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We work out a proof of Lindström’s Theorem, that in any proper ex-
pansion of first-order logic (meeting certain natural conditions), either
the Compactness Theorem or the (downward) Löwenheim–Skolem The-
orem is lost. Our main reference is Chang & Keisler [, §., pp. –
]; but Hodges [, §., pp. –] is also useful. The sections of
these notes are as follows.

§ establishes some notation.
§ reviews the basic definitions of model theory, so that we can be

precise about what an abstract logic is.
§ reviews notions that Chang & Keisler introduce ad hoc, but

Hodges develops generally, in terms of games (namely Ehren-
feucht–Fraïssé games).

§ proves Lindström’s Theorem, in a way that seems simpler than
Chang & Keisler’s.

The last major editing of these notes was on or before August , .
Some mild adjustments were made in June, .


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 Tuples

If A and Ω are sets, then a relation from Ω to A is a subset of the
Cartesian product Ω×A. If R is such a relation, and it contains (b, a),
we write

b R a.

If for every b in Ω there is exactly one a in A for which this holds, then
R is a function from Ω to A, and we use the notation

R(b) = a, (∗)

so that R(b) can be used as another name for a. We denote by

AΩ
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the class of all functions from Ω to A. (We could also let A, but not
Ω, be a proper class.) A typical element of AΩ can be written as

(ai : i ∈ Ω).

We let ω be the set of von Neumann natural numbers. If n ∈ ω, then
a typical element of An can be written in any of three forms:

(ak : k < n), (a0, . . . , an−1), a.

Such functions are n-tuples of A. There is a unique 0-tuple, namely
0, so that

A0 = 1.

There is a function, actually a bijection,

(a, b) 7→ (a0, . . . , an−1, b) from An ×A to An+1. (†)

Likewise, if also m ∈ ω, then there is a bijection

(a, b) 7→ (a0, . . . , an−1, b0, . . . , bm−1) from An ×Am to An+m. (‡)

We let
A<ω =

⋃
n∈ω

An.

Then, by taking the corresponding unions of the functions in (†) and
(‡), we have embeddings

(a, b) 7→ (a0, . . . , b) from A<ω ×A to A<ω,

(a, b) 7→ (a0, . . . , b0, . . . ) from A<ω ×A<ω to A<ω

}
(§)

(which we shall need on page ). We may also write these embeddings
as if they were inclusions. That is, we may consider (a, b) and (a, b)
as elements of A<ω.
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 Model theory

. Structures

If n ∈ ω, then an n-ary relation on a set A is a subset of An; an n-ary
operation on A is a function from An to A. Here n is the number of
arguments of the relation or operation. By means of the bijection in
(†), we may consider n-ary operations as (n+ 1)-ary relations, though
we retain the special notation for functions given in (∗). Normally we
have no use for nullary (0-ary) relations, but an nullary operation on
A is identified with an element of A.
A structure is a set, possibly given together with some operations

and relations on it. If the set is A, the structure can be denoted by

A,

and then A is the universe of A. Each of the operations and relations
of A is assigned a symbol, and these symbols compose the signature
of A. Each symbol carries the information of whether it denotes an
operation or relation, along with its number of arguments. We shall
use

S

to denote an arbitrary signature, and we shall denote the class of struc-
tures having this signature by

StrS .

. Sentences

We shall define a set of first order sentences in the signature S .
In any such sentence may occur individual variables from the list
(v0, v1, v2, . . . ). We use expressions from the list (x0, x1, x2, . . . ), as
well as x, y, z, and w, to stand for individual variables. An unnested
atomic formula of S is an expression of one of the forms

x0 = x1, Rx0 · · ·xn, Fx0 · · ·xn−1 = xn,
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where R is an (n + 1)-ary relation symbol of S and F is an n-ary
operation symbol of S . We obtain arbitrary atomic formulas by
closing under the operation of replacing a variable by an expression
like Fx0 · · ·xn−1. Alternatively, we first define a term to be either a
variable or an expression

Ft0 · · · tn−1,

where the tk are now terms; then an atomic formula is an expression

t0 = t1, Rt0 · · · tn,

where the tk are terms. Then we obtain the set

FmS

of all first order formulas of S by closing the set of atomic formulas
under the operations denoted by ¬, ∨, and ∃x: thus, if ϕ and ψ are
formulas, then so are the expressions denoted by

¬ϕ, (ϕ ∨ ψ), ∃x ϕ;

these are, respectively,
) the negation of ϕ,
) the disjunction of ϕ and ψ, and
) the instantiation at x of ϕ.

The set of unnested formulas is obtained by closing likewise the set
of unnested atomic formulas.
Thus the set of formulas of S (as well as of unnested formulas) is

defined recursively, and so it is possible to prove by induction that
particular subsets of FmS are actually the whole set. An important
theorem, often overlooked, is that functions on FmS can be defined by
recursion, because of the unique readability of formulas. Each formula
is the root of a tree whose nodes are all of the subformulas that occur
in the construction of the formula; unique readability is that this
tree is unique.
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For example, by unique readability, there is a function

ϕ 7→ fv(ϕ)

assigning to each formula in FmS its set of free variables, and this
function can be defined recursively:

. The free variables of an atomic formula are the variables that
occur in it.

. fv(¬ϕ) = fv(ϕ).
. fv((ϕ ∨ ψ)) = fv(ϕ) ∪ fv(ψ).
. fv(∃x ϕ) = fv(ϕ) r {x}.

A first order sentence is a first order formula having no free variables.
We shall denote the set of first order sentences of S by

SnS .

Thus SnS = {ϕ ∈ FmS : fv(ϕ) = ∅}.

. Truth

There is a relation of truth, denoted by

�

or more precisely �S , between StrS and SnS . There are two equiva-
lent ways to define it, and each one has its inconveniences.

.. Definable sets

One approach to truth is to define more generally a certain function

(A, ϕ) 7→ ϕA

on StrS ×FmS , where ϕA ⊆ Afv(ϕ); here ϕA is the relation on A that
is defined by ϕ in A. Once we have defined this for arbitrary ϕ, we
can make the definition

A � σ ⇐⇒ σA = 1,
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where σ ∈ SnS .
First we have to note that the same symbol S in S denotes different

things in different structures; what it denotes in A can be denoted more
precisely by

SA.

Then SA is the interpretation in A of S. We proceed.
The interpretation of an operation symbol is an operation. A term

t also has an interpretion tA, which is an operation. More precisely, if
v(t) is the set of variables occurring in t, then tA is a function from
Av(t) to A. In particular, if t is just vk, then an element of Av(t) is just
a set {(vk, a)}, whose image under vkA is a. Also,

Ft0 · · · tn−1
A(ax : x ∈ v(Ft0 · · · tn−1))

= FA(t0
A(ax : x ∈ v(t0)), . . . , tn−1

A(ax : x ∈ v(tn−1))).

Now we can define interpretations of formulas.
. For unnested atomic formulas, we define

(x0 = x1)A = {f ∈ A{x0,x1} : f(x0) = f(x1)},
(Rx0 · · ·xn)A = {f ∈ A{x0,...,xn} : (f(x0), . . . , f(xn)) ∈ RA},

and

(Fx0 · · ·xn−1 = xn)A

= {f ∈ A{x0,...,xn} : FA(f(x0), . . . , f(xn−1)) = f(xn)}.

For arbitrary formulas,

(t0 = t1)A = {f ∈ Av(t0)∪v(t1) :

t0
A(f � v(t0)) = t1

A(f � v(t1))},

(Rt0 · · · tn)A = {f ∈ Av(t0)∪···∪v(tn) :

(t0
A(f � v(t0)), . . . , tn

A(f � v(tn))) ∈ RA}.
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. For negations:
(¬ϕ)A = Afv(ϕ) r ϕA.

. For disjunctions, if fv(ϕ) = fv(ψ), then

(ϕ ∨ ψ)A = ϕA ∪ ψA;

but in general we have to say

(ϕ ∨ ψ)A = {f ∈ Afv(ϕ)∪fv(ψ) : f � fv(ϕ) ∈ ϕA}
∪ {f ∈ Afv(ϕ)∪fv(ψ) : f � fv(ψ) ∈ ψA}.

. Finally, for instantiations,

(∃x ϕ)A = {f � (fv(ϕ) r {x}) : f ∈ ϕA}.

.. Constants

Alternatively, if A ∈ StrS , we can create the expanded signature
S (A), which is S together with a new constant (nullary operation
symbol) for each element of A. Then we expand A to an element AA
of StrS (A), where the constant associated with an element of A is in-
terpreted as that element. Normally we denote the constant and the
element by the same symbol.
A closed term is a term with no variables. Every closed term of

S (A) has an obvious interpretation in A:

(Ft0 · · · tn−1)A = FA(t0
A, . . . , tn−1

A).

Now we can define truth as follows.
. For atomic sentences we have

A � t0 = t1 ⇐⇒ t0
A = t1

A,

A � Rt0 · · · tn ⇐⇒ (t0
A, . . . , tn

A) ∈ RA.
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. For negations,
A � ¬σ ⇐⇒ A 2 σ.

. For disjunctions,

A � (σ ∨ τ) ⇐⇒ A � σ or A � τ.

. For instantiations, we introduce yet another notation: by

ϕxa

we mean the result of replacing each free occurrence of x in ϕ
with a. The formal definition is recursive:

a) If ϕ is atomic, then ϕxa is just ϕ;

b) ¬ϕxa is ¬ψ, where ψ is ϕxa;

c) (ϕ ∨ ψ)xa is ϕxa ∨ θ, where θ is ψxa ;

d) ∃y ϕxa is just ∃y ϕ, if x is the same variable as y; otherwise
it is ∃y ψ, where ψ is ϕxa.

Now we can define

A � ∃x ϕ ⇐⇒ for some a in A, A � ϕxa.

The recursive definition of truth relies on a recursive definition of SnS

(and then on their unique readability, as before): starting with atomic
sentences, we close under

) negation,
) disjunction, and
) the “multivalued operations” ϕxa 7→ ∃x ϕ, that is, for each a in

A, the operation that, given a sentence, finds all of the (finitely
numerous) formulas ϕ such that the sentence is ϕxa, and then
forms the sentences ∃x ϕ.
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. Abstract logic

The class StrS , the set SnS , and the relation � between them make
up the first order logic of S . For an instance of an abstract logic
of S , we replace SnS with Sn∗S , which has the same closure properties
as SnS just mentioned: Sn∗S must contain all atomic sentences and
be closed under () negation, () disjunction, and () the operations
ϕxa 7→ ∃x ϕ. But Sn∗S may have some other closure properties as well.
Then the definition of truth must be enlarged to deal with the new
closure properties; but the existing parts of the definition stand. We
make the following additional requirements:
Occurrence: In every element σ of Sn∗S , only finitely many symbols of

S may occur.
Reduction: Of the symbols in S , the definition of truth of σ in A

involves only those that actually occur in σ.
Renaming: All that matters about these symbols is whether they de-

note relations or operations, and how many arguments they take.
Isomorphism: Truth must be preserved under isomorphism of struc-

tures.
Relativization: Sentences can be relativized in the way to be described

on page .
As we shall use it, Relativization will subsume Renaming and Isomor-
phism.

. The Galois correspondence

If σ ∈ SnS , we let

Mod(σ) = {A ∈ StrS : A � σ}; (¶)

this is the class of models of σ. Then

Mod(σ ∨ τ) = Mod(σ) ∪Mod(τ),

Mod(∃x x 6= x) = ∅,

}
(‖)
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and so the sets Mod(σ) are a basis of closed classes of a topology on
StrS . We may call this topology the first order topology.

• The Compactness Theorem is that this topology is compact.

• The most basic form of the Löwenheim–Skolem Theorem is
that every sentence with model has a countable model (that
is, a model with a countable universe); in other words, every
nonempty basic closed set has a countable element.

If one is bothered by a topological space that is a proper class, one can
pass to a Kolmogorov quotient of StrS , namely

{Th(A) : A ∈ StrS },

where
Th(A) = {σ ∈ SnS : A � σ}.

However, we do not want to do this, since we shall be interested in
refinements of the first order topology, as induced by abstract logics.
In any case, let us note that two structures A and B in StrS are
elementarily equivalent, and we write

A ≡ B,

if they are indistinguishable in the first order topology, that is,

Th(A) = Th(B).

Now, if we replace SnS above with Sn∗S from an abstract logic of
S , we can still make the definition (¶) when σ ∈ Sn∗S , and then (‖)
still holds for arbitrary σ and τ in Sn∗S . Thus passing to Sn∗S gives
us a finer topology on StrS than the first order topology. However,
because of our requirements on abstract logics, this topology still does
not distinguish isomorphic structures.
It is going to be convenient to allow multi-sorted structures, that is,

structures (like vector spaces) with more than one universe, each of
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these universes being called a sort. Then variables fall into different
sorts, and there may be functions (like scalar multiplication) from a
product of some of the sorts (possibly with repeated sorts) to one of
them. We shall need only structures with finitely many sorts, and in
this case, we can consider the structures as one-sorted, by means of a
dodge: we replace the sorts with their disjoint union, and we introduce
new relation symbols to distinguish the sorts. (We shall also have to
deal with the fact that, in the formal definition, operations are total
functions on a power of the universe.)
Two sentences σ and τ are logically equivalent, and we may write

σ ∼ τ,

if Mod(σ) = Mod(τ).

Theorem . Every first order sentence is logically equivalent to an
unnested sentence.

Proof. First note that

t0 = t1 ∼ ∃x (t0 = x ∧ t1 = x),

Rt0 · · · tn ∼ ∃x0 · · · ∃xn (t0 = x0 ∧ · · · ∧ tn = xn ∧Rx0 · · ·xn)

(where (ϕ∧ψ) is an abbrevation for ¬(¬ϕ∧¬ψ), and (ϕ∧ψ∧θ) means
(ϕ ∧ (ψ ∧ θ)), and so on). The formulas tk = x and tk = xk may not
be unnested. If they are not, we apply the equivalence

Ft0 · · · tn−1 = y ∼ ∃x0 · · · ∃xn−1

(t0 = x0 ∧ · · · ∧ tn = xn ∧ Fx0 · · ·xn−1 = y),

repeatedly as necessary, in order to conclude that every atomic sentence
is equivalent to an unnested sentence.

 Local isomorphisms

An n-ary formula is a formula whose free variables belong to the set
{vk : k < n}. Thus if m < n, then m-ary formulas are also n-ary. If A
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is a structure of S , and ϕ is an n-ary formula of S (A), and a ∈ An,
then the expression denoted by

ϕ(a)

is the result of replacing each free occurrence of vk in ϕ with ak, for
each k in n. Suppose also B ∈ StrS . We denote by

I0

the relation from A<ω to B<ω consisting of those pairs (a, b) such
that, for some n in ω, both a and b are n-tuples, and for all n-ary
unnested formulas ϕ of S ,

A � ϕ(a) ⇐⇒ B � ϕ(b).

Since there are no unnested sentences, we have

0 I0 0.

For any k in ω, if Ik has been defined as a subset of I0, we define Ik+1

to comprise those (a, b) in I0 such that, for all c in A, for some d in B,
and also, for all d in B, for some c in A,

(a, c) Ik (b, d).

Finally, let
I =

⋂
k∈ω

Ik.

If a I b, then, for all c in A, for some d in B, and also, for all d in B,
for some c in A,

(a, c) I (b, d).

If I 6= 0, then A and B are said to be locally isomorphic.

Theorem . Countable locally isomorphic structures are isomorphic.
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Proof. If A = {ak : k ∈ ω} and B = {bk : k ∈ ω}, then by recursion
there are k 7→ b′k and k 7→ a′k from ω to B and A respectively such
that, for each n in ω,

(a0, a
′
0, . . . , an, a

′
n) I (b′0, b0, . . . , b

′
n, bn).

Then ak 7→ b′k is a well-defined isomorphism from A toB, whose inverse
is bk 7→ a′k.

Theorem . Locally isomorphic structures are elementarily equiva-
lent.

Proof. Suppose A and B are locally isomorphic. We shall show that,
for all unnested formulas ϕ of S ,

a I b =⇒
(
A � ϕ(a) ⇐⇒ B � ϕ(b)

)
. (∗∗)

We use induction on the complexity of formulas.
. The claim is true by definition if ϕ is unnested atomic.
. If (∗∗) holds when ϕ is ψ, then it holds when ϕ is ¬ψ.
. If (∗∗) holds when ϕ is ψ or θ, then it holds when ϕ is ψ ∨ θ.
. Suppose (∗∗) holds when ϕ is ψ. Say a I b. If A � (∃x ψ)(a),

then for some c in A, we have A � ψxc (a). By hypothesis, for some d
in B, we have (a, c) I (b, d), and then B � ψxd (b), so B � (∃x ψ)(b).
By symmetry, we are done.

 Refinements of the first order topology

There is an alternative proof of the last theorem that does not rely
directly on the recursive definition of formulas. This proof turns out to
establish a more general result, namely the next theorem, where, given
the set Sn∗S of sentences of an abstract logic of S , we define

Th∗(A) = {σ ∈ Sn∗S : A � σ}.
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Theorem . If A and B are locally isomorphic, and a given abstract
logic of S satisfies the Löwenheim–Skolem Theorem, then

Th∗(A) = Th∗(B).

Proof. Suppose there is σ in Sn∗S that is true in A, but not in B. We
shall obtain a contradiction to the assumption that A and B are locally
isomorphic. Let S0 consist of the symbols of S that actually occur
in σ; by the Occurrence property, S0 is finite. We can reduce A to
a structure A � S0 having signature S0; but still, by the Reduction
property,

A � σ ⇐⇒ A � S0 � σ.

So we may assume that S is the finite signature S0. We shall form
a multi-sorted structure, to be denoted by (A,B), with a signature
S ∗. There will be a sentence τ of S ∗ such that (A,B) � τ , and if
(C,D) � τ , then C and D are locally isomorphic, and σ is true in C, but
not in D. By the Löwenheim–Skolem Theorem, countable such C and
D exist, and then they are isomorphic by Theorem , which is absurd.
The structure (A,B) will have four sorts, namely A, A<ω, B, and

B<ω. The relation I from A<ω to B<ω will be a relation of the
structure. There will also be operations as in (§) on page , and likewise
for B in place of A. There will be constants for 0 in A<ω and B<ω

respectively. Then τ will have, as conjuncts,

0 I 0,

∀x ∀y ∀z ∃w (x I y ⇒ (x, z) I (y, w)
)
,

∀x ∀y ∀w ∃z (x I y ⇒ (x, z) I (y, w)
)
,

∀x ∀y ∀z ∀w (x I y ∧ z I w ⇔ (x, z) I (y,w)
)
.

Also, let Γ consist of the unnested atomic formulas of S of one of the
precise forms

v0 = v1, Rv0 · · · vn, Fv0 · · · vn−1 = vn.
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Since S is assumed to be finite, Γ is also finite, and there is some
n such that each formula in Γ is (n + 1)-ary. Then τ can have, as a
conjunct,

∀x0 · · · ∀xn ∀y0 · · · ∀ynx I y ⇒
∧
ϕ∈Γ

(
ϕ(x0, . . . , xn)⇔ ψ(y0, . . . , yn)

) .

Here the xk are understood to range over A, while x is the image of
(x0, . . . , xn) in A<ω; likewise with y for x and B for A; and the two in-
stances of ϕ are also appropriately relativized, that is, their variables
are assigned to the sorts A and B respectively. Now, in any model of
τ , the symbol I will be interpreted as a nonempty subset of I (though
not necessarily as I itself). Finally, by the Relativization property, we
let τ have, as conjuncts, σ relativized to A and ¬σ relativized to B.
Then we have τ as desired.

If Ik 6= 0, we write
A ≡k B.

Theorem . If S is finite, then for all n in ω there is a finite set Γn
of sentences of S such that

A ≡n B ⇐⇒ {σ ∈ Γn : A � σ} = {σ ∈ Γn : B � σ}.

Proof. Assuming S is finite, for each n in ω, for each k in n + 1, we
shall define a finite set Γkn−k of k-ary formulas such that,

for all a in Ak and b in Bk, a In−k b ⇐⇒
{ϕ ∈ Γkn−k : A � ϕ(a)} = {ϕ ∈ Γkn−k : B � ϕ(b)}. (††)

We can let Γn0 be the set of all n-ary unnested atomic formulas of S .
If ` < n, and we have a finite set Γ`+1

n−`−1 of (` + 1)-ary formulas such
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that (††) holds when k = `+ 1, then we can let

Γ`n−` =

∀v` ∨
ϕ∈X

ϕ ∧
∧
ϕ∈X
∃v` ϕ : X ⊆ Γ`n−`

 .

So we have Γkn−k as desired for all k in n+ 1. Now let Γn = Γ0
n.

Thus each equivalence relation ≡n partitions StrS into finitely many
subclasses. Moreover, each of those subclasses is a basic closed set in
the first order topology:

Corollary. If S is finite, then for all n in ω, there is a finite set Σn
of sentences of S such that, for all structures A of S , there is σn(A)
in Σn such that for all structures B of S ,

A ≡n B ⇐⇒ B � σn(A).

Proof. Let σn(A) be∧
{σ ∈ Γn : A � σ} ∧

∧
{¬σ : σ ∈ Γn & A 2 σ}.

Theorem  (Lindström). In every abstract logic of S that admits
the Löwenheim–Skolem and Compactness Theorems, every sentence is
logically equivalent to a first order sentence.

Proof. Suppose σ is a sentence of such a logic, and S consists of the
symbols in σ, so S is finite. We shall show that, for some n in ω, for
all A and B in StrS ,

A ≡n B =⇒ (A � σ ⇐⇒ B � σ). (‡‡)

If this does hold, then Mod(σ) is
⋃
τ∈XMod(τ) for some subset X of

Σn, namely
{σn(A) : A ∈Mod(σ)};
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this means σ ∼
∨
X. Suppose however (‡‡) fails for all n. Then for all

n there are An and Bn such that

An ≡n Bn, An � σ, Bn � ¬σ.

We define a sequence (σn : n ∈ ω) recursively so that

• each σn is in Σn;

• {k ∈ ω : Ak � σn} is infinite;

• Mod(σn+1) ⊆Mod(σn).

By Compactness (and the Relativization property of Sn∗S ), there is a
structure (A,B) such that A � σ and B � ¬σ, but both A and B are
models of the σn. By Theorem , the abstract logic cannot admit the
Löwenheim–Skolem Theorem.
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