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The interacting rings in question arise from differential fields:
(K,00,---,0m1),

where

1. K is a field—in particular, a commutative ring;

2. each 0; 1s a derivation of K: an endomorphism D of the
abelian group of K that obeys the Leibniz rule,

D(z-y)=D(x)-y+x-Dy);
3. [0, 0] =0 in each case, where |-, -] is the Lie bracket, so

[z, yl=zoy—you

0 8).

A standard example is (C(xg, ..., Tm_1), Drg? " Or 1

In general, let
V = spang(0;: © < m) C Der(K);

then V is also a Lie ring.



Recall some notions due to Abraham Robinson:
The quantifier-free theory of 214 is denoted by

diag(2L).

A theory T is model complete under any of three equivalent
conditions:

1. whenever 2l is a model of 7', the theory
T U diag(2A)
is complete;
2. whenever A =T,
T U diag(A) = Th(2A4);
3. whenever 2,8 =T,
ACHB — A<LB.

Then 7" is complete if all models have a common submodel.
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Robinson’s examples of model complete theories include the
theories of

1. torsion-free divisible abelian groups (i.e. vector spaces over Q),

2. algebraically closed fields,
3. real-closed fields.
Theorem (Robinson). T is model complete, provided
T U diag(A) F Th(2A 1)y
whenever 2 = T, that is,
ACTHB — A1 B
whenever A,B =T

Proof. 1f A <1 B, then % < € for some &€, where B C ¢€; then
B <y €, so continue: Y S /Qj S ¢ S ]
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Let
DE™ = Th({fields with m commuting derivations}),
DFg' = DE"™ U{p # 0: p prime}.
Theorem (McGrail, 2000). DF" has a model companion,
DCF{'": that is,
(DF')y = (DCFy')y
and DCF}" is model complete.
Theorem (Yaffe, 2001). The theory of fields of characteristic 0
with m derivations D,;, where
[Di, Dj] = > aj;Dy,
has a model companion.

Theorem (P, 2003; Singer, 2007). The latter follows readily from
the former.

Theorem (P, submitted March, 2008). DF™ has a model
companion, DCFE"™ given in terms of varieties.
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First consider rings
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in general.

Piet Mondrian, Broadway Boogie Woogie
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In the most general sense, a ring is a structure
<E7 ')7

where

1. E is an abelian group in {0, —,+}, and

2. the binary operation - distributes over + in both senses: it is a
multiplication.

Beyond this, there are axioms for:

commutative rings Lie rings
xy —yxr =10 2 =0
(zy)z = 2(yz) (xy)z = x(yz) — y(xz)

By itself, (zy)z = x(yz) defines associative rings;
and (zy)z = x(yz) — y(xz) is the Jacobi identity.
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For rings, are there representation theorems like the following?

Theorem (Cayley). Every abstract group (G, 1, 7%, - ) embeds in
the symmetry group

(Sym(G), idg, 1o )
under x — A\, where
Ag(y) =9y
A ring is Boolean if it satisfies 22 = .

Theorem (Stone). Every abstract Boolean ring (R, 0,4+, -) or R
embeds in a Boolean ring of sets

(2(Q)), D, 0,N).

(Here §2 = {prime ideals of R}, and the embedding is
v {p:zgp})

For associative rings and Lie rings only, there are such theorems.
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I know no representation theorem for abelian groups. There are
just ‘prototypical’ abelian groups, like Z. One might mention

Pontryagin duality: Every (topological) abelian group G embeds
in G**, where G* = Hom(G,R/Z).
Prototypical associative rings include

1. Z,Q, R, C, and H;

2. maftrix rings.

But there are non-associative rings:

1. (R’ x)is a Lie ring (in fact, the Lie algebra of SO(3,R));

2. the Cayley—Dickson algebras R, R’, ... become
non-associative after R” (which is H):



Let (E,-) be a ring with an involutive anti-automorphism or
conjugation x +— . The abelian group My(F) is a ring under

a b\ (z y\ [az+2b ya+bw
cd)\zw) \zc+dz cy+wd)’
with conjugation
ryy
2 W '

Let B’ comprise the matrices

(55%)

Then E’ is closed under the operations, and E embeds under

I_)a:()
x 03

Nagd RS
SRS



If £/ is an abelian group, then its multiplications compose an
abelian group that has an involutory automorphism,

m — m,
where m is the opposite of m
m(z,y) = m(y, z).
Let End(FE) be the abelian group of endomorphisms of E. Then
. (End(FE), o) is an associative ring;
d(E),o — 0) is a Lie ring;
d(E),o+ o) is a Jordan ring:' a ring satisfying

vy = yz, (xy)z” = z(yz?).

Pascual Jordan, 1902-8o.
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If (F,-) is aring, let
r— A\ F — End(F),
where (as in the Cayley Theorem)
Aaly) =a-y.
If pand q are in Z, let (E, ) be called a (p, q)-ring if
x+— M\ (E,) — (End(E), po — ¢o).

Theorem. All associative rings are (1,0)-rings; all Lie rings are
(1,1)-rings. In particular, (End(E), po — ¢o) is a (p, q)-ring if

(p,q) € 1(0,0),(1,0),(1,1)}.

Theorem (P). The converse holds.
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Proof. We have
r+— N\, : (End(E), po — ¢5) — (End(End(FE)), po — ¢9)
if and only if
Azy = Az Ay,
that is,
Aproy—qyor(2) = (PAz © Ay — gy 0 Ay)(2),
that is,
plproy —qyox)oz—qzo(proy—qyoux)
:p(pr(pyoz—qzoy) —q(pyoz—qzoy)oaj)
—q(pyo(pxoz—qzoaj)—q(p:z:'oz—qzoaj)oy)7
that is,
p’=p’, pe=vq, @=¢, pe=p¢, pq=pqg
—assuming the 6 compositions x o y o z efc. are independent in
some example: and they are when E = Z*. O]
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If (V,-) is a Lie ring, then each A, is a derivation of it: Write the
Jacobi identity as
(yz) = (xy)z + y(22);

this means
Thus \ factors:

IN

(End(V), 0 — &)
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For any abelian group V, the Lie ring (End(V), o — o) acts as a
ring of derivations of the associative ring (End(V), o):

z,xoy]=zo0z0Y —zoyoz
= Z0LOY—TOZOY+TOZOY—TOYOZX
= |z,x] 0y +x o |2,y

(End(V), 0 — &) 2~ (Der(End(V), o), 0 — &)

N

(End(End(V)),0 — 8)
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Combine the diagrams—again, (V) is a Lie ring:

d(V), 0 —8)—*—(Der(End(V), 0),0 — &)

o fe

(End(End(V)),0 — 8)

Each D in V' determines the derivation
feDf
of (End(V), o), where
Df =X\, (f) = [Ap, fl,

so that
Df(z)=D-(f(z)) = f(D-x).
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If (K,00,...,0m-1) = DF" and V = spang(0;: i < m), and t in

K is not constant, then
K={Dt. DeV}.

Indeed, if Dt = a # 0, then

r = g(Dt) — (gD) t
There is an elementary class consisting of all (V- t) such that
1. (V) is a Lie ring,
2. t € End(V),
3. ({Dt: D eV} o)isafield K,
4. forall fand gin K and D in V,

fo(Dg)=(f(D))g,

5. dimg (V) < m.
Let VL" be the theory of this class. Then VL has V4 axioms.
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Theorem (P). The theory VL™ has a model companion, whose
models are precisely those models (V- t) of VL such that, when
we let

K=({Dt: D eV}, o),
then V' has a commuting basis (0;: ¢ < m) over K, and
(K,0y,...,0m-1) =DCEF™.

Here dimg (V') = oo, where C' is the constant field.

However, for an infinite field K, the theory of Lie algebras over K
apparently has no model-companion (Macintyre, announced 1973).

[s there a model-complete theory of infinite-dimensional Lie
algebras with no extra structure?
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We can also consider (V) K) as a
two-sorted structure.

Adolph Gottlieb, Centrifugal
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Suppose first (V, K) is just a vector space, in the signature
COMprising

1. the signature of abelian groups, for the vectors;

2. the signature of rings, for the scalars;

3. asymbol x for the (right) action (v,x) — v*x of K on V.
Let the theory of such structures of dimension n be

1,
where n € {1,2,3,...,00}.

Theorem (Kuzichev, 1992). T;, admits elimination of quantified
vector-variables.
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A theory is inductive if unions of chains of models are models.

Theorem (Los & Suszko 1957, Chang 1959). A theory T is
inductive if and only if

T =Ty

Hence all model complete theories have V4 axioms.
Of an arbitrary T', a model 2 is existentially closed if

for all models B of T

Theorem (Eklof & Sabbagh, 1970). Suppose T' is inductive. Then
T" has a model companion if and only if the class of its existentially
closed models is elementary. In this case, the theory of this class is
the model companion.
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Again, T}, is the theory of vector spaces of dimension n.

If n > 1, then no completion 7;,* of T;, can be model complete,
because it cannot be V4 axiomatizable:

There is a chain
(V.K)C (V,K)C---C (VW KW)C...
of models of T},*, where
1. (V) K®)) has basis (vs, . .., Vsrn_1), but
2. Vg = Vs ¥ Ty for some x, in KT K 50
3. the union of the chain has dimension 1.

The situation changes if there are predicates for linear dependence.

21



Let VS, (where n is a positive integer) be the theory of vector
spaces with a new n-ary predicate P" for linear dependence. So

P" is defined by

3.0 ... 3! (Zvi*xiz()&\/xi#()).

1<n 1<n
Let VS, be the union of the VS,,.
Theorem (P).

1. VS, has a model companion, the theory of n-dimensional
spaces over algebraically closed fields.

2. V.S, has a model companion (even, model completion), the
theory if infinite-dimensional spaces over algebraically closed

fields.
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The key is lowering dimension to n.
Given a field-extension L/K, where where

L K|>n+1,
we can embed (K" K) in (L, L), as models of VS, under

0 0
T i
' 1 0 —a’ _
xn—l = : an_l )
0 1 —g™ !
n n
i h

that is,
T — ( I —a ) T,
where the a' are chosen from L so that the tuple

(@, ...,a" 1)

is linearly independent over K.
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Why? Given an (n + 1) X n matrix U over K, we want to show

rank(U) =n <= det ((I|—a ) U) #0.

Write U as (j;) Then

y 1
Moreover,
X
det <yt Cf) = det(X — ay"),
X —ay = (I|-a) (fj) — (I|-a)U

That does it.
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Compare:

Let T be the theory of fields with an algebraically closed subfield.
The existentially closed models of T" have transcendence-degree 1,
because of

Theorem (Robinson). We have an inclusion
K(z,y) C L(y)
of pure transcendental extensions, where
K(z,y)NL=K,

provided
L=K(a,[),

where

(Hence T has no model companion.)

25



A Lie—Rinehart pair can be defined as any (V, K), where:

1. V and K are abelian groups, each acting on the other, from the
left and right respectively, by

(z,y) = 1 Dy, Txy i (1,y).
2. The actions are faithful:
Jy (rDy=0=2=0), Jr (x+xy=0=y=0).

3. Multiplications are induced,
(i) on V, by the bracket;
(i) on K, by (opposite) composition:

@, y|Dz=2DyDz)—yD@xDz), xx(y-z)=(x*y)*z.
4. These multiplications are compatible with the actions:

(%*y)DZ:<IDZ)y, x*(yDz):[y,m*z]—[y,x]*z.
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Then V' does act on K as a Lie ring of derivations; that is,
zD(y-z)=(xDy) z2+y-(xD=z)
Indeed,

w* (xD(y - z))

= |z, wx(y-2)| = [z, w]*(y - 2)
= |z, (wxy)* 2] — ([z,w] *y) * 2
= (wxy)x(xDz)+ |r,w=*y|*

— |z, wxyl*xz+ (wx(xDy)) * 2
=(wxy)x(xDz)+ (w*(xDy)) * 2
=wx*(y-(zDz))+w=((xDy)-2)
=wx(y-(xDz)+(xDy) - 2).

We may (asymmetrically!) make K commutative, and make V'
torsion-free as a K-module, so K is an integral domain.
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The multiplications are definable.

Indeed, let V' and K act mutually as abelian groups, as before.
Then K becomes a sub-ring of (End(V'), o) and an integral domain
when we require

Jw (x*xy)*x 2z =x*w,
r*xy=0=>2=0Vy=0,
(xxy)xz=xxw=c=0V (uxy)*xz=1u*w,
(xxy)*xz=(r*xz)*y
Then we can require V' to act on K as a module (over K) of

derivations:

(x*xy)*xz=x*xw
s xx(vDw)=(xxy)x(vDz)+(xx(vDy))* 2

rx((y*xz) Dw)=(x*x(yDw)) * 2.
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However, with no symbol for the bracket on V', the theory of
Lie—Rinehart pairs is not inductive.
Indeed, the union of the chain

<%7K0) g <‘/17K1) g

of Lie-Rinehart pairs is not a Lie-Rinehart pair when

K,=Q(t:i<n), Vi, =spang (D; | K,,: i <n),
where
Dy=)» 0, Di=> (i+1)tdy, Dy=0,if1<n<uw,
1<w 1<w
where | |
oit! = 52‘-7.

For,
Dy, D1] = Z(@ +1)0i41 & V.

1<w
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Let T be the theory of pairs (V, K), where K is a field of
characteristic 0, and V' acts on K as a vector space of derivations.
Let DCFém) be the model-companion of the theory of fields of
characteristic 0 with m derivations with no required interaction.

Theorem (Ozcan Kasal). The existentially closed models of T are
just those such that

1. tr-deg(K/Q) = o0;
2. (K,vg,...,Um_1) E DCFém) whenever (vg, ..., Up_1) I8

linearly independent over K;

"=1) is algebraically independent, and

is arbitrary, then for some v in V.

/\vDazi:yi.

<n

5. if (2%, ..,
(v ")

These are not first-order conditions: they require the constant field

to be Q2.
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The picture changes when (for each n) a predicate @, is
introduced for the n-ary relation on scalars defined by

\/VU (/\vDa:j =0=vDz' = 0).
<n JF#i
Let the new theory be
T/

)
SO

T+ Va (ﬂQnaH:)Elfv AviDal :55).

1<n
j<n

Say (a’,...,a" 1) from K is D-dependent if
<V7 K) ’: Qnao e an—1.

So algebraic dependence implies D-dependence.
Also, D-dependence also makes K a pregeometry.
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Theorem (Ozcan Kasal). The existentially closed models of T" are
those (V, K) such that D-dim(K) = oo and whenever

1. (v, ..., Ups¢—1) is linearly independent, and
/\ viDa’ =0,
1<k+l
j<k

2. U is a quasi-affine variety over Q(a, b) with a generic point
(2%, ... 20y 2),
where (a,y) is algebraically independent over Q(a, b),

3. g;{ € Q(a,b)|[U], where i < k+ £ and j < m;

then U contains (a”,...,a"*~1 ¢, d) such that
1. each ¢/ and &’ is D-dependent on (a’, ..., a"" 1),
s (K k+0—1
2. /\ viDa’ =07 & /\vich—gz-(a,...,a e, d).
1<k+4 1<k+0
j<k+t j<m
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