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This note gives a unified treatment to several mathematical observations.

For notation, let 2 be considered as the universe {0, 1} of an abelian group. For
each e in 2, let A, be a set, and let * be a relation from Ag to A;. This means
that * is a subset of Ay x Aj; if * contains (zo,x1), then we write

Lo *Tq.
If z, € A, let
[we] = {@es1 € Aeqr 1o * 1} € P(Acsr).

If X € P(A), let
X' =zl : 2 € X} € P(Aesa).
Let A7, be the image of P(A.) under the map X ~— X'.
Theorem 1. Let e € 2.
() f X,)Y € P(Ae) and X C Y, then Y’ C X'.
(1) If X € P(A,), then X C X".
() The map X — X' is a bijection from A} to Aj | with inverse X — X'.

Proof. Exercise. (For the last point, see [3, ch. V, Lemma 2.6].) O

Regardless of how the maps X — X' are originally defined, if they meet the
conditions established in the theorem, they constitute a Galois correspon-
dence between Af and Aj. (This definition is in [4, p. 35].) There are several
examples, as you should verify:

Field-theory

The usual Galois correspondence in field-theory is the case when Aq is a field L
that is a finite Galois extension of a field K, and A; is Aut(L/K), and

r*x0 < z° =zx.

Then Af comprises the subfields F' of L that include K, and A} comprises the
subgroups H of Aut(L/K), and F' = Aut(L/F), and H' = Fix(H).



The Zariski topology

Suppose Ag is a ring R (commutative with 1), and A; is Spec R, that is, the set
of prime ideals of R. Let x be €. Then

[z] U [y] = [2y]

if z,y € R. Hence the sets [z] are the basic closed sets for a topology, the
Zariski topology on Spec R. (See for example [1, pp. 54-55] or [2, § 11.2].)
The topology is compact, although possibly not Hausdorff. In this topology, if
X C Spec R, then X" is the closure of X. If X C R, then X" is the radical (in
the sense of [3, ch. VIII, Definition 2.5]) of the (possibly improper) ideal (X).
In general, Aj comprises the radical ideals of R, and A} comprises the closed
subsets of Spec R.

The Stone space

Now suppose in particular that Ay is a Boolean ring or algebra B, and A; is its
Stone space S(B), the set of ultrafilters of B. The ultrafilters are dual to the
prime ideals, all of which are maximal. Let x be € again. Then

[z] N [y] = [zy] = [z A y]

when z,y € B, and also
[2]° = [z + 1] = [-z],
so that
[FlU] =[z+y+azy] =[zVy]
Hence the sets [z] are basic open and closed sets for a topology on S(B). This
topology is compact as before, but also Hausdorff. The elements of A} are still
just the closed subsets of S(B); the elements of Aj are just the filters of B. If

X C B, then X" is the filter generated by X; if X C S(B), then X" is its
closure.

Model-theory

Suppose L is a signature for first-order logic. Let Ay be the class Mod(L) of
L-structures, let A; be Sng, and let * be |=. Then A7 is the set of theories of
L, and Af is the set of elementary classes of L-structures. (See [4, § 3.4].)
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