) ∗ z

= (w ∗ y) ∗ (x D z) + [x, w ∗ y] ∗ z

− [x, w ∗ y] ∗ z + (w ∗ (x D y)) ∗ z

= (w ∗ y) ∗ (x D z) + (w ∗ (x D y)) ∗ z

= w ∗ (y · (x D z)) + w ∗ ((x D y) · z)

= w ∗ (y · (x D z) + (x D y) · z).

We may (asymmetrically!) make K commutative, and make V
torsion-free as a K-module, so K is an integral domain.





The multiplications are definable.

Indeed, let V and K act mutually as abelian groups, as before.
Then K becomes a sub-ring of (End(V ), ◦) and an integral domain
when we require

∃w (x ∗ y) ∗ z = x ∗ w,

x ∗ y = 0 ⇒ x = 0 ∨ y = 0,

(x ∗ y) ∗ z = x ∗ w ⇒ x = 0 ∨ (u ∗ y) ∗ z = u ∗ w,

(x ∗ y) ∗ z = (x ∗ z) ∗ y

Then we can require V to act on K as a module (over K) of
derivations:

(x ∗ y) ∗ z = x ∗ w

⇒ x ∗ (v D w) = (x ∗ y) ∗ (v D z) + (x ∗ (v D y)) ∗ z

x ∗ ((y ∗ z) D w) = (x ∗ (y D w)) ∗ z.





However, with no symbol for the bracket on V , the theory of
Lie–Rinehart pairs is not inductive.
Indeed, the union of the chain

(V0, K0) ⊆ (V1, K1) ⊆ · · ·

of Lie–Rinehart pairs is not a Lie–Rinehart pair when

Kn = Q(ti : i < n), Vn = spanKn
(Di ↾ Kn : i < n),

where

D0 =
∑

i<ω

∂i, D1 =
∑

i<ω

(i + 1)ti∂i+1, Dn = ∂n if 1 < n < ω,

where
∂it

j = δj
i .

For,
[D0, D1] =

∑

i<ω

(i + 1)∂i+1 /∈ V.





Let T be the theory of pairs (V,K), where K is a field of
characteristic 0, and V acts on K as a vector space of derivations.
Let DCF

(m)
0 be the model-companion of the theory of fields of

characteristic 0 with m derivations with no required interaction.

Theorem (Özcan Kasal). The existentially closed models of T are
just those such that

. tr-deg(K/Q) = ∞;

. (K, v0, . . . , vm−1) |= DCF
(m)
0 whenever (v0, . . . , vm−1) is

linearly independent over K;

. if (x0, . . . , xn−1) is algebraically independent, and
(y0, . . . , yn−1) is arbitrary, then for some v in V ,

∧

i<n

v D xi = yi.

These are not first-order conditions: they require the constant field
to be Qalg.





The picture changes when (for each n) a predicate Qn is
introduced for the n-ary relation on scalars defined by

∨

i<n

∀v
(

∧

j 6=i

v D xj = 0 ⇒ v D xi = 0
)

.

Let the new theory be

T ′,

so

T ′ ⊢ ∀x
(

¬Qnx ⇔ ∃v
∧

i<n
j<n

vi D xj = δj
i

)

.

Say (a0, . . . , an−1) from K is D-dependent if

(V,K) |= Qna
0 · · · an−1.

So algebraic dependence implies D-dependence.
Also, D-dependence also makes K a pregeometry.





Theorem (Özcan Kasal). The existentially closed models of T ′ are
those (V,K) such that D -dim(K) = ∞ and whenever

. (v0, . . . , vk+ℓ−1) is linearly independent, and
∧

i<k+ℓ
j<k

vi D aj = δj
i ,

. U is a quasi-affine variety over Q(a, b) with a generic point

(x0, . . . , xℓ−1, y0, . . . , ym−1, z),

where (x, y) is algebraically independent over Q(a, b),

. gj
i ∈ Q(a, b)[U ], where i < k + ℓ and j < m;

then U contains (ak, . . . , ak+ℓ−1, c, d) such that

. each cj and dj is D-dependent on (a0, . . . , ak+ℓ−1),

.
∧

i<k+ℓ
j<k+ℓ

vi D aj = δj
i N

∧

i<k+ℓ
j<m

vi D cj = gj
i (a

k, . . . , ak+ℓ−1, c, d).


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