A Method for Companionability, Applied to Group Actions and Valuations

with Ayşe Berkman and with Özlem Beyarslan, Daniel Max Hoffmann, and Gönenç Onay DAVID PIERCE

Mimar Sinan Güzel Sanatlar Üniversitesi, İstanbul

Delphi, July, 2017

"Ην στρατεύηται ἐπὶ Πέρσας, μεγάλην ἀρχὴν μιν καταλύσειν —Oracle to Croesus, as reported by Herodotus (I.53) Three theories of education:

- 1. Learn the word of God.
- 2. Learn skills.
- 3. Learn freedom.

Mathematics teaches freedom by being

(a) personal (none can command you to accept a theorem),

(b) universal (disagreement must be settled peacefully).

[Formal proof] was one of the great discoveries of the early 20th century, largely due to Frege, Russell, and Whitehead . . . This discovery has had a profound impact on mathematics, because it means that any dispute about the validity of a mathematical proof can always be resolved.

-Timothy Gowers, Mathematics: A Very Short Introduction

Nesin Mathematics Village, Şirince Selçuk, İzmir (Ephesus, Ionia), July 9, 2016 A PROBLEM OF MODEL THEORY: identify complete theories and their properties, such as being axiomatizable or not. **Presburger 1930.** $Th(\mathbb{N}, +)$ is axiomatizable. **Gödel 1931.** $Th(\mathbb{N}, +, \times)$ is not.

USEFUL DEFINITIONS:

diag(\mathfrak{A}) = Th(structures in which \mathfrak{A} embeds), \mathcal{T}_{\forall} = Th(structures embedding in models of \mathcal{T}).

A. Robinson 1956. A theory \mathcal{T} is model-complete if, whenever $\mathfrak{A} \models \mathcal{T}$, then $\mathcal{T} \cup \operatorname{diag}(\mathfrak{A})$ is complete.

"Eli Bers" 1969. A model-complete theory T^* is the modelcompanion of any theory T for which $T^*_{\forall} = T_{\forall}$.

Fields may have

- 1) a valuation ring \mathcal{O} (with max. ideal \mathcal{M}),
- 2) a derivation δ ,
- 3) an automorphism σ .

the theory of fields	has mo	odel companion	source
	ACF		Tarski 1948
with ${\cal O}$	ACVF		Robinson 1956
of char. 0 with δ	DCF_0		Robinson 1959
of char. p with δ	DCF_p		Wood 1973
with σ	ACFA	$\left\{ \begin{array}{c} Chatzidal \end{array} \right.$	Macintyre 1997 kis–Hrushovski 1999
of char. 0 with δ , σ of char. p with δ , σ	yes no		P. 2004
with \mathcal{O}, σ	yes	Éeyarslan-Hoffn	nann–Onay–P. 201?

THEOREM (generalizing Robinson 1957). If it exists, the modelcompanion \mathcal{T}^* of a theory \mathcal{T} is axiomatized by \mathcal{T}_{\forall} and sentences $\forall \boldsymbol{x} \; \forall \boldsymbol{y} \; \exists \boldsymbol{z} \; (\vartheta(\boldsymbol{x}, \boldsymbol{y}) \Rightarrow \varphi(\boldsymbol{x}, \boldsymbol{z})),$

where

- $\bullet \, \varphi$ is a system of atomic and negated atomic formulas,
- ϑ is from a set Θ_{φ} of formulas,
- for all models \mathfrak{M} of \mathcal{T}_{\forall} with parameters \boldsymbol{a} ,

 $\vartheta(\boldsymbol{a}, \boldsymbol{y})$ is soluble in \mathfrak{M} for some ϑ in $\Theta_{\varphi} \iff \varphi(\boldsymbol{a}, \boldsymbol{z})$ is soluble in a model of $\mathcal{T}_{\forall} \cup \operatorname{diag}(\mathfrak{M})$.

Not every system φ need be considered, but "enough" of them.

To axiomatize DCF_0 , Robinson considered all systems.

Blum 1968: one-variable systems are enough.

For the model-companion of any theory \mathcal{T} , it is enough to consider *unnested* systems.

EXAMPLE. Over a field K with σ , \mathcal{O} , and \mathcal{M} , one need only understand systems

$$\bigwedge_{f \in I_0} f = 0 \land \bigwedge_{i < m} X_i^{\sigma} = X_{\tau(i)} \land \bigwedge_{\ell \in \lambda} X_\ell \in \mathcal{O} \land \bigwedge_{k \in \kappa} X_k \in \mathcal{M},$$

where, for some n in $\boldsymbol{\omega}$,

- I_0 is a finite subset of $K[X_j: j < n]$,
- $m \leq n \text{ and } \tau \colon m \rightarrowtail n$,
- $\kappa \subseteq \lambda \subseteq n$.

EXAMPLE. A group action is (P, A), where

- 1) $P = \{$ functions $\},\$
- $2) A = \{ \text{points} \},\$
- 3) there is $(\xi, y) \mapsto \xi y$ from $P \times A$ to A whereby

(a) functions have inverses: $\forall \xi \exists \eta \forall z \ (\xi \eta z = z \land \eta \xi z = z);$ (b) two functions have a composite: $\forall \xi \forall \eta \exists \zeta \forall v \xi \eta v = \zeta v;$ (c) there is an identity: $\exists \xi \forall y \xi y = y.$

Let GA = Th(group actions).

Then GA_\forall is that functions are injective:

$$\forall \xi \; \forall y \; \forall z \; (y \neq z \Rightarrow \xi \; y \neq \xi \; z).$$

KEY OBSERVATION: Compositions not preserved in extensions.

To find $\mathsf{GA}^*,$ one need only consider systems

$$\bigwedge \alpha \, x = y \land \bigwedge \xi \, t = u,$$

where t and u are point variables or constants.

 GA^* is complete and says,

any n! distinct functions act like Sym(n) on some n points;
 on any n distinct points, some n! functions act like Sym(n);
 there are at least two points.

 $\mathsf{GA}\xspace$ includes $\mathrm{Th}(\mathbf{parametrized}\xspace\xspace\mathbf{permutations}),$ axiomatized by

$$\forall \xi \; \forall y \; \forall z \; (y \neq z \Rightarrow \xi \; y \neq \xi \; z), \qquad \forall \xi \; \forall y \; \exists z \; \xi \; z = y.$$

Shelah 1993: $T_{\rm feq}$, namely

Th(parametrized equivalence relations).

 $T_{\text{feq}}^* = \text{Th}(\text{Fra\"iss\acute{e}} \text{ limit of the class of finite models of } T_{\text{feq}}).$

It was shown that T_{feq}^* has TP₂ and, ultimately, NSOP₁.

Thus T_{feq}^* occupies an undivided region of the *Map of the Uni*verse (Conant 2013–, forkinganddividing.com).

As for GA^* , so for for T_{feq}^* , one can obtain axioms:

- 1) a partition of n points is effected by some relation,
- 2) the intersection of classes of n distinct relations is nonempty,
- 3) there are n relations and n classes of each.

Like T_{feq}^* , GA^* has TP_2 and $NSOP_1$.

Chernikov–Ramsey 2016: In a finite relational signature,

- if the theory of the Fraïssé limit of a Fraïssé class with Strong Amalgamation is simple,
- then the theory of *parametrized* models has $NSOP_1$,
- **because** it has a certain independence relation \bigcup with independent amalgamation of types.

THEOREM. **GA**^{*} also has NSOP₁, because of
$$\bigcup$$
 given by
 $(P, A) \bigcup_{(T,C)} (\Sigma, B) \iff$
 $P \cap \Sigma \subseteq T \& \langle A \cup C \rangle_{P \cup T} \cap \langle B \cup C \rangle_{\Sigma \cup T} \subseteq \langle C \rangle_{T},$

where $\langle X \rangle_{\Xi} = \{ \xi^n \, x \colon \xi \in \Xi \& n \in \mathbb{Z} \& x \in X \}.$

 $T \acute{\epsilon} \tau \tau \iota \xi$ on tree, Marmara Island (Proconnesus), July 26, 2012

τῆ δὲ πρεσβυτάτῃ Καλλιόπῃ καὶ τῆ μετ' αὐτὴν Οὐρανία τοὺς ἐν φιλοσοφία διάγοντάς τε καὶ τιμῶντας τὴν ἐκείνων μουσικὴν ἀγγέλλουσιν, αἳ δὴ μάλιστα τῶν Μουσῶν περί τε οὐρανὸν καὶ λόγους οὖσαι θείους τε καὶ ἀνθρωπίνους ἱᾶσι καλλίστην φωνήν —Plato, Phaedrus 259D