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Abstract

The union of a chain of fields is a field. The union of a chain
of vector-spaces with their scalar-fields is still a vector-space,
but it may have strictly lower dimension than the spaces in
the chain. A model-theoretic result of the 1950s called the
Chang-Los-Suszko Theorem relates these observations to the
logical form of the theories of the structures in the chains.

Instead of looking at chains of models of a fixed theory, one
may fruitfully look at chains of theories themselves. Such a



chain might consist of the theories of fields equipped with
finite numbers of commuting derivations; or of the theories of
vector-spaces with predicates for linear dependence of finite
numbers of vectors. I shall discuss some results concerning
these and other examples.
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Chains of structures

Given a chain
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of fields, we know that the union
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is also a field. Likewise for ordered fields, or groups, or vector spaces
(given with their scalar fields).

However, in the last case, dimension need not be preserved in the
union. Indeed, suppose a field-extension L/K has transcendence-
basis (a1, az,as,...). Fixing n in w, we let

KQ:K, K1 :K(al), KQZK(CLl,CLQ),



and in general, for each j in w,
Kj = K(al,...,aj);
we also let

Vo = spang (1, ay,...,a,),

Vi =spang (1,a1,...,an41) = spang, (1,az,...,a,41),
and in general, for each j in w,

V; = SpanKj(l,al, . ,anﬂ) = spanKj(la Ajt1s---, an+j)
Then Vj is a vector-space over K, and

dimg, (Vj) =n+1,
(Vo, Ko) € (V1, K1) € (Vo, Kp) C -+,

L:UKjv

JjEW

dimL<U Vj) =1.

JjEwW

2 Logic of chains of structures

A field is just a model of the theory of fields in the signature
{Oa 17 g +7 : }

All but one of the axioms of this theory are universal, for exam-
ple
V(z,y,2) z(yz) = (zy)z.

The remaining axiom is universal-existential, or V3:

Ve Jy (r=0Vay=1).



The axioms for vector-spaces are no more complex; but the axiom
requiring dimension at least 2 is more complex, or at least differently
complex; it is IV:

Hu,v) V(z,y) (u-z4+v-y=0=2=0Ay =0).
This is why dimension need not be preserved in unions:

Theorem (Chang [1959], Los & Suszko [1957]). Unions of chains
of models of a theory are always models too, if and only if the theory
can be axiomatized by V3 sentences.

But consider fields now in the signature

{07 ] +7 ' }a

without a symbol for 1. An embedding of rings in this signature
need not preserve 1. For example, the field Q embeds in the product
ring Q x Q under = +— (z,0); but (1,0) is not the 1 of Q x Q (it is
(1,1)).

However, an embedding of rings that happen to be fields must pre-
serve 1. Therefore, in the signature {0, —, +, - }, the union of a chain
of fields is still a field. Now, the axiom saying that there is a 1 would
seem to take the form

Jz Yy (zy = y).

However, this complexity is not required, because of the Chang—t.0$-
Suszko Theorem. The axioms for integral domains are universal, the
most complex being

V(z,y) (xty=0=>2x=0Vy=0).
Replacing the axiom Vz 1 -z = z with the V3 sentence
V(z,y) Iz 22y =y
results in axioms for the theory of fields.

By the way, another preservation theorem is:



Theorem (Y.o$ [1955], Tarski [1954]). Substructures of models of
a theory are always models too, if and only if the theory can be
axiomatized by universal sentences.

So fields cannot be given universal axioms in the usual signature
{0,1,—,+4, - }, since the substructures of fields (in this signature)
are just the integral domains, and not every integral domain is a
field. For example,

(Z70a1a_7+7 ) - (Qa0a17_a+7 )

Similarly in the signature {1, - }, groups cannot be given universal
axioms, since for example

(Nvlv ')Q(Z,l, ')a

and the former is not a group.

3 Chains of theories of vector-spaces

Also by the Chang—t.0$-Suszko Theorem, the axioms for vector-
spaces of dimension at least two cannot be simplified—unless we
enlarge the signature, as by including the predicate || for paral-
lelism. This will be defined by the axiom

V(u,v) (u |ve 3(z,y) (u~a:+v-v=0/\ﬂ(x=O/\y=O))>,

which has the form
vV (¢ < Jy 0),

which is equivalent to the V3 sentences
Vo Jy (¢ = ), V(z,y) (6= ¢).
Then having dimension at least 2 is given by the V3 axiom

(u,v) u || v.



In the larger signature, every vector-space embeds in a space of
dimension exactly 2. Indeed, given L/K with [L : K] > 3, we may
suppose (1,a,b) in L? is linearly independent over K. Then the
vector-space (K3, K) embeds in (L2, L) under

(t,z,y) — (x — at,y — bt).

Every embedding of vector-spaces preserves parallelism. The present
embedding preserves non-parallelism: this is a special case of:

Theorem (P. [2009]). If K C L, and (1,a1,...,ay,) from L™ is
linearly independent over K, then the embedding

(t,z1,...,2n) — (21— a1t, ..., Ty — ant)
of (K" K) in (L™, L) preserves n-ary linear independence.
Proof. Consider (ay,...,a,) as a row-vector a. Then we can write
the given embedding as
(tlz)—ax—t-a,

or—if the n x n identity matrix is I,,—as

(tw)|—>(t:c)-<]:>.

This embedding takes the rows of an n X (n + 1) matrix ( ¢ ‘ X))
over K to the rows of the n x n matrix

X—t-a.
Moreover

1 0
det(Xt'a)det(t X—t-a>
_ 1‘a
(s
1| a
—det<%w)*




so that

det(X —t-a) £0 < det( ;)7@
| X ) =mn;

R

= rank(

the converse holds too since the entries in X and t are from K. [

Now, if 1 <n < w, let

e VS, be the theory of vector-spaces with predicates for k-ary
linear dependence when 2 < k < n;
e VS,* be axiomatized by VS,,, along with
— the space is n-dimensional,
— the scalar-field is algebraically closed.

In addition, let

e VS, = U1<n<w VS,,

e VS,* be axiomatized by VS, along with
— the space is infinite-dimensional,
— the scalar-field is algebraically closed.

Note then
VSo'# |J VS

I<n<w

(the latter is inconsistent). However:

Theorem (P. [2009]). If 1 < n < w, the models of VS,* are pre-
cisely the existentially closed models of VS,,.

The existentially closed models of a theory T are just those models
M such that every quantifier-free formula over 9t soluble in some
extension (which is also a model of T') is already soluble in 91 itself.

The existentially closed fields are the algebraically closed fields.



By the next-to-last theorem, for every model of VS,,, every equa-
tion

ag-x9+--+ay -r,=0
over the model (i.e. with the a; belonging to the model) has a solu-
tion in some extension.

In general, if T and T* are two theories, in the same signature, such
that

1) T has V3 axioms,

2) the models of T* are precisely the existentially closed models
of T,

then T* is the model-companion of 7.

So each VS,* is the model-companion of VS,, (if 1 < n < w), and
ACF is the model-companion of the theory of fields.

4 Chains of theories of differential fields

But model-companions need not exist. For example, let m-DF be
the theory of fields equipped with m commuting derivations 0y,
.., Om_1, so that

Oi(x +y) = 0;x + Oy,
Oi(xy) = x - Oy +y - Oi,

and let
w-DF = | J m-DF.
mew
If we require also that the fields have characteristic 0, the theories
become m-DFy and w-DFy.

Theorem (A. Robinson [1959]). The theory 1-DFy has a model-
companion, 1-DCFy, the theory of differentially closed fields of
characteristic 0.



Theorem (McGrail [2000]). For each m in w, the theory m-DFy
has a model-companion, m-DCF.

Theorem (P. [20137]). For each m in w, the theory m-DF has a
model-companion, m-DCF.

Theorem (Kasal & P. [20137]).

1. The theory w-DF has no model-companion.
2. The theory w-DFy has a model-companion, which is

U m-DCFy.

mew

Proof. 1. For each j in w, the theory w-DF has an existentially
closed model such that

1, ifi=j,

Fp(a) C Kj «Q ¢ Fpalga O = {0 £ 7éj

Then « cannot have a pth root (since derivatives of pth powers are
0). In a non-principal ultraproduct of the K;, we have ;a =0
for all 4 in w; but « still has no pth root; so the ultraproduct is not
existentially closed as a model of w-DF.

2. It is enough to show m-DCFy C (m + 1)-DCF,,, so that the the-
ory U,,co, Mm-DCFy is consistent. This is by a general result noted
also by Medvedev (20137). If

K = (m+1)-DF,, KCL, L = m-DFy,
it is enough to find M so that

M = (m 4+ 1)-DF,, LCM, K C M.

This can be done. .. O



5 Chains of theories

Suppose
ToCTh €T, -

each T}, being a theory with signature %, so that
S CANCSHC

Medvedev notes that properties of the T} that are preserved in
Ukew Tk include:

1. completeness (containing either o or —o, for all sentences o
of the signature)

2. consistency (having a model),

3. model-completeness (being one’s own model-companion),

4. stability.

Not preserved are

5. companionability (having a model-companion),
6. w-stability,
7. superstability.

1. Completeness is preserved, because sentences have finite length,
so that every sentence of | J, cw Ok 18 a sentence of some oy

2. That consistency is preserved is precisely the Compactness The-
orem of first-order logic. This fails in second-order logic. For exam-
ple, let DP (for Dedekind and Peano) be the second-order theory of
(N,1,4). Add a new constant ¢ to the signature, and let DPy be
axiomatized by

DP U Le#A1+1,...,c#£ 1+ +1}.
{c#FLc#1+ c#l+ -+ 1}
k

Then (J;c., DPy has no model.

10



3. Model-completeness is preserved, because (by means of Compact-
ness) it is equivalent to every formula’s being equivalent (modulo the
theory in question) to an existential formula.

4. Stability is a possible property of complete theories. Instability
of T is equivalent to the presence of a formula p(x,y) defining an
infinite linear order in some model of T, so that, for all n in w,

Tl—a(fﬂo,...,ﬂcn) < /\ (p(fﬂi,.’bj)/\ /\ —wp(ar:i,a:j)).

0<i<ji<n 0<j<i<n

If T'= Upew Tk, then these sentences are all in some .#%, and then
(assuming T}, is complete) T}, will be instable.

5. We have already seen that w-DF is not companionable, although
it is the union of the companionable theories m-DF.

6. Fix a complete theory T in a countable signature .. For each
model 9 of T, for each set A of parameters from 91, we let

e LT(A) be the Boolean algebra, called a Lindenbaum—Tarski
algebra, of formulas in . with parameters from A, considered
modulo (equivalence in) T

e S(A) be the Stone space of LT(A) (i.e. the set of maximal ideals,
or equivalently of ultrafilters).

If k is an infinite cardinal, and for all 9T and A as above,
Al <x = [S(A)] <k,

then T is k-stable. For example, the theory ACF of algebraically
closed fields is s-stable for all x, since, if K | ACF, there is a
continuous bijection from S(XK) to the spectrum of K[X].

In fact w-stability implies s-stability for all &.

McGrail shows that each m-DCFy is complete and w-stable. How-
ever, for each set A of differential constants in a model of w-DCFy,
for each element o of A®, the subset

{0z =0(k): k € w}

11



of LT(A) belongs to a different element of S(A4), so that the latter
has size |A|?.

7. This shows w-DCFy is not even superstable, that is, not always k-
stable when k > 2%, that is, k > J;. For, w-DCFy is not J,,-stable,
since J,% > Jw.

In fact, being stable is equivalent to being x-stable for some k.
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