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῍Ην στρατεύηται ἐπὶ Πέρσας, μεγάλην ἀρχὴν μιν καταλύσειν

—Oracle to Croesus, as reported by Herodotus (i.)



Three theories of education:

. Learn the word of God.

. Learn skills.

. Learn freedom.

Mathematics teaches freedom by being

(a) personal (none can command you to accept a theorem),

(b) universal (disagreement must be settled peacefully).

[Formal proof] was one of the great discoveries of the early th cen-
tury, largely due to Frege, Russell, and Whitehead . . . This discovery
has had a profound impact on mathematics, because it means that
any dispute about the validity of a mathematical proof can always be

resolved.

—Timothy Gowers, Mathematics: A Very Short Introduction



Nesin Mathematics Village, Şirince
Selçuk, İzmir (Ephesus, Ionia), July , 



A problem of model theory: identify complete theories
and their properties, such as being axiomatizable or not.

Presburger . Th(N,+) is axiomatizable.

Gödel . Th(N,+,×) is not.

Useful definitions:

diag(A) = Th(structures in which A embeds),
T ∀ = Th(structures embedding in models of T ).

A. Robinson . A theory T is model-complete if, when-
ever A |= T , then T ∪ diag(A) is complete.

“Eli Bers” . A model-complete theory T
∗ is the model-

companion of any theory T for which T
∗
∀ = T ∀.



Fields may have
) a valuation ring O (with max. ideal M),
) a derivation δ,
) an automorphism σ.

the theory of fields has model companion source
— ACF Tarski 

with O ACVF Robinson 
of char. 0 with δ DCF0 Robinson 
of char. p with δ DCFp Wood 

with σ ACFA

{

Macintyre 
Chatzidakis–Hrushovski 

of char. 0 with δ, σ yes
of char. p with δ, σ no

}

P. 

with O, σ yes Beyarslan–Hoffmann–Onay–P. ?



Theorem (generalizing Robinson ). If it exists, the model-
companion T

∗ of a theory T is axiomatized by T ∀ and sentences

∀x ∀y ∃z
(

ϑ(x,y) ⇒ ϕ(x, z)
)

,

where

• ϕ is a system of atomic and negated atomic formulas,

• ϑ is from a set Θϕ of formulas,

• for all models M of T ∀ with parameters a,

ϑ(a,y) is soluble in M for some ϑ in Θϕ ⇐⇒

ϕ(a, z) is soluble in a model of T ∀ ∪ diag(M).

Not every system ϕ need be considered, but “enough” of them.



To axiomatize DCF0, Robinson considered all systems.

Blum : one-variable systems are enough.

For the model-companion of any theory T , it is enough to con-
sider unnested systems.

Example. Over a field K with σ, O, and M, one need only
understand systems

∧

f∈I0

f = 0 ∧
∧

i<m

Xi
σ = Xτ(i) ∧

∧

ℓ∈λ

Xℓ ∈ O ∧
∧

k∈κ

Xk ∈ M,

where, for some n in ω,

• I0 is a finite subset of K[Xj : j < n],

•m 6 n and τ : m ֌ n,

• κ ⊆ λ ⊆ n.



Example. A group action is (P,A), where

) P = {functions},

) A = {points},

) there is (ξ, y) 7→ ξ y from P × A to A whereby

(a) functions have inverses: ∀ξ ∃η ∀z (ξ η z = z ∧ η ξ z = z);

(b) two functions have a composite: ∀ξ ∀η ∃ζ ∀v ξ η v = ζ v;

(c) there is an identity: ∃ξ ∀y ξ y = y.

Let GA = Th(group actions).

Then GA∀ is that functions are injective:

∀ξ ∀y ∀z (y 6= z ⇒ ξ y 6= ξ z).

Key observation: Compositions not preserved in extensions.



To find GA
∗, one need only consider systems

∧

αx = y ∧
∧

ξ t = u,

where t and u are point variables or constants.

GA
∗ is complete and says,

) any n! distinct functions act like Sym(n) on some n points;

) on any n distinct points, some n! functions act like Sym(n);

) there are at least two points.

GA includes Th(parametrized permutations), axiomatized by

∀ξ ∀y ∀z (y 6= z ⇒ ξ y 6= ξ z), ∀ξ ∀y ∃z ξ z = y.

Shelah : Tfeq, namely

Th(parametrized equivalence relations).



Tfeq
∗ = Th(Fraïssé limit of the class of finite models of Tfeq).

It was shown that Tfeq
∗ has TP2 and, ultimately, NSOP1.

Thus Tfeq
∗ occupies an undivided region of the Map of the Uni-

verse (Conant –, forkinganddividing.com).

As for GA∗, so for for Tfeq
∗, one can obtain axioms:

) a partition of n points is effected by some relation,

) the intersection of classes of n distinct relations is nonempty,

) there are n relations and n classes of each.

Like Tfeq
∗, GA∗ has TP2 and NSOP1.



Chernikov–Ramsey : In a finite relational signature,

if the theory of the Fraïssé limit of a Fraïssé class with Strong
Amalgamation is simple,

then the theory of parametrized models has NSOP1,

because it has a certain independence relation |⌣ with inde-
pendent amalgamation of types.

Theorem. GA
∗ also has NSOP1, because of |⌣ given by

(P, A) |⌣
(T,C)

(Σ, B) ⇐⇒

P ∩ Σ ⊆ T & 〈A ∪ C〉P∪T ∩ 〈B ∪ C〉Σ∪T ⊆ 〈C〉T,

where 〈X〉Ξ = {ξn x : ξ ∈ Ξ & n ∈ Z & x ∈ X}.



Τέττιξ on tree, Marmara Island (Proconnesus), July , 

τῇ δὲ πρεσβυτάτῃ Καλλιόπῃ καὶ τῇ μετ’ αὐτὴν Οὐρανίᾳ τοὺς ἐν φιλο-
σοφίᾳ διάγοντάς τε καὶ τιμῶντας τὴν ἐκείνων μουσικὴν ἀγγέλλουσιν,
αἳ δὴ μάλιστα τῶν Μουσῶν περί τε οὐρανὸν καὶ λόγους οὖσαι θείους
τε καὶ ἀνθρωπίνους ἱᾶσι καλλίστην φωνήν —Plato, Phaedrus d


